Search results for: foliar boric acid application
10136 Salt Stress Affects Growth, Nutrition and Anatomy of Stipa lagascae: A Psammophile Grass in Southern Tunisia
Authors: Raoudha Abdellaoui, Faycal Boughalleb, Zohra Chebil
Abstract:
In arid and semi-arid regions, salinity represents a major constraint towards plants’ growth. Stipa lagascae, a psammophile grass, is a promised species since its economic and ecological interests. Our study aims to explore the effects of different salt concentrations (0; 100; 200; 300 and 400 mM) on physiological, biochemical and anatomic parameters. Salt stress was applied on S. lagascae plants cultivated under controlled conditions. Results show that salinity reduces biomass production especially when plants are subjected to severe stress (>200 mM NaCl). Concerning the nutritional level, the fact of enriching soil with NaCl, leads to an accumulation of Na+ against other nutritional elements (K+, Ca2+). To maintain tissues hydration, S. lagascae established osmotic adaptation by accumulation of proline and soluble sugars. Salt stress affected significantly root and foliar anatomy. Indeed, plants increased their vessels’ diameter and mesophyll surface. S. lagascae plants reduced also the surface of the belluforme cells to defeat dehydration. According to our results, S. lagascae seems to be a tolerant plant at acceptable concentrations that do not exceed 6g/l.Keywords: anatomical adaptations, mineral nutrition, plant growth, salt stress, stipa lagascae
Procedia PDF Downloads 26310135 Fillet Chemical Composition of Sharpsnout Seabream (Diplodus puntazzo) from Wild and Cage-Cultured Conditions
Authors: Oğuz Taşbozan, Celal Erbaş, Şefik Surhan Tabakoğlu, Mahmut Ali Gökçe
Abstract:
Polyunsaturated fatty acids (PUFAs) and particularly the levels and ratios of ω-3 and ω-6 fatty acids are important for biological functions in humans and recognized as essential components of human diet. According to the terms of many different points of view, the nutritional composition of fish in culture conditions and caught from wild are wondered by the consumers. Therefore the aim of this study was to investigate the chemical composition of cage-cultured and wild sharpsnout seabream which has been preferred by the consumers as an economical important fish species in Turkey. The fish were caught from wild and obtained from cage-cultured commercial companies. Eight fish were obtained for each group, and their average weights of the samples were 245.8±13.5 g for cultured, 149.4±13.3 g for wild samples. All samples were stored in freezer (-18 °C) and analyses were carried out in triplicates, using homogenized boneless fish fillets. Proximate compositions (protein, ash, moisture and lipid) were determined. The fatty acid composition was analyzed by a GC Clarous 500 with auto sampler (Perkin–Elmer, USA). Proximate compositions of cage-cultured and wild samples of sharpsnout seabream were found statistical differences in terms of proximate composition between the groups. The saturated fatty acid (SFA), monounsaturated fatty acid (MUFA) and PUFA amounts of cultured and wild sharpsnout seabream were significantly different. ω3/ω6 ratio was higher in the cultured group. Especially in protein level and lipid level of cultured samples was significantly higher than wild counterparts. One of the reasons for this, cultured species exposed to continuous feeding. This situation had a direct effect on their body lipid content. The fatty acid composition of fish differs depending on a variety of factors including species, diet, environmental factors and whether they are farmed or wild. The higher levels of MUFA in the cultured fish may be explained with the high content of monoenoic fatty acids in the feed of cultured fish as in some other species. The ω3/ω6 ratio is a good index for comparing the relative nutritional value of fish oils. In our study, the cultured sharpsnout seabream appears to be better nutritious in terms of ω3/ω6. Acknowledgement: This work was supported by the Scientific Research Project Unit of the University of Cukurova, Turkey under grant no FBA-2016-5780.Keywords: Diplodus puntazo, cage cultured, PUFA, fatty acid
Procedia PDF Downloads 26510134 Isolation and Characterization of the First Known Inhibitor Cystine Knot Peptide in Sea Anemone: Inhibitory Activity on Acid-Sensing Ion Channels
Authors: Armando A. Rodríguez, Emilio Salceda, Anoland Garateix, André J. Zaharenko, Steve Peigneur, Omar López, Tirso Pons, Michael Richardson, Maylín Díaz, Yasnay Hernández, Ludger Ständker, Jan Tytgat, Enrique Soto
Abstract:
Acid-sensing ion channels are cation (Na+) channels activated by a pH drop. These proteins belong to the ENaC/degenerin superfamily of sodium channels. ASICs are involved in sensory perception, synaptic plasticity, learning, memory formation, cell migration and proliferation, nociception, and neurodegenerative disorders, among other processes; therefore those molecules that specifically target these channels are of growing pharmacological and biomedical interest. Sea anemones produce a large variety of ion channels peptide toxins; however, those acting on ligand-gated ion channels, such as Glu-gated, Ach-gated ion channels, and acid-sensing ion channels (ASICs), remain barely explored. The peptide PhcrTx1 is the first compound characterized from the sea anemone Phymanthus crucifer, and it constitutes a novel ASIC inhibitor. This peptide was purified by chromatographic techniques and pharmacologically characterized on acid-sensing ion channels of mammalian neurons using patch-clamp techniques. PhcrTx1 inhibited ASIC currents with an IC50 of 100 nM. Edman degradation yielded a sequence of 32 amino acids residues, with a molecular mass of 3477 Da by MALDI-TOF. No similarity to known sea anemone peptides was found in protein databases. The computational analysis of Cys-pattern and secondary structure arrangement suggested that this is a structurally ICK (Inhibitor Cystine Knot)-type peptide, a scaffold that had not been found in sea anemones but in other venomous organisms. These results show that PhcrTx1 represents the first member of a new structural group of sea anemones toxins acting on ASICs. Also, this peptide constitutes a novel template for the development of drugs against pathologies related to ASICs function.Keywords: animal toxin, inhibitor cystine knot, ion channel, sea anemone
Procedia PDF Downloads 30710133 Nanoparticles of Hyaluronic Acid for Radiation Induced Lung Damages
Authors: Anna Lierova, Jitka Kasparova, Marcela Jelicova, Lucie Korecka, Zuzana Bilkova, Zuzana Sinkorova
Abstract:
