Search results for: entity extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2269

Search results for: entity extraction

1219 The Role of Middle Managers SBU's in Context of Change: Sense-Making Approach

Authors: Hala Alioua, Alberic Tellier

Abstract:

This paper is designed to spotlight the research on corporate strategic planning, by emphasizing the role of middle manager of SBU’s and related issues such as the context of vision change. Previous research on strategic vision has been focused principally at the SME, with relatively limited consideration given to the role of middle managers SBU’s in the context of change. This project of research has been done by using a single case study. We formulated through our immersion for 2.5 years on the ground and by a qualitative method and abduction approach. This entity that we analyze is a subsidiary of multinational companies headquartered in Germany, specialized in manufacturing automotive equipment. The "Delta Company" is a French manufacturing plant that has undergone numerous changes over the past three years. The two major strategic changes that have a significant impact on the Delta plant are the strengths of its core business through « lead plant strategy» in 2011 and the implementation of a new strategic vision in 2014. These consecutive changes impact the purpose of the mission of the middle managers. The plant managers ask the following questions: How the middle managers make sense of the corporate strategic planning imposed by the parent company? How they appropriate the new vision and decline it into actions on the ground? We chose the individual interview technique through open-ended questions as the source of data collection. We first of all carried out an exploratory approach by interviewing 8 members of the Management committee’s decision and 19 heads of services. The first findings and results show that exist a divergence of opinion and interpretations of the corporate strategic planning among organization members and there are difficulties to make sense and interpretations of the signals of the environment. The lead plant strategy enables new projects which insure the workload of Delta Company. Nevertheless, it creates a tension and stress among the middle managers because its provoke lack of resources to the detriment of their main jobs as manufacturer plant. The middle managers does not have a clear vision and they are wondering if the new strategic vision means more autonomy and less support from the group.

Keywords: change, middle managers, vision, sensemaking

Procedia PDF Downloads 401
1218 Catalytic and Non-Catalytic Pyrolysis of Walnut Shell Waste to Biofuel: Characterisation of Catalytic Biochar and Biooil

Authors: Saimatun Nisa

Abstract:

Walnut is an important export product from the Union Territory of Jammy and Kashmir. After extraction of the kernel, the walnut shell forms a solid waste that needs to be managed. Pyrolysis is one interesting option for the utilization of this walnut waste. In this study microwave pyrolysis reactor is used to convert the walnut shell biomass into its value-added products. Catalytic and non-catalytic conversion of walnut shell waste to oil, gas and char was evaluated using a Co-based catalyst. The catalyst was characterized using XPS and SEM analysis. Pyrolysis temperature, reaction time, particle size and sweeping gas (N₂) flow rate were set in the ranges of 400–600 °C, 40 min, <0.6mm to < 4.75mm and 300 ml min−1, respectively. The heating rate was fixed at 40 °C min−1. Maximum gas yield was obtained at 600 °C, 40 min, particle size range 1.18-2.36, 0.5 molar catalytic as 45.2%. The liquid product catalytic and non-catalytic was characterized by GC–MS analyses. In addition, the solid product was analyzed by means of FTIR & SEM.

Keywords: walnut shell, biooil, biochar, microwave pyrolysis

Procedia PDF Downloads 52
1217 Biotechnology Approach: A Tool of Enhancement of Sticky Mucilage of Pulicaria Incisa (Medicinal Plant) for Wounds Treatment

Authors: Djamila Chabane, Asma Rouane, Karim Arab

Abstract:

Depending of the chemical substances responsible for the pharmacological effects, a future therapeutic drug might be produced by extraction from whole plants or by callus initiated from some parts. The optimized callus culture protocols now offer the possibility to use cell culture techniques for vegetative propagation and open minds for further studies on secondary metabolites and drug establishment. In Algerian traditional medicine, Pulicaria incisa (Asteraceae) is used in the treatment of daily troubles (stomachache, headhache., cold, sore throat and rheumatic arthralgia). Field findings revealed that many healers use some fresh parts (leaves, flowers) of this plant to treat skin wounds. This study aims to evaluate the healing efficiency of artisanal cream prepared from sticky mucilage isolated from calluses on dermal wounds of animal models. Callus cultures were initiated from reproductive explants (young inflorescences) excised from adult plants and transferred to a MS basal medium supplemented with growth regulators and maintained under dark for for months. Many calluses types were obtained with various color and aspect (friable, compact). Several subcultures of calli were performed to enhance the mucilage accumulation. After extraction, the mucilage extracts were tested on animal models as follows. The wound healing potential was studied by causing dermal wounds (1 cm diameter) at the dorsolumbar part of Rattus norvegicus; different samples of the cream were applied after hair removal on three rats each, including two controls (one treated by Vaseline and one without any treatment), two experimental groups (experimental group 1, treated with a reference ointment "Madecassol® and experimental group 2 treated by callus mucilage cream for a period of seventeen days. The evolution of the healing activity was estimated by calculating the percentage reduction of the area wounds treated by all compounds tested compared to the controls by using AutoCAD software. The percentage of healing effect of the cream prepared from callus mucilage was (99.79%) compared to that of Madecassol® (99.76%). For the treatment time, the significant healing activity was observed after 17 days compared to that of the reference pharmaceutical products without any wound infection. The healing effect of Madecassol® is more effective because it stimulates and regulates the production of collagen, a fibrous matrix essential for wound healing. Mucilage extracts also showed a high capacity to heal the skin without any infection. According to this pharmacological activity, we suggest to use calluses produced by in vitro culture to producing new compounds for the skin care and treatment.