Hyaluronic acid (HA) is a simple linear, unbranched polysaccharide with a lot of exceptional physiological and chemical properties such as high biocompatibility and biodegradability, strong hydration and viscoelasticity that depend on the size of the molecule. It plays the important role in a variety of molecular events as tissue hydration, mechanical protection of tissues and as well as during inflammation, leukocyte migration, and extracellular matrix remodeling. Also, HA-based biomaterials, including HA scaffolds, hydrogels, thin membranes, matrix grafts or nanoparticles are widely use in various biomedical applications. Our goal is to determine the radioprotective effect of hyaluronic acid nanoparticles (HA NPs). We are investigating effect of ionizing radiation on stability of HA NPs, in vitro relative toxicity of nanoscale as well as effect on cell lines and specific surface receptors and their response to ionizing radiation. An exposure to ionizing radiation (IR) can irreversibly damage various cell types and may thus have implications for the level of the whole tissue. Characteristic manifestations are formation of over-granulated tissue, remodeling of extracellular matrix (ECM) and abortive wound healing. Damages are caused by either direct interaction with DNA and IR proteins or indirectly by radicals formed during radiolysis of water Accumulation and turnover of ECM are a hallmark of radiation induces lung injury, characterized by inflammation, repair or remodeling health pulmonary tissue. HA is a major component of ECM in lung and plays an important role in regulating tissue injury, accelerating tissue repair, and controlling disease outcomes. Due to that, HA NPs were applied to in vivo model (C57Bl/6J mice) before total body or partial thorax irradiation. This part of our research is targeting on effect of exogenous HA on the development and/or mitigating acute radiation syndrome and radiation induced lung injuries.Keywords: hyaluronic acid, ionizing radiation, nanoparticles, radiation induces lung damages
Procedia PDF Downloads 16610132 Determination of MDA by HPLC in Blood of Levofloxacin Treated Rats
Authors: D. S. Mohale, A. P. Dewani, A. S.tripathi, A. V. Chandewar
Abstract:
Present work demonstrates the applicability of high-performance liquid chromatography (HPLC) with UV-Vis detection for the quantification of malondialdehyde as malondialdehyde-thiobarbituric acid complex (MDA-TBA) in-vivo in rats. The HPLC method for MDA-TBA was achieved by isocratic mode on a reverse-phase C18 column (250mm×4.6mm) at a flow rate of 1.0mLmin−1 followed by detection at 532 nm. The chromatographic conditions were optimized by varying the concentration and pH of water followed by changes in percentage of organic phase optimal mobile phase consisted of mixture of water (0.2% triethylamine pH adjusted to 2.3 by ortho-phosphoric acid) and acetonitrile in ratio (80:20v/v). The retention time of MDA-TBA complex was 3.7 min. The developed method was sensitive as limit of detection and quantification (LOD and LOQ) for MDA-TBA complex were (standard deviation and slope of calibration curve) 110 ng/ml and 363 ng/ml respectively. Calibration studies were done by spiking MDA into rat plasma at concentrations ranging from 500 to 1000 ng/ml. The precision of developed method measured in terms of relative standard deviations for intra-day and inter-day studies was 1.6–5.0% and 1.9–3.6% respectively. The HPLC method was applied for monitoring MDA levels in rats subjected to chronic treatment of levofloxacin (LEV) (5mg/kg/day) for 21 days. Results were compared by findings in control group rats. Mean peak areas of both study groups was subjected for statistical treatment to unpaired student t-test to find p-values. The p value was <0.001 indicating significant results and suggesting increased MDA levels in rats subjected to chronic treatment of LEV of 21 days.Keywords: malondialdehyde-thiobarbituric acid complex, levofloxacin, HPLC, oxidative stress
Procedia PDF Downloads 33210131 Preparation and Quality Control of 68Ga-1,2-Propylene Di-Amino Tetra (Methylenephosphonic Acid)
Authors: N. Tadayon, H. Yousefnia, S. Zolghadri, A. Ramazani, A. R. Jalilian
Abstract:
Bone metastases occur in many patients with solid malignant tumors. Recently, 1,2 propylene di-amino tetra methylenephosphonic acid (PDTMP) has been introduced as a suitable carrier in the development of therapeutic bone-avid radiopharmaceuticals. In this study, due to the desirable characteristics of 68Ga, 68Ga-PDTMP was prepared. 68Ga was obtained from SnO2 based generator. A stock solution of PDTMP was prepared by dissolving in 2 N NaOH. A certain volume of the stock solution was added to the vial containing 68GaCl3 and the pH of the mixture was adjusted to 4 using HEPES. Radiochemical purity of the radiolabelled complex was checked by thin layer chromatography. 68Ga-PDTMP was prepared in only 15 min with radiochemical purity of more than 98%. This new bone-seeking complex can be considered as a good candidate of PET-based radiopharmaceutical for imaging of bone metastases.Keywords: bone metastases, Ga-68, imaging, PDTMP
Procedia PDF Downloads 29010130 Assessment of the Impact of the Application of Kinesiology Taping on Joint Position Sense in Knee Joint
Authors: Anna Słupik, Patryk Wąsowski, Anna Mosiołek, Dariusz Białoszewski
Abstract:
Introduction: Kinesiology Taping is one of the most popular techniques used for treatment and supporting physiological processes in sports medicine and physiotherapy. Often it is used to sensorimotor skills of lower limbs by athletes. The aim of the study was to determine the effect of the application of muscle Kinesiology Taping to feel the position setting in motion the joint active. Material and methods: The study involved 50 healthy people between 18 and 30 years of age, 30 men and 20 women (mean age 23.24 years). The participants were divided into two groups. The study group was qualified for Kinesiology Taping application (muscle application, type Y, for quadriceps femoris muscle), while the remaining people used the application made of plaster (placebo group). Testing was performed prior to applying taping, with the applied application (after 30 minutes), then 24 hours after wearing, and after removing the tape. Each evaluated joint position sense - Error of Active Reproduction of Joint Position. Results: The survey revealed no significant differences in measurement between the study group and the placebo group (p> 0.05). No significant differences in time taking into account all four measurements in the group with the applied CT application, which was supported by pairs (p> 0.05). Also in the placebo group showed no significant differences over time (p> 0.05). There was no significant difference between the errors committed in the direction of flexion and extension. Conclusions: 1. Application muscle Kinesiology Taping had no significant effect on the knee joint proprioception. Its use in order to improve sensorimotor seems therefore unjustified. 2. There are no differences between applications Kinesiology Taping and placebo indicates that the clinical effect of stretch tape is minimal or absent. 3. The results are the basis for the continuation of prospective, randomized trials of numerous and study group.Keywords: joint position sense, kinesiology taping, knee joint, proprioception
Procedia PDF Downloads 40210129 Design and Implementation of Remote Application Virtualization in Cloud Environments
Authors: Shuen-Tai Wang, Ying-Chuan Chen, Hsi-Ya Chang
Abstract:
Cloud computing is a paradigm of computing that shifts the way computing has been done in the past. The users can use cloud resources such as application software or storage space from the cloud without needing to own them. This paper is focused on solutions that are anticipated to introduce IaaS idea to build cloud base services and enable the individual remote user's applications in cloud environments, which appear as if they are running on the end user's local computer. The available features of application delivery solution have been developed based on our previous research on the virtualization technology to offer applications independent of location so that the users can work online, offline, anywhere, with appropriate device and at any time. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud service. Users no longer need to burden the system managers and drastically reduces the overall cost of hardware and software licenses. Moreover, this flexible remote application virtualization service represents the next significant step to the mobile workplace, and it lets users access their applications remotely through cloud services anywhere. This is also made possible by the low administrative costs as well as relatively inexpensive end-user terminals and reduced energy expenses.Keywords: cloud computing, IaaS, virtualization, application delivery
Procedia PDF Downloads 28010128 Orotic Acid-Induced Fatty Liver in Mink: Characterization and Testing of Bioactive Peptides for Prevention and Treatment
Authors: Don Buddika Oshadi Malaweera, Lora Harris, Bruce Rathgeber, Chibuike C. Udenigwe, Kirsti Rouvinen-Watt
Abstract:
Fatty liver disease is among the three most severe health concerns for mink and believed to occur through the same mechanism as nursing sickness. In North America, nursing sickness affects about 45% of mink farms and in Canada, approximately 50,000 mink females is affected annually. Orotic acid (OA) plays a critical role in lipid metabolism and can increase hepatic lipids by enhancing Sterol regulatory element binding protein-1c expression and decreasing Carnitine palmitoyl transferase I activity. This study was conducted to identify particular pathways and regulatory control points involved in fatty liver development, and evaluate the effectiveness of arginine and bioactive peptides for prevention and treatment of fatty liver disease in mink. A total of 45 mink were used in 9 treatments. The experimental diets consisted of 1% OA, 2% L-arginine and 5% of whey protein hydrolysates. At the end of 10 days of experimental period, the mink were anaesthetized, sampled for blood and euthanized, samples were obtained for histological, biochemical and molecular assays. The blood samples will be analyzed for clinical chemistry and triacylglycerol. The liver samples will be analyzed for total lipid content and analyzed for 6 genes of interest involved in adipogenic transformation, ER stress, and liver inflammation.Keywords: fatty liver, L-arginine, mink, orotic acid, whey protein hydrolysates
Procedia PDF Downloads 30110127 The Impact of Regulatory Changes on the Development of Mobile Medical Apps
Abstract:
Mobile applications are being used to perform a wide variety of tasks in day-to-day life, ranging from checking email to controlling your home heating. Application developers have recognized the potential to transform a smart device into a medical device, by using a mobile medical application i.e. a mobile phone or a tablet. When initially conceived these mobile medical applications performed basic functions e.g. BMI calculator, accessing reference material etc.; however, increasing complexity offers clinicians and patients a range of functionality. As this complexity and functionality increases, so too does the potential risk associated with using such an application. Examples include any applications that provide the ability to inflate and deflate blood pressure cuffs, as well as applications that use patient-specific parameters and calculate dosage or create a dosage plan for radiation therapy. If an unapproved mobile medical application is marketed by a medical device organization, then they face significant penalties such as receiving an FDA warning letter to cease the prohibited activity, fines and possibility of facing a criminal conviction. Regulatory bodies have finalized guidance intended for mobile application developers to establish if their applications are subject to regulatory scrutiny. However, regulatory controls appear contradictory with the approaches taken by mobile application developers who generally work with short development cycles and very little documentation and as such, there is the potential to stifle further improvements due to these regulations. The research presented as part of this paper details how by adopting development techniques, such as agile software development, mobile medical application developers can meet regulatory requirements whilst still fostering innovation.Keywords: agile, applications, FDA, medical, mobile, regulations, software engineering, standards
Procedia PDF Downloads 35810126 Sinapic Acid Attenuation of Cyclophosphamide-Induced Liver Toxicity in Mice by Modulating Oxidative Stress, Nf-κB, and Caspase-3
Authors: Shiva Rezaei, Seyed Jalal Hosseinimehr, Abbasali Karimpour Malekshah, Mansooreh Mirzaei, Fereshteh Talebpour Amiri, Mehryar Zargari
Abstract:
Objective(s): Cyclophosphamide (CP), as an antineoplastic drug, is widely used in cancer patients, and liver toxicity is one of its complications. Sinapic acid (SA), as a natural phenylpropanoid, has antioxidant, anti-inflammatory, and anti-cancer properties. Materials and Methods: The purpose of the current study was to determine the protective effect of SA versus CP-induced liver toxicity. In this research, BALB/c mice were treated with SA (5 and 10 mg/kg) orally for one week, and CP (200 mg/kg) was injected on day 3 of the study. Oxidative stress markers, serum liver-specific enzymes, histopathological features, caspase-3, and nuclear factor kappa-B cells were then checked. Results: CP induced hepatotoxicity in mice and showed structural changes in liver tissue. CP significantly increased liver enzymes and lipid peroxidation and decreased glutathione. The immunoreactivity of caspase-3 and nuclear factor kappa-B cells was significantly increased. Administration of SA significantly maintained histochemical parameters and liver function enzymes in mice treated with CP. Immunohistochemical examination showed SA reduced apoptosis and inflammation. Conclusion: The data confirmed that SA with anti-apoptotic, anti-oxidative, and anti-inflammatory activities was able to preserve CP-induced liver injury in mice.Keywords: apoptosis, cyclophosphamide, liver injury, inflammation, oxidative stress, sinapic acid
Procedia PDF Downloads 5410125 Stability-Indicating High-Performance Thin-Layer Chromatography Method for Estimation of Naftopidil
Authors: P. S. Jain, K. D. Bobade, S. J. Surana
Abstract:
A simple, selective, precise and Stability-indicating High-performance thin-layer chromatographic method for analysis of Naftopidil both in a bulk and in pharmaceutical formulation has been developed and validated. The method employed, HPTLC aluminium plates precoated with silica gel as the stationary phase. The solvent system consisted of hexane: ethyl acetate: glacial acetic acid (4:4:2 v/v). The system was found to give compact spot for Naftopidil (Rf value of 0.43±0.02). Densitometric analysis of Naftopidil was carried out in the absorbance mode at 253 nm. The linear regression analysis data for the calibration plots showed good linear relationship with r2=0.999±0.0001 with respect to peak area in the concentration range 200-1200 ng per spot. The method was validated for precision, recovery and robustness. The limits of detection and quantification were 20.35 and 61.68 ng per spot, respectively. Naftopidil was subjected to acid and alkali hydrolysis, oxidation and thermal degradation. The drug undergoes degradation under acidic, basic, oxidation and thermal conditions. This indicates that the drug is susceptible to acid, base, oxidation and thermal conditions. The degraded product was well resolved from the pure drug with significantly different Rf value. Statistical analysis proves that the method is repeatable, selective and accurate for the estimation of investigated drug. The proposed developed HPTLC method can be applied for identification and quantitative determination of Naftopidil in bulk drug and pharmaceutical formulation.Keywords: naftopidil, HPTLC, validation, stability, degradation
Procedia PDF Downloads 39610124 Preparation and Biological Evaluation of 186/188Re-Chitosan for Radiosynovectomy
Authors: N. Ahmadi, H. Yousefnia, A. Bahrami-Samani
Abstract:
Chitosan is a natural and biodegradable polysaccharide with special characteristic for application in intracavital therapy. 166Ho-chitosan has been reported for the treatment of hepatocellular carcinoma and RSV with promising results. The aim of this study was to prepare 186/188Re-chitosan for radiosynovectomy purposes and investigate the probability of its leakage from the knee joint. 186/188Re was produced by neutron irradiation of the natural rhenium in a research reactor. Chemical processing was performed to obtain (186/188Re)-NaReO4- according to the IAEA manual. A stock solution of chitosan was prepared by dissolving in 1 % acetic acid aqueous solution (10 mg/mL). 1.5 mL of this stock solution was added to the vial containing the activity and the mixture was stirred for 5 min in the room temperature. The radiochemical purity of the complex was checked by the ITLC method, showing the purity of higher than 98%. Distribution of the radiolabeled complex was determined after intra-articular injection into the knees of rats. Excellent retention was observed in the joint with approximately no activity in the other organs.Keywords: chitosan, leakage, radiosynovectomy, rhenium
Procedia PDF Downloads 33910123 Hybrid Materials on the Basis of Magnetite and Magnetite-Gold Nanoparticles for Biomedical Application
Authors: Mariia V. Efremova, Iana O. Tcareva, Anastasia D. Blokhina, Ivan S. Grebennikov, Anastasia S. Garanina, Maxim A. Abakumov, Yury I. Golovin, Alexander G. Savchenko, Alexander G. Majouga, Natalya L. Klyachko
Abstract:
During last decades magnetite nanoparticles (NPs) attract a deep interest of scientists due to their potential application in therapy and diagnostics. However, magnetite nanoparticles are toxic and non-stable in physiological conditions. To solve these problems, we decided to create two types of hybrid systems based on magnetite and gold which is inert and biocompatible: gold as a shell material (first type) and gold as separate NPs interfacially bond to magnetite NPs (second type). The synthesis of the first type hybrid nanoparticles was carried out as follows: Magnetite nanoparticles with an average diameter of 9±2 nm were obtained by co-precipitation of iron (II, III) chlorides then they were covered with gold shell by iterative reduction of hydrogen tetrachloroaurate with hydroxylamine hydrochloride. According to the TEM, ICP MS and EDX data, final nanoparticles had an average diameter of 31±4 nm and contained iron even after hydrochloric acid treatment. However, iron signals (K-line, 7,1 keV) were not localized so we can’t speak about one single magnetic core. Described nanoparticles covered with mercapto-PEG acid were non-toxic for human prostate cancer PC-3/ LNCaP cell lines (more than 90% survived cells as compared to control) and had high R2-relaxivity rates (>190 mМ-1s-1) that exceed the transverse relaxation rate of commercial MRI-contrasting agents. These nanoparticles were also used for chymotrypsin enzyme immobilization. The effect of alternating magnetic field on catalytic properties of chymotrypsin immobilized on magnetite nanoparticles, notably the slowdown of catalyzed reaction at the level of 35-40 % was found. The synthesis of the second type hybrid nanoparticles also involved two steps. Firstly, spherical gold nanoparticles with an average diameter of 9±2 nm were synthesized by the reduction of hydrogen tetrachloroaurate with oleylamine; secondly, they were used as seeds during magnetite synthesis by thermal decomposition of iron pentacarbonyl in octadecene. As a result, so-called dumbbell-like structures were obtained where magnetite (cubes with 25±6 nm diagonal) and gold nanoparticles were connected together pairwise. By HRTEM method (first time for this type of structure) an epitaxial growth of magnetite nanoparticles on gold surface with co-orientation of (111) planes was discovered. These nanoparticles were transferred into water by means of block-copolymer Pluronic F127 then loaded with anti-cancer drug doxorubicin and also PSMA-vector specific for LNCaP cell line. Obtained nanoparticles were found to have moderate toxicity for human prostate cancer cells and got into the intracellular space after 45 minutes of incubation (according to fluorescence microscopy data). These materials are also perspective from MRI point of view (R2-relaxivity rates >70 mМ-1s-1). Thereby, in this work magnetite-gold hybrid nanoparticles, which have a strong potential for biomedical application, particularly in targeted drug delivery and magnetic resonance imaging, were synthesized and characterized. That paves the way to the development of special medicine types – theranostics. The authors knowledge financial support from Ministry of Education and Science of the Russian Federation (14.607.21.0132, RFMEFI60715X0132). This work was also supported by Grant of Ministry of Education and Science of the Russian Federation К1-2014-022, Grant of Russian Scientific Foundation 14-13-00731 and MSU development program 5.13.Keywords: drug delivery, magnetite-gold, MRI contrast agents, nanoparticles, toxicity
Procedia PDF Downloads 38010122 Investigation of Different Surface Oxidation Methods on Pyrolytic Carbon
Authors: Lucija Pustahija, Christine Bandl, Wolfgang Kern, Christian Mitterer
Abstract:
Concerning today´s ecological demands, producing reliable materials from sustainable resources is a continuously developing topic. Such an example is the production of carbon materials via pyrolysis of natural gases or biomass. The amazing properties of pyrolytic carbon are utilized in various fields, where in particular the application in building industry is a promising way towards the utilization of pyrolytic carbon and composites based on pyrolytic carbon. For many applications, surface modification of carbon is an important step in tailoring its properties. Therefore, in this paper, an investigation of different oxidation methods was performed to prepare the carbon surface before functionalizing it with organosilanes, which act as coupling agents for epoxy and polyurethane resins. Made in such a way, a building material based on carbon composites could be used as a lightweight, durable material that can be applied where water or air filtration / purification is needed. In this work, both wet and dry oxidation were investigated. Wet oxidation was first performed in solutions of nitric acid (at 120 °C and 150 °C) followed by oxidation in hydrogen peroxide (80 °C) for 3 and 6 h. Moreover, a hydrothermal method (under oxygen gas) in autoclaves was investigated. Dry oxidation was performed under plasma and corona discharges, using different power values to elaborate optimum conditions. Selected samples were then (in preliminary experiments) subjected to a silanization of the surface with amino and glycidoxy organosilanes. The functionalized surfaces were examined by X-ray photon spectroscopy and Fourier transform infrared spectroscopy spectroscopy, and by scanning electron microscopy. The results of wet and dry oxidation methods indicated that the creation of functionalities was influenced by temperature, the concentration of the reagents (and gases) and the duration of the treatment. Sequential oxidation in aq. HNO₃ and H₂O₂ results in a higher content of oxygen functionalities at lower concentrations of oxidizing agents, when compared to oxidizing the carbon with concentrated nitric acid. Plasma oxidation results in non-permanent functionalization on the carbon surface, by which it´s necessary to find adequate parameters of oxidation treatments that could enable longer stability of functionalities. Results of the functionalization of the carbon surfaces with organosilanes will be presented as well.Keywords: building materials, dry oxidation, organosilanes, pyrolytic carbon, resins, surface functionalization, wet oxidation
Procedia PDF Downloads 9810121 Poly(Methyl Methacrylate)/Graphene Microparticles Having a Core/Shell Structure Prepared with Carboxylated Graphene as a Pickering Stabilizer
Authors: Gansukh Erdenedelger, Doljinsuren Sukhbaatar, Trung Dung Dao, Byeong-Kyu Lee, Han Mo Jeong
Abstract:
Two kinds of carboxylated thermally reduced graphenes (C-TRGs) having different lateral sizes are examined as a Pickering stabilizer in the suspension polymerization of methyl methacrylate. The size and the shape of the prepared composite particles are irregular due to agglomeration, more evidently when the larger C-TRG is used. In addition, C-TRG is distributed not only on the surface but also inside the composite particles. It indicates that the C-TRG alone is not a stable Pickering agent. However, a very small dosage of acrylic acid remedies all these issues, because acrylic acid interacts with C-TRG and synergizes the stabilizing effect. The compression molded composite of the core/shell poly(methyl methacrylate)/C-TRG particles exhibits a very low percolation threshold of electrical conductivity of 0.03 vol%. It demonstrates that the C-TRG shells of the composite particles effectively form a segregated conductive network throughout the composite.Keywords: pickering, graphene, polymerization, PMMA
Procedia PDF Downloads 29610120 Characterization and Optimization of Culture Conditions for Sulphur Oxidizing Bacteria after Isolation from Rhizospheric Mustard Soil, Decomposing Sites and Pit House
Authors: Suman Chaudhary, Rinku Dhanker, Tanvi, Sneh Goyal
Abstract:
Sulphur oxidizing bacteria (SOB) have marked their significant role in perspectives of maintaining healthy environment as researchers from all over the world tested and apply these in waste water treatment plants, bioleaching of heavy metals, deterioration of bridge structures, concrete and for bioremediation purposes, etc. Also, these SOB are well adapted in all kinds of environment ranging from normal soil, water habitats to extreme natural sources like geothermal areas, volcanic eruptions, black shale and acid rock drainage (ARD). SOB have been isolated from low pH environment of anthropogenic origin like acid mine drainage (AMD) and bioleaching heaps, hence these can work efficiently in different environmental conditions. Besides having many applications in field of environment science, they may be proven to be very beneficial in area of agriculture as sulphur is the fourth major macronutrients required for the growth of plants. More amount of sulphur is needed by pulses and oilseed crops with respect to the cereal grains. Due to continuous use of land for overproduction of more demanding sulphur utilizing crops and without application of sulphur fertilizers, its concentration is decreasing day by day, and thus, sulphur deficiency is becoming a great problem as it affects the crop productivity and quality. Sulphur is generally found in soils in many forms which are unavailable for plants (cannot be use by plants) like elemental sulphur, thiosulphate which can be taken up by bacteria and converted into simpler forms usable by plants by undergoing a series of transformations. So, keeping the importance of sulphur in view for various soil types, oilseed crops and role of microorganisms in making them available to plants, we made an effort to isolate, optimize, and characterize SOB. Three potential strains of bacteria were isolated, namely SSF7, SSA21, and SSS6, showing sulphate production of concentration, i.e. 2.268, 3.102, and 2.785 mM, respectively. Also, these were optimized for various culture conditions like carbon, nitrogen source, pH, temperature, and incubation time, and characterization was also done.Keywords: sulphur oxidizing bacteria, isolation, optimization, characterization, sulphate production
Procedia PDF Downloads 33610119 Equilibrium and Kinetic Studies of Lead Adsorption on Activated Carbon Derived from Mangrove Propagule Waste by Phosphoric Acid Activation
Authors: Widi Astuti, Rizki Agus Hermawan, Hariono Mukti, Nurul Retno Sugiyono
Abstract:
The removal of lead ion (Pb2+) from aqueous solution by activated carbon with phosphoric acid activation employing mangrove propagule as precursor was investigated in a batch adsorption system. Batch studies were carried out to address various experimental parameters including pH and contact time. The Langmuir and Freundlich models were able to describe the adsorption equilibrium, while the pseudo first order and pseudo second order models were used to describe kinetic process of Pb2+ adsorption. The results show that the adsorption data are seen in accordance with Langmuir isotherm model and pseudo-second order kinetic model.Keywords: activated carbon, adsorption, equilibrium, kinetic, lead, mangrove propagule
Procedia PDF Downloads 16510118 Effect of Acid-Basic Treatments of Lingocellulosic Material Forest Wastes Wild Carob on Ethyl Violet Dye Adsorption
Authors: Abdallah Bouguettoucha, Derradji Chebli, Tariq Yahyaoui, Hichem Attout
Abstract:
The effect of acid -basic treatment of lingocellulosic material (forest wastes wild carob) on Ethyl violet adsorption was investigated. It was found that surface chemistry plays an important role in Ethyl violet (EV) adsorption. HCl treatment produces more active acidic surface groups such as carboxylic and lactone, resulting in an increase in the adsorption of EV dye. The adsorption efficiency was higher for treated of lingocellulosic material with HCl than for treated with KOH. Maximum biosorption capacity was 170 and 130 mg/g, for treated of lingocellulosic material with HCl than for treated with KOH at pH 6 respectively. It was also found that the time to reach equilibrium takes less than 25 min for both treated materials. The adsorption of basic dye (i.e., ethyl violet or basic violet 4) was carried out by varying some process parameters, such as initial concentration, pH and temperature. The adsorption process can be well described by means of a pseudo-second-order reaction model showing that boundary layer resistance was not the rate-limiting step, as confirmed by intraparticle diffusion since the linear plot of Qt versus t^0.5 did not pass through the origin. In addition, experimental data were accurately expressed by the Sips equation if compared with the Langmuir and Freundlich isotherms. The values of ΔG° and ΔH° confirmed that the adsorption of EV on acid-basic treated forest wast wild carob was spontaneous and endothermic in nature. The positive values of ΔS° suggested an irregular increase of the randomness at the treated lingocellulosic material -solution interface during the adsorption process.Keywords: adsorption, isotherm models, thermodynamic parameters, wild carob
Procedia PDF Downloads 27510117 Production of Biodiesel from Melon Seed Oil Using Sodium Hydroxide as a Catalyst
Authors: Ene Rosemary Ndidiamaka, Nwangwu Florence Chinyere
Abstract:
The physiochemical properties of the melon seed oil was studied to determine its potentials as viable feed stock for biodisel production. The melon seed was extracted by solvent extraction using n-hexane as the extracting solvent. In this research, methanol was the alcohol used in the production of biodiesel, although alcohols like ethanol, propanol may also be used. Sodium hydroxide was employed for the catalysis. The melon seed oil was characterized for specific gravity, pH, ash content, iodine value, acid value, saponification value, peroxide value, free fatty acid value, flash point, viscosity, and refractive index using standard methods. The melon seed oil had very high oil content. Specific gravity and flash point of the oil is satisfactory. However, moisture content of the oil exceeded the stipulated ASRTM standard for biodiesel production. The overall results indicates that the melon seed oil is suitable for single-stage transesterification process to biodiesel production.Keywords: biodiesel, catalyst, melon seed, transesterification
Procedia PDF Downloads 36410116 Zinc Oxide Nanoparticle-Doped Poly (8-Anilino-1-Napthalene Sulphonic Acid/Nat Nanobiosensors for TB Drugs
Authors: Rachel Fanelwa Ajayi, Anovuyo Jonnas, Emmanuel I. Iwuoha
Abstract:
Tuberculosis (TB) is an infectious disease caused by the bacterium (Mycobacterium tuberculosis) which has a predilection for lung tissue due to its rich oxygen supply. The mycobacterial cell has a unique innate characteristic which allows it to resist human immune systems and drug treatments; hence, it is one of the most difficult of all bacterial infections to treat, let alone to cure. At the same time, multi-drug resistance TB (MDR-TB) caused by poorly managed TB treatment, is a growing problem and requires the administration of expensive and less effective second line drugs which take much longer treatment duration than fist line drugs. Therefore, to acknowledge the issues of patients falling ill as a result of inappropriate dosing of treatment and inadequate treatment administration, a device with a fast response time coupled with enhanced performance and increased sensitivity is essential. This study involved the synthesis of electroactive platforms for application in the development of nano-biosensors suitable for the appropriate dosing of clinically diagnosed patients by promptly quantifying the levels of the TB drug; Isonaizid. These nano-biosensors systems were developed on gold surfaces using the enzyme N-acetyletransferase 2 coupled to the cysteamine modified poly(8-anilino-1-napthalene sulphonic acid)/zinc oxide nanocomposites. The morphology of ZnO nanoparticles, PANSA/ZnO nano-composite and nano-biosensors platforms were characterized using High-Resolution Transmission Electron Microscopy (HRTEM) and High-Resolution Scanning Electron Microscopy (HRSEM). On the other hand, the elemental composition of the developed nanocomposites and nano-biosensors were studied using Fourier Transform Infra-Red Spectroscopy (FTIR) and Energy Dispersive X-Ray (EDX). The electrochemical studies showed an increase in electron conductivity for the PANSA/ZnO nanocomposite which was an indication that it was suitable as a platform towards biosensor development.Keywords: N-acetyletransferase 2, isonaizid, tuberculosis, zinc oxide
Procedia PDF Downloads 37110115 Protective Effect of N-Acetyl Cysteine and Alpha Lipoic Acid on Rats Chronically Exposed to Cadmium Chloride
Authors: S. El Ballal, H. El Sabbagh, M. Abd El Gaber, A. Eisa, A. Al Gamal
Abstract:
Cadmium is one of the most harmful heavy metals able to induce severe injury. In this study, sixty four male Sprague Dawley rats weighing (70-80 gm) were used. Rats were divided into 4 groups each group of 16 rats. Group A: served as control and received commercial ration and distilled water Group B: cadmium chloride was administered orally in water at dose of 300 ppm cadmium (560 mg/L as CdCl2). Group C: Animals received cadmium in drinking water in addition to administration of N-acetylcysteine (NAC) orally at a dose of 150 mg/kg body weight, equivalent to 1500 ppm in food. Group D: Animals received cadmium in drinking water in addition to administration of alpha lipoic acid (ALA) orally at a dose of 150 mg/kg body weight, equivalent to 1500 ppm in food. The experiment was continued for 2 months. Collection of blood and tissue samples was performed at 2, 4, 6, 8 weeks. Blood sample were collected for serum biochemical analysis including malondialdehyde (MDA), total antioxidants, aspartate aminotransferase (AST), alanine aminotransferase (ALT), total protein, albumin, urea and uric acid. Tissue specimens were collected for histopathological examination including liver, kidney, brain and testis. Histopathological examination revealed that cadmium choloride induces pathological alterations which increased in severity with time. The use of NAC and ALA can ameliorate toxic effect of CdCl2. The results showed significant decrease MDA and significant increase total antioxidants in group C and D compared to group B, Liver enzymes include AST and ALT showed significant decrease. Regarding to results of total protein and albumin, they revealed significant increase. Urea and uric acid showed significant decrease. From our study we conclude that NAC and ALA have protective effect against cadmium toxicity.Keywords: ALA, cadmium, histopathology, NAC
Procedia PDF Downloads 33710114 Phytoremediation of Arsenic-Contaminated Soil and Recovery of Valuable Arsenic Products