Keywords: calluses, Pulicaria incisa, mucilage, Wounds

Procedia PDF Downloads 129
1216 ACBM: Attention-Based CNN and Bi-LSTM Model for Continuous Identity Authentication

Authors: Rui Mao, Heming Ji, Xiaoyu Wang

Abstract:

Keystroke dynamics are widely used in identity recognition. It has the advantage that the individual typing rhythm is difficult to imitate. It also supports continuous authentication through the keyboard without extra devices. The existing keystroke dynamics authentication methods based on machine learning have a drawback in supporting relatively complex scenarios with massive data. There are drawbacks to both feature extraction and model optimization in these methods. To overcome the above weakness, an authentication model of keystroke dynamics based on deep learning is proposed. The model uses feature vectors formed by keystroke content and keystroke time. It ensures efficient continuous authentication by cooperating attention mechanisms with the combination of CNN and Bi-LSTM. The model has been tested with Open Data Buffalo dataset, and the result shows that the FRR is 3.09%, FAR is 3.03%, and EER is 4.23%. This proves that the model is efficient and accurate on continuous authentication.

Keywords: keystroke dynamics, identity authentication, deep learning, CNN, LSTM

Procedia PDF Downloads 155
1215 In Vitro Antifungal Activity of Essential Oil Artemisia Absinthium

Authors: Bouchenak Fatima, Lmegharbi Abdelbaki, Houssem Degaichia, Benrebiha Fatima

Abstract:

The essential oil composition of the leaf of Artemisia absinthium from region of Cherchell (The south of Algeria) was investigated by GC, GC-MS. 27 constituents were identified correspond to 84, 63% of the total oil. The major components are Thujone (60, 82%), Chamazulènel (16, 62%), ρ-cymène (4, 29%) and 2-carène (4.25%). The antimicrobial activity of oil was tested in vitro by two methods (agar diffusion and microdilution) on three plant pathogenic fungi. This oil has been tested for antimicrobial activity against three pathogenic fungi (Botrytis cinerea, Fusarium culmorum and Helminthosporium Sp.).The study of activity was evaluated by two methods: Method of diffusion in gelose and the minimum inhibitory concentration MIC. This oil exhibited an interesting antimicrobial activity. A preliminary study showed that this oil presented high toxicity against this fungus. These results, although preliminary show a good antifungal activity, to limit and inhibit stop the development of those pathogen agent.

Keywords: artemisia absinthian, extraction process, chemical study, antifungal activity

Procedia PDF Downloads 484
1214 Challenges and Opportunities: One Stop Processing for the Automation of Indonesian Large-Scale Topographic Base Map Using Airborne LiDAR Data

Authors: Elyta Widyaningrum

Abstract:

The LiDAR data acquisition has been recognizable as one of the fastest solution to provide the basis data for topographic base mapping in Indonesia. The challenges to accelerate the provision of large-scale topographic base maps as a development plan basis gives the opportunity to implement the automated scheme in the map production process. The one stop processing will also contribute to accelerate the map provision especially to conform with the Indonesian fundamental spatial data catalog derived from ISO 19110 and geospatial database integration. Thus, the automated LiDAR classification, DTM generation and feature extraction will be conducted in one GIS-software environment to form all layers of topographic base maps. The quality of automated topographic base map will be assessed and analyzed based on its completeness, correctness, contiguity, consistency and possible customization.

Keywords: automation, GIS environment, LiDAR processing, map quality

Procedia PDF Downloads 368
1213 Incremental Learning of Independent Topic Analysis

Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda

Abstract:

In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.

Keywords: text mining, topic extraction, independent, incremental, independent component analysis

Procedia PDF Downloads 309
1212 Biodiesel Production and Heavy Metal Removal by Aspergillus fumigatus sp.

Authors: Ahmed M. Haddad, Hadeel S. El-Shaal, Gadallah M. Abu-Elreesh

Abstract:

Some of filamentous fungi can be used for biodiesel production as they are able to accumulate high amounts of intracellular lipids when grown at stress conditions. Aspergillus fumigatus sp. was isolated from Nile delta soil in Egypt. The fungus was primarily screened for its capacity to accumulate lipids using Nile red staining assay. The fungus could accumulate more than 20% of its biomass as lipids when grown at optimized minimal medium. After lipid extraction, we could use fungal cell debris to remove some heavy metals from contaminated waste water. The fungal cell debris could remove Cd, Cr, and Zn with absorption efficiency of 73%, 83.43%, and 69.39% respectively. In conclusion, the Aspergillus fumigatus isolate may be considered as a promising biodiesel producer, and its biomass waste can be further used for bioremediation of wastewater contaminated with heavy metals.

Keywords: biodiesel, bioremediation, fungi, heavy metals, lipids, oleaginous

Procedia PDF Downloads 226
1211 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 42
1210 Evolutionary Prediction of the Viral RNA-Dependent RNA Polymerase of Chandipura vesiculovirus and Related Viral Species

Authors: Maneesh Kumar, Roshan Kamal Topno, Manas Ranjan Dikhit, Vahab Ali, Ganesh Chandra Sahoo, Bhawana, Major Madhukar, Rishikesh Kumar, Krishna Pandey, Pradeep Das

Abstract:

Chandipura vesiculovirus is an emerging (-) ssRNA viral entity belonging to the genus Vesiculovirus of the family Rhabdoviridae, associated with fatal encephalitis in tropical regions. The multi-functionally active viral RNA-dependent RNA polymerase (vRdRp) that has been incorporated with conserved amino acid residues in the pathogens, assigned to synthesize distinct viral polypeptides. The lack of proofreading ability of the vRdRp produces many mutated variants. Here, we have performed the evolutionary analysis of 20 viral protein sequences of vRdRp of different strains of Chandipura vesiculovirus along with other viral species from genus Vesiculovirus inferred in MEGA6.06, employing the Neighbour-Joining method. The p-distance algorithmic method has been used to calculate the optimum tree which showed the sum of branch length of about 1.436. The percentage of replicate trees in which the associated taxa are clustered together in the bootstrap test (1000 replicates), is shown next to the branches. No mutation was observed in the Indian strains of Chandipura vesiculovirus. In vRdRp, 1230(His) and 1231(Arg) are actively participated in catalysis and, are found conserved in different strains of Chandipura vesiculovirus. Both amino acid residues were also conserved in the other viral species from genus Vesiculovirus. Many isolates exhibited maximum number of mutations in catalytic regions in strains of Chandipura vesiculovirus at position 26(Ser→Ala), 47 (Ser→Ala), 90(Ser→Tyr), 172(Gly→Ile, Val), 172(Ser→Tyr), 387(Asn→Ser), 1301(Thr→Ala), 1330(Ala→Glu), 2015(Phe→Ser) and 2065(Thr→Val) which make them variants under different tropical conditions from where they evolved. The result clarifies the actual concept of RNA evolution using vRdRp to develop as an evolutionary marker. Although, a limited number of vRdRp protein sequence similarities for Chandipura vesiculovirus and other species. This might endow with possibilities to identify the virulence level during viral multiplication in a host.

Keywords: Chandipura, (-) ssRNA, viral RNA-dependent RNA polymerase, neighbour-joining method, p-distance algorithmic, evolutionary marker

Procedia PDF Downloads 197
1209 A Supervised Face Parts Labeling Framework

Authors: Khalil Khan, Ikram Syed, Muhammad Ehsan Mazhar, Iran Uddin, Nasir Ahmad

Abstract:

Face parts labeling is the process of assigning class labels to each face part. A face parts labeling method (FPL) which divides a given image into its constitutes parts is proposed in this paper. A database FaceD consisting of 564 images is labeled with hand and make publically available. A supervised learning model is built through extraction of features from the training data. The testing phase is performed with two semantic segmentation methods, i.e., pixel and super-pixel based segmentation. In pixel-based segmentation class label is provided to each pixel individually. In super-pixel based method class label is assigned to super-pixel only – as a result, the same class label is given to all pixels inside a super-pixel. Pixel labeling accuracy reported with pixel and super-pixel based methods is 97.68 % and 93.45% respectively.

Keywords: face labeling, semantic segmentation, classification, face segmentation

Procedia PDF Downloads 255
1208 A Gendered Perspective on the Influences of Transport Infrastructure on User Access

Authors: Ajeni Ari

Abstract:

In addressing gender and transport, considerations of mobility disparities amongst users are important. Public transport (PT) policy and design do not efficiently account for the varied mobility practices between men and women, with literature only recently showing a movement towards gender inclusion in transport. Arrantly, transport policy and designs remain gender-blind to the variation of mobility needs. The global movement towards sustainability highlights the need for expeditious strategies that could mitigate biases within the existing system. At the forefront of such plan of action may, in part, be mandated inclusive infrastructural designs that stimulate user engagement with the transport system. Fundamentally access requires a means or an opportunity to entity, which for PT is an establishment of its physical environment and/or infrastructural design. Its practicality may be utilised with knowledge of shortcomings in tangible or intangible aspects of the service offerings allowing access to opportunities. To inform on existing biases in PT planning and design, this study analyses qualitative data to examine the opinions and lived experiences among transport user in Ireland. Findings show that infrastructural design plays a significant role in users’ engagement with the service. Paramount to accessibility are service provisions that cater to both user interactions and those of their dependents. Apprehension to use the service is more so evident with women in comparison to men, particularly while carrying out household duties and caring responsibilities at peak times or dark hours. Furthermore, limitations are apparent with infrastructural service offerings that do not accommodate the physical (dis)ability of users, especially universal design. There are intersecting factors that impinge on accessibility, e.g., safety and security, yet essentially, infrastructural design is an important influencing parameter to user perceptual conditioning. Additionally, data discloses the need for user intricacies to be factored in transport planning geared towards gender inclusivity, including mobility practices, travel purpose, transit time or location, and system integration.