Authors: Valentine C. Eze, Adam P. Harvey
Abstract:
Contamination of groundwater and soil by heavy metals and metalloids through anthropogenic activities and natural occurrence poses serious environmental challenges globally. A possible solution to this problem is through phytoremediation of the contaminants using hyper-accumulating plants. Conventional phytoremediation treats the contaminated hyper-accumulator biomass as a waste stream which adds no value to the heavy metal(loid)s decontamination process. This study investigates strategies for remediation of soil contaminated with arsenic and the extractive chemical routes for recovery of arsenic and phosphorus from the hyper-accumulator biomass. Pteris cretica ferns species were investigated for their uptake of arsenic from soil containing 200 ± 3ppm of arsenic. The Pteris cretica ferns were shown to be capable of hyper-accumulation of arsenic, with maximum accumulations of about 4427 ± 79mg to 4875 ± 96mg of As per kg of the dry ferns. The arsenic in the Pteris cretica fronds was extracted into various solvents, with extraction efficiencies of 94.3 ± 2.1% for ethanol-water (1:1 v/v), 81.5 ± 3.2% for 1:1(v/v) methanol-water, and 70.8 ± 2.9% for water alone. The recovery efficiency of arsenic from the molybdic acid complex process 90.8 ± 5.3%. Phosphorus was also recovered from the molybdic acid complex process at 95.1 ± 4.6% efficiency. Quantitative precipitation of Mg₃(AsO₄)₂ and Mg₃(PO₄)₂ occurred in the treatment of the aqueous solutions of arsenic and phosphorus after stripping at pH of 8 – 10. The amounts of Mg₃(AsO₄)₂ and Mg₃(PO₄)₂ obtained were 96 ± 7.2% for arsenic and 94 ± 3.4% for phosphorus. The arsenic nanoparticles produced from the Mg₃(AsO₄)₂ recovered from the biomass have the average particles diameter of 45.5 ± 11.3nm. A two-stage reduction process – a first step pre-reduction of As(V) to As(III) with L-cysteine, followed by NaBH₄ reduction of the As(III) to As(0), was required to produced arsenic nanoparticles from the Mg₃(AsO₄)₂. The arsenic nanoparticles obtained are potentially valuable for medical applications, while the Mg₃(AsO₄)₂ could be used as an insecticide. The phosphorus contents of the Pteris cretica biomass was recovered as phosphomolybdic acid complex and converted to Mg₃(PO₄)₂, which could be useful in productions of fertilizer. Recovery of these valuable products from phytoremediation biomass would incentivize and drive commercial industries’ participation in remediation of contaminated lands.Keywords: phytoremediation, Pteris cretica, hyper-accumulator, solvent extraction, molybdic acid process, arsenic nanoparticles
Procedia PDF Downloads 31510113 Molecular Approach for the Detection of Lactic Acid Bacteria in the Kenyan Spontaneously Fermented Milk, Mursik
Authors: John Masani Nduko, Joseph Wafula Matofari
Abstract:
Many spontaneously fermented milk products are produced in Kenya, where they are integral to the human diet and play a central role in enhancing food security and income generation via small-scale enterprises. Fermentation enhances product properties such as taste, aroma, shelf-life, safety, texture, and nutritional value. Some of these products have demonstrated therapeutic and probiotic effects although recent reports have linked some to death, biotoxin infections, and esophageal cancer. These products are mostly processed from poor quality raw materials under unhygienic conditions resulting to inconsistent product quality and limited shelf-lives. Though very popular, research on their processing technologies is low, and none of the products has been produced under controlled conditions using starter cultures. To modernize the processing technologies for these products, our study aims at describing the microbiology and biochemistry of a representative Kenyan spontaneously fermented milk product, Mursik using modern biotechnology (DNA sequencing) and their chemical composition. Moreover, co-creation processes reflecting stakeholders’ experiences on traditional fermented milk production technologies and utilization, ideals and senses of value, which will allow the generation of products based on common ground for rapid progress will be discussed. Knowledge of the value of clean starting raw material will be emphasized, the need for the definition of fermentation parameters highlighted, and standard equipment employment to attain controlled fermentation discussed. This presentation will review the available information regarding traditional fermented milk (Mursik) and highlight our current research work on the application of molecular approaches (metagenomics) for the valorization of Mursik production process through starter culture/ probiotic strains isolation and identification, and quality and safety aspects of the product. The importance of the research and future research areas on the same subject will also be highlighted.Keywords: lactic acid bacteria, high throughput biotechnology, spontaneous fermentation, Mursik
Procedia PDF Downloads 29110112 Isotopes Used in Comparing Indigenous and International Walnut (Juglans regia L.) Varieties
Authors: Raluca Popescu, Diana Costinel, Elisabeta-Irina Geana, Oana-Romina Botoran, Roxana-Elena Ionete, Yazan Falah Jadee 'Alabedallat, Mihai Botu
Abstract:
Walnut production is high in Romania, different varieties being cultivated dependent on high yield, disease resistance or quality of produce. Walnuts have a highly nutritional composition, the kernels containing essential fatty acids, where the unsaturated fraction is higher than in other types of nuts, quinones, tannins, minerals. Walnut consumption can lower the cholesterol, improve the arterial function and reduce inflammation. The purpose of this study is to determine and compare the composition of walnuts of indigenous and international varieties all grown in Romania, in order to identify high-quality indigenous varieties. Oil has been extracted from the nuts of 34 varieties, the fatty acids composition and IV (iodine value) being afterwards measured by NMR. Furthermore, δ13C of the extracted oil had been measured by IRMS to find specific isotopic fingerprints that can be used in authenticating the varieties. Chemometrics had been applied to the data in order to identify similarities and differences between the varieties. The total saturated fatty acids content (SFA) varied between n.d. and 23% molar, oleic acid between 17 and 35%, linoleic acid between 38 and 59%, linolenic acid between 8 and 14%, corresponding to iodine values (IV - total amount of unsaturation) ranging from 100 to 135. The varieties separated in four groups according to the fatty acids composition, each group containing an international variety, making possible the classification of the indigenous ones. At both ends of the unsaturation spectrum, international varieties had been found.Keywords: δ13C-IRMS, fatty acids composition, 1H-NMR, walnut varieties
Procedia PDF Downloads 31310111 Chromium-Leaching Study of Cements in Various Environments
Authors: Adriana Estokova, Lenka Palascakova, Martina Kovalcikova
Abstract:
Cement is a basic material used for building construction. Chromium as an indelible non-volatile trace element of raw materials occurs in cement clinker in the trivalent or hexavalent form. Hexavalent form of chromium is harmful and allergenic having very high water solubility and thus can easily come into contact with the human skin. The paper is aimed at analyzing the content of total chromium in Portland cements and leaching rate of hexavalent chromium in various leachants: Deionized water, Britton-Robinson buffer, used to simulate the natural environment, and hydrochloric acid (HCl). The concentration of total chromium in Portland cement samples was in a range from 173.2 to 218.5 mg/kg. The content of dissolved hexavalent chromium ranged 0.23-3.19, 2.0-5.78 and 8.88-16.25 mg/kg in deionized water, Britton-Robinson solution and hydrochloric acid, respectively. The calculated leachable fraction of Cr(VI) from cement samples was observed in the range 0.1--7.58 %.Keywords: environment, cement, chromium, leaching
Procedia PDF Downloads 27510110 The Molecular Analysis of Effect of Phytohormones and Spermidine on Tomato Growth under Biotic Stress
Authors: Rumana Keyani, Haleema Sadia, Asia Nosheen, Rabia Naz, Humaira Yasmin, Sidra Zahoor
Abstract:
Tomato is a significant crop of the world and is one of the staple foods of Pakistan. A vast number of plant pathogens from simple viruses to complex parasites cause diseases in tomatoes but fungal infection in our country is quite high. Sometimes the symptoms are too harsh destroying the crop altogether. Countries like our own with continuously increasing massive population and limited resources cannot afford such an economic loss. There is an array of morphological, genetic, biochemical and molecular processes involved in plant resistance mechanisms to biotic stress. The study of different metabolic pathways like Jasmonic acid (JA) pathways and most importantly signaling molecules like ROS/RNS and their redoxin enzymes i.e. TRX and NRX is crucial to disease management, contributing to healthy plant growth. So, improving tolerance in crop plants against biotic stresses is a dire need of our country and world as whole. In the current study, fungal pathogenic strains Alternaria solani and Rhizoctonia solani were used to inoculate tomatoes to check the defense responses of tomato plant against these pathogens at molecular as well as phenotypic level with jasmonic acid and spermidine pretreatment. All the growth parameters (root and shoot length, dry and weight root, shoot weight measured 7 days post-inoculation, exhibited that infection drastically declined the growth of the plant whereas jasmonic acid and spermidine assisted the plants to cope up with the infection. Thus, JA and Spermidine treatments maintained comparatively better growth factors. Antioxidant assays and expression analysis through real time quantitative PCR following time course experiment at 24, 48 and 72 hours intervals also exhibited that activation of JA defense genes and a polyamine Spermidine helps in mediating tomato responses against fungal infection when used alone but the two treatments combined mask the effect of each other.Keywords: fungal infection, jasmonic acid defence, tomato, spermidine
Procedia PDF Downloads 12710109 Impact Modified Oil Palm Empty Fruit Bunch Fiber/Poly(Lactic) Acid Composite
Authors: Mohammad D. H. Beg, John O. Akindoyo, Suriati Ghazali, Abdullah A. Mamun
Abstract:
In this study, composites were fabricated from oil palm empty fruit bunch fiber and poly(lactic) acid by extrusion followed by injection moulding. Surface of the fiber was pre-treated by ultrasound in an alkali medium and treatment efficiency was investigated by scanning electron microscopy (SEM) analysis and Fourier transforms infrared spectrometer (FTIR). Effect of fiber treatment on composite was characterized by tensile strength (TS), tensile modulus (TM) and impact strength (IS). Furthermore, biostrong impact modifier was incorporated into the treated fiber composite to improve its impact properties. Mechanical testing showed an improvement of up to 23.5% and 33.6% respectively for TS and TM of treated fiber composite above untreated fiber composite. On the other hand incorporation of impact modifier led to enhancement of about 20% above the initial IS of the treated fiber composite.Keywords: fiber treatment, impact modifier, natural fibers, ultrasound
Procedia PDF Downloads 48610108 The Development of Portable Application Software for Cardiovascular Fitness Norms of NDUM Cadet Students
Authors: Mohar Kassim, Hardy Azmir, Rahmat Sholihin Mokhtar
Abstract:
The purpose of this study is to build portable application software to determine the level of cardiovascular fitness for cadet students of the National Defence University of Malaysia (NDUM). Fitness in the context of this study refers to physical fitness, specifically the cardiovascular endurance level test battery in the form of a 2.4 km run test for UPNM cadet students. This run test will be conducted to measure, test, and evaluate the performance of UPNM cadet students. All the run test results can be recorded electronically inside the portable software and will later be able to show the level of cardiovascular fitness of every cadet student according to age and gender. This software can also calculate the body mass index (BMI). Normative survey method will be used in this study through the analysis of the 2.4 km run test results. The run test scores will be classified in interval and ratio scales. Based on the findings of this study, portable application software will produced. The software will be able to directly assist the Military Training Academy (ALK), Malaysian Armed Forces (ATM), and other relevant agencies in determining the level of cardiovascular fitness among their staff. The test can be done electronically and on portable mode. The next step to be taken is to have this application patented.Keywords: development, software, application, portable, fitness norms, cardiovascular endurance
Procedia PDF Downloads 54810107 Organic Waste Valorization for Biodiesel Production: Chemical and Biological Approach
Authors: Meha Alouini, Wissem Mnif, Yasmine Souissi
Abstract:
This work will be conducted within the framework of the environmental sustainable development. It involves waste recovering into biodiesel fuel. Low cost feedstocks such as waste of frying oil and animal fats have been utilized to replace refined vegetable oil for biodiesel production. Biodiesel which refers to fatty acid methyl esters (FAME) was carried out by both chemical and enzymatic reaction of transesterification. In order to compare the two studied reactions the obtained biodiesel was characterized by determining its esters content and its fuel properties according to the European standard EN 14214. It was noted that the chemical method gave the product with the best physical property. But the biological one was found more effective for obtaining important ester content. Thus it would be interesting to optimize the enzymatic pathway of production of biodiesel to obtain a better property of biodiesel.Keywords: biodiesel, fatty acid methyl esters, transesterification, waste frying oil, waste beef fat
Procedia PDF Downloads 500