Keywords: public transport, accessibility, women, transport infrastructure

Procedia PDF Downloads 78
1207 Hiveopolis - Honey Harvester System

Authors: Erol Bayraktarov, Asya Ilgun, Thomas Schickl, Alexandre Campo, Nicolis Stamatios

Abstract:

Traditional means of harvesting honey are often stressful for honeybees. Each time honey is collected a portion of the colony can die. In consequence, the colonies’ resilience to environmental stressors will decrease and this ultimately contributes to the global problem of honeybee colony losses. As part of the project HIVEOPOLIS, we design and build a different kind of beehive, incorporating technology to reduce negative impacts of beekeeping procedures, including honey harvesting. A first step in maintaining more sustainable honey harvesting practices is to design honey storage frames that can automate the honey collection procedures. This way, beekeepers save time, money, and labor by not having to open the hive and remove frames, and the honeybees' nest stays undisturbed.This system shows promising features, e.g., high reliability which could be a key advantage compared to current honey harvesting technologies.Our original concept of fractional honey harvesting has been to encourage the removal of honey only from "safe" locations and at levels that would leave the bees enough high-nutritional-value honey. In this abstract, we describe the current state of our honey harvester, its technology and areas to improve. The honey harvester works by separating the honeycomb cells away from the comb foundation; the movement and the elastic nature of honey supports this functionality. The honey sticks to the foundation, because of the surface tension forces amplified by the geometry. In the future, by monitoring the weight and therefore the capped honey cells on our honey harvester frames, we will be able to remove honey as soon as the weight measuring system reports that the comb is ready for harvesting. Higher viscosity honey or crystalized honey cause challenges in temperate locations when a smooth flow of honey is required. We use resistive heaters to soften the propolis and wax to unglue the moving parts during extraction. These heaters can also melt the honey slightly to the needed flow state. Precise control of these heaters allows us to operate the device for several purposes. We use ‘Nitinol’ springs that are activated by heat as an actuation method. Unlike conventional stepper or servo motors, which we also evaluated throughout development, the springs and heaters take up less space and reduce the overall system complexity. Honeybee acceptance was unknown until we actually inserted a device inside a hive. We not only observed bees walking on the artificial comb but also building wax, filling gaps with propolis and storing honey. This also shows that bees don’t mind living in spaces and hives built from 3D printed materials. We do not have data yet to prove that the plastic materials do not affect the chemical composition of the honey. We succeeded in automatically extracting stored honey from the device, demonstrating a useful extraction flow and overall effective operation this way.

Keywords: honey harvesting, honeybee, hiveopolis, nitinol

Procedia PDF Downloads 108
1206 The Design, Control and Dynamic Performance of an Interior Permanent Magnet Synchronous Generator for Wind Power System

Authors: Olusegun Solomon

Abstract:

This paper describes the concept for the design and maximum power point tracking control for an interior permanent magnet synchronous generator wind turbine system. Two design concepts are compared to outline the effect of magnet design on the performance of the interior permanent magnet synchronous generator. An approximate model that includes the effect of core losses has been developed for the machine to simulate the dynamic performance of the wind energy system. An algorithm for Maximum Power Point Tracking control is included to describe the process for maximum power extraction.

Keywords: permanent magnet synchronous generator, wind power system, wind turbine

Procedia PDF Downloads 221
1205 Energy Strategy and Economic Growth of Russia

Authors: Young Sik Kim, Tae Kwon Ha

Abstract:

This article considers the problems of economic growth and Russian energy strategy. Also in this paper, the issues related to the economic growth prospects of Russian were discussed. Russian energy strategy without standing Russia`s stature in global energy markets, at the current production and extraction rates, will not be able to sustain its own production as well as fulfil its energy strategy. Indeed, Russia’s energy sector suffers from a chronic lack of investments which are necessary to modernize its energy supply system. In recent years, especially since the international financial crisis, Russia-EU energy cooperation has made substantive progress. Recently the break-through progress has been made, resulting mainly from long-term contributing factors between the countries and recent international economic and political situation changes. Analytical material presented in the article is intended for a more detailed or substantive analysis related to foreign economic relations of the countries and Russia as well.

Keywords: Russia, energy strategy, economic growth, cooperation

Procedia PDF Downloads 314
1204 Specification and Unification of All Fundamental Forces Exist in Universe in the Theoretical Perspective – The Universal Mechanics

Authors: Surendra Mund

Abstract:

At the beginning, the physical entity force was defined mathematically by Sir Isaac Newton in his Principia Mathematica as F ⃗=(dp ⃗)/dt in form of his second law of motion. Newton also defines his Universal law of Gravitational force exist in same outstanding book, but at the end of 20th century and beginning of 21st century, we have tried a lot to specify and unify four or five Fundamental forces or Interaction exist in universe, but we failed every time. Usually, Gravity creates problems in this unification every single time, but in my previous papers and presentations, I defined and derived Field and force equations for Gravitational like Interactions for each and every kind of central systems. This force is named as Variational Force by me, and this force is generated by variation in the scalar field density around the body. In this particular paper, at first, I am specifying which type of Interactions are Fundamental in Universal sense (or in all type of central systems or bodies predicted by my N-time Inflationary Model of Universe) and then unify them in Universal framework (defined and derived by me as Universal Mechanics in a separate paper) as well. This will also be valid in Universal dynamical sense which includes inflations and deflations of universe, central system relativity, Universal relativity, ϕ-ψ transformation and transformation of spin, physical perception principle, Generalized Fundamental Dynamical Law and many other important Generalized Principles of Generalized Quantum Mechanics (GQM) and Central System Theory (CST). So, In this article, at first, I am Generalizing some Fundamental Principles, and then Unifying Variational Forces (General form of Gravitation like Interactions) and Flow Generated Force (General form of EM like Interactions), and then Unify all Fundamental Forces by specifying Weak and Strong Interactions in form of more basic terms - Variational, Flow Generated and Transformational Interactions.

Keywords: Central System Force, Disturbance Force, Flow Generated Forces, Generalized Nuclear Force, Generalized Weak Interactions, Generalized EM-Like Interactions, Imbalance Force, Spin Generated Forces, Transformation Generated Force, Unified Force, Universal Mechanics, Uniform And Non-Uniform Variational Interactions, Variational Interactions

Procedia PDF Downloads 50
1203 Novel Algorithm for Restoration of Retina Images

Authors: P. Subbuthai, S. Muruganand

Abstract:

Diabetic Retinopathy is one of the complicated diseases and it is caused by the changes in the blood vessels of the retina. Extraction of retina image through Fundus camera sometimes produced poor contrast and noises. Because of this noise, detection of blood vessels in the retina is very complicated. So preprocessing is needed, in this paper, a novel algorithm is implemented to remove the noisy pixel in the retina image. The proposed algorithm is Extended Median Filter and it is applied to the green channel of the retina because green channel vessels are brighter than the background. Proposed extended median filter is compared with the existing standard median filter by performance metrics such as PSNR, MSE and RMSE. Experimental results show that the proposed Extended Median Filter algorithm gives a better result than the existing standard median filter in terms of noise suppression and detail preservation.

Keywords: fundus retina image, diabetic retinopathy, median filter, microaneurysms, exudates

Procedia PDF Downloads 342
1202 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 47
1201 Effect of Acetic Acid Fermentation on Bioactive Components and Anti-Xanthine Oxidase Activities in Vinegar Brewed from Monascus-Fermented Soybeans

Authors: Kyung-Soon Choi, Ji-Young Hwang, Young-Hee Pyo

Abstract:

Vinegars have been used as an alternative remedy for treating gout, but the scientific basis remains to be elucidated. In this study, acetic acid fermentation was applied for the first time to Monascus-fermented soybeans to examine its effect on the bioactive components together with the xanthine oxidase inhibitory (XOI) activity of the soy vinegar. The content of total phenols (0.47~0.97 mg gallic acid equivalents/mL) and flavonoids (0.18~0.39 mg quercetin equivallents/mL) were spectrophotometrically determined, and the content of organic acid (10.22~59.76 mg/mL) and isoflavones (6.79~7.46 mg/mL) were determined using HPLC-UV. The analytical method for ubiquinones (0.079~0.276 μg/mL) employed saponification before solvent extraction and quantification using LC-MS. Soy vinegar also showed significant XOI (95.3%) after 20 days of acetic acid fermentation at 30 °C. The results suggest that soy vinegar has potential as a novel medicinal food.

Keywords: acetic acid fermentation, bioactive component, soy vinegar, xanthine oxidase inhibitory activity

Procedia PDF Downloads 383
1200 Characterization of N+C, Ti+N and Ti+C Ion Implantation into Ti6Al4V Alloy

Authors: Xingguo Feng, Hui Zhou, Kaifeng Zhang, Zhao Jiang, Hanjun Hu, Jun Zheng, Hong Hao

Abstract:

TiN and TiC films have been prepared on Ti6Al4V alloy substrates by plasma-based ion implantation. The effect of N+C and Ti+N hybrid ion implantation at 50 kV, and Ti+C hybrid ion implantation at 20 kV, 35 kV and 50 kV extraction voltages on mechanical properties at a dose of 2×10¹⁷ ions / cm² was studied. The chemical states and microstructures of the implanted samples were investigated using X-ray photoelectron (XPS), and X-ray diffraction (XRD), together with the mechanical and tribological properties of the samples were characterized using nano-indentation and ball-on-disk tribometer. It was found that the modified layer by Ti+C implanted at 50 kV was composed of mainly TiC and Ti-O bond and the layer of Ti+N implanted at 50 kV was observed to be TiN and Ti-O bond. Hardness tests have shown that the hardness values for N+C, Ti+N, and Ti+C hybrid ion implantation samples were much higher than the un-implanted ones. The results of wear tests showed that both Ti+C and Ti+N ion implanted samples had much better wear resistance compared un-implanted sample. The wear rate of Ti+C implanted at 50 kV sample was 6.7×10⁻⁵mm³ / N.m, which was decreased over one order than unimplanted samples.

Keywords: plasma ion implantation, x-ray photoelectron (XPS), hardness, wear

Procedia PDF Downloads 410
1199 Evaluation and Selection of SaaS Product Based on User Preferences

Authors: Boussoualim Nacira, Aklouf Youcef

Abstract:

Software as a Service (SaaS) is a software delivery paradigm in which the product is not installed on-premise, but it is available on Internet and Web. The customers do not pay to possess the software itself but rather to use it. This concept of pay per use is very attractive. Hence, we see increasing number of organizations adopting SaaS. However, each customer is unique, which leads to a very large variation in the requirements off the software. As several suppliers propose SaaS products, the choice of this latter becomes a major issue. When multiple criteria are involved in decision making, we talk about a problem of «Multi-Criteria Decision-Making» (MCDM). Therefore, this paper presents a method to help customers to choose a better SaaS product satisfying most of their conditions and alternatives. Also, we know that a good method of adaptive selection should be based on the correct definition of the different parameters of choice. This is why we started by extraction and analysis the various parameters involved in the process of the selection of a SaaS application.

Keywords: cloud computing, business operation, Multi-Criteria Decision-Making (MCDM), Software as a Service (SaaS)

Procedia PDF Downloads 483
1198 Slowness in Architecture: The Pace of Human Engagement with the Built Environment

Authors: Jaidev Tripathy

Abstract:

A human generation’s lifestyle, behaviors, habits, and actions are governed heavily by homogenous mindsets. But the current scenario is witnessing a rapid gap in this homogeneity as a result of an intervention, or rather, the dominance of the digital revolution in the human lifestyle. The current mindset for mass production, employment, multi-tasking, rapid involvement, and stiff competition to stay above the rest has led to a major shift in human consciousness. Architecture, as an entity, is being perceived differently. The screens are replacing the skies. The pace at which operation and evolution is taking place has increased. It is paradoxical, that time seems to be moving faster despite the intention to save time. Parallelly, there is an evident shift in architectural typologies spanning across different generations. The architecture of today is now seems influenced heavily from here and there. Mass production of buildings and over-exploitation of resources giving shape to uninspiring algorithmic designs, ambiguously catering to multiple user groups, has become a prevalent theme. Borrow-and-steal replaces influence, and the diminishing depth in today’s designs reflects a lack of understanding and connection. The digitally dominated world, perceived as an aid to connect and network, is making humans less capable of real-life interactions and understanding. It is not wrong, but it doesn’t seem right either. The engagement level between human beings and the built environment is a concern which surfaces. This leads to a question: Does human engagement drive architecture, or does architecture drive human engagement? This paper attempts to relook at architecture's capacity and its relativity with pace to influence the conscious decisions of a human being. Secondary research, supported with case examples, helps in understanding the translation of human engagement with the built environment through physicality of architecture. The procedure, or theme, is pace and the role of slowness in the context of human behaviors, thus bridging the widening gap between the human race and the architecture themselves give shape to, avoiding a possible future dystopian world.

Keywords: junkspace, pace, perception, slowness

Procedia PDF Downloads 109
1197 Epileptic Seizure Prediction Focusing on Relative Change in Consecutive Segments of EEG Signal

Authors: Mohammad Zavid Parvez, Manoranjan Paul

Abstract:

Epilepsy is a common neurological disorders characterized by sudden recurrent seizures. Electroencephalogram (EEG) is widely used to diagnose possible epileptic seizure. Many research works have been devoted to predict epileptic seizure by analyzing EEG signal. Seizure prediction by analyzing EEG signals are challenging task due to variations of brain signals of different patients. In this paper, we propose a new approach for feature extraction based on phase correlation in EEG signals. In phase correlation, we calculate relative change between two consecutive segments of an EEG signal and then combine the changes with neighboring signals to extract features. These features are then used to classify preictal/ictal and interictal EEG signals for seizure prediction. Experiment results show that the proposed method carries good prediction rate with greater consistence for the benchmark data set in different brain locations compared to the existing state-of-the-art methods.

Keywords: EEG, epilepsy, phase correlation, seizure

Procedia PDF Downloads 309
1196 Recovery of Zn from Different Çinkur Leach Residues by Acidic Leaching

Authors: Mehmet Ali Topçu, Aydın Ruşen

Abstract:

Çinkur is the only plant in Turkey that produces zinc from primary ore containing zinc carbonate from its establishment until 1997. After this year, zinc concentrate coming from Iran was used in this plant. Therefore, there are two different leach residues namely Turkish leach residue (TLR) and Iranian leach residue (ILR), in Çinkur stock piles. This paper describes zinc recovery by sulphuric acid (H2SO4) treatment for each leach residue and includes comparison of blended of TLR and ILR. Before leach experiments; chemical, mineralogical and thermal analysis of three different leach residues was carried out by using atomic absorption spectrometry (AAS), X-Ray diffraction (XRD) and differential thermal analysis (DTA), respectively. Leaching experiments were conducted at optimum conditions; 100 oC, 150 g/L H2SO4 and 2 hours. In the experiments, stirring rate was kept constant at 600 r/min which ensures complete mixing in leaching solution. Results show that zinc recovery for Iranian LR was higher than Turkish LR due to having different chemical composition from each other.

Keywords: hydrometallurgy, leaching, metal extraction, metal recovery

Procedia PDF Downloads 354
1195 Multimodal Biometric Cryptography Based Authentication in Cloud Environment to Enhance Information Security

Authors: D. Pugazhenthi, B. Sree Vidya

Abstract:

Cloud computing is one of the emerging technologies that enables end users to use the services of cloud on ‘pay per usage’ strategy. This technology grows in a fast pace and so is its security threat. One among the various services provided by cloud is storage. In this service, security plays a vital factor for both authenticating legitimate users and protection of information. This paper brings in efficient ways of authenticating users as well as securing information on the cloud. Initial phase proposed in this paper deals with an authentication technique using multi-factor and multi-dimensional authentication system with multi-level security. Unique identification and slow intrusive formulates an advanced reliability on user-behaviour based biometrics than conventional means of password authentication. By biometric systems, the accounts are accessed only by a legitimate user and not by a nonentity. The biometric templates employed here do not include single trait but multiple, viz., iris and finger prints. The coordinating stage of the authentication system functions on Ensemble Support Vector Machine (SVM) and optimization by assembling weights of base SVMs for SVM ensemble after individual SVM of ensemble is trained by the Artificial Fish Swarm Algorithm (AFSA). Thus it helps in generating a user-specific secure cryptographic key of the multimodal biometric template by fusion process. Data security problem is averted and enhanced security architecture is proposed using encryption and decryption system with double key cryptography based on Fuzzy Neural Network (FNN) for data storing and retrieval in cloud computing . The proposing scheme aims to protect the records from hackers by arresting the breaking of cipher text to original text. This improves the authentication performance that the proposed double cryptographic key scheme is capable of providing better user authentication and better security which distinguish between the genuine and fake users. Thus, there are three important modules in this proposed work such as 1) Feature extraction, 2) Multimodal biometric template generation and 3) Cryptographic key generation. The extraction of the feature and texture properties from the respective fingerprint and iris images has been done initially. Finally, with the help of fuzzy neural network and symmetric cryptography algorithm, the technique of double key encryption technique has been developed. As the proposed approach is based on neural networks, it has the advantage of not being decrypted by the hacker even though the data were hacked already. The results prove that authentication process is optimal and stored information is secured.

Keywords: artificial fish swarm algorithm (AFSA), biometric authentication, decryption, encryption, fingerprint, fusion, fuzzy neural network (FNN), iris, multi-modal, support vector machine classification

Procedia PDF Downloads 259
1194 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion

Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro

Abstract:

Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.

Keywords: basketball, deep learning, feature extraction, single-camera, tracking

Procedia PDF Downloads 138
1193 Optimization of the Jatropha curcas Supply Chain as a Criteria for the Implementation of Future Collection Points in Rural Areas of Manabi-Ecuador

Authors: Boris G. German, Edward Jiménez, Sebastián Espinoza, Andrés G. Chico, Ricardo A. Narváez

Abstract:

The unique flora and fauna of The Galapagos Islands has leveraged a tourism-driven growth in the islands. Nonetheless, such development is energy-intensive and requires thousands of gallons of diesel each year for thermoelectric electricity generation. The needed transport of fossil fuels from the continent has generated oil spillages and affectations to the fragile ecosystem of the islands. The Zero Fossil Fuels initiative for The Galapagos proposed by the Ecuadorian government as an alternative to reduce the use of fossil fuels in the islands, considers the replacement of diesel in thermoelectric generators, by Jatropha curcas vegetable oil. However, the Jatropha oil supply cannot entirely cover yet the demand for electricity generation in Galapagos. Within this context, the present work aims to provide an optimization model that can be used as a selection criterion for approving new Jatropha Curcas collection points in rural areas of Manabi-Ecuador. For this purpose, existing Jatropha collection points in Manabi were grouped under three regions: north (7 collection points), center (4 collection points) and south (9 collection points). Field work was carried out in every region in order to characterize the collection points, to establish local Jatropha supply and to determine transportation costs. Data collection was complemented using GIS software and an objective function was defined in order to determine the profit associated to Jatropha oil production. The market price of both Jatropha oil and residual cake, were considered for the total revenue; whereas Jatropha price, transportation and oil extraction costs were considered for the total cost. The tonnes of Jatropha fruit and seed, transported from collection points to the extraction plant, were considered as variables. The maximum and minimum amount of the collected Jatropha from each region constrained the optimization problem. The supply chain was optimized using linear programming in order to maximize the profits. Finally, a sensitivity analysis was performed in order to find a profit-based criterion for the acceptance of future collection points in Manabi. The maximum profit reached a value of $ 4,616.93 per year, which represented a total Jatropha collection of 62.3 tonnes Jatropha per year. The northern region of Manabi had the biggest collection share (69%), followed by the southern region (17%). The criteria for accepting new Jatropha collection points in the rural areas of Manabi can be defined by the current maximum profit of the zone and by the variation in the profit when collection points are removed one at a time. The definition of new feasible collection points plays a key role in the supply chain associated to Jatropha oil production. Therefore, a mathematical model that assists decision makers in establishing new collection points while assuring profitability, contributes to guarantee a continued Jatropha oil supply for Galapagos and a sustained economic growth in the rural areas of Ecuador.

Keywords: collection points, Jatropha curcas, linear programming, supply chain

Procedia PDF Downloads 433
1192 Utilization and Characterizations of Olive Oil Industry By-Products

Authors: Sawsan Dacrory, Hussein Abou-Yousef, Samir Kamel, Ragab E. Abou-Zeid, Mohamed S. Abdel-Aziz, Mohamed Elbadry

Abstract:

A considerable amount of lignocellulosic by-product could be obtained from olive pulp during olive oil extraction industry. The major constituents of the olive pulp are husks and seeds. The separation of each portion of olive pulp (seeds and husks) was carried out by water flotation where seeds were sediment in the bottom. Both seeds and husks were dignified by 15% NaOH followed by complete lignin removal by using sodium chlorite in acidic medium. The isolated holocellulose, α-cellulose, hydrogel and CMC which prepared from cellulose of both seeds and husk fractions were characterized by FTIR and SEM. The present study focused on the investigation of the chemical components of the lignocellulosic fraction of olive pulp. Biofunctionlization of hydrogel was achieved through loading of silver nanoparticles AgNPs in to the prepared hydrogel. The antimicrobial activity of the loaded silver hydrogel against G-ve, and G+ve, and candida was demonstrated.

Keywords: cellulose, carboxymethyle cellulose, olive pulp, hydrogel

Procedia PDF Downloads 474
1191 Process for Production of Added-Value Water–Extract from Liquid Biomass

Authors: Lozano Paul

Abstract:

Coupled Membrane Separation Technology (CMST), including Cross Flow Microfiltration (CFM) and Reverse Osmosis (RO), are used to concentrate microalgae biomass or/and to extract and concentrate water-soluble metabolites produced during micro-algae production cycle, as well as water recycling. Micro-algae biomass was produced using different feeding mixtures of ingredients: pure chemical origin compounds and natural/ecological water-extracted components from available local plants. Micro-algae was grown either in conventional plastic bags (100L/unit) or in small-scale innovative bioreactors (75L). Biomass was concentrated as CFM retentate using a P19-60 ceramic membrane (0.2μm pore size), and water-soluble micro-algae metabolites left in the CFM filtrate were concentrated by RO. Large volumes of water (micro-algae culture media) of were recycled by the CMTS for another biomass production cycle.

Keywords: extraction, membrane process, microalgae, natural compound

Procedia PDF Downloads 279
1190 Comparison of Incidence and Risk Factors of Early Onset and Late Onset Preeclampsia: A Population Based Cohort Study

Authors: Sadia Munir, Diana White, Aya Albahri, Pratiwi Hastania, Eltahir Mohamed, Mahmood Khan, Fathima Mohamed, Ayat Kadhi, Haila Saleem

Abstract:

Preeclampsia is a major complication of pregnancy. Prediction and management of preeclampsia is a challenge for obstetricians. To our knowledge, no major progress has been achieved in the prevention and early detection of preeclampsia. There is very little known about the clear treatment path of this disorder. Preeclampsia puts both mother and baby at risk of several short term- and long term-health problems later in life. There is huge health service cost burden in the health care system associated with preeclampsia and its complications. Preeclampsia is divided into two different types. Early onset preeclampsia develops before 34 weeks of gestation, and late onset develops at or after 34 weeks of gestation. Different genetic and environmental factors, prognosis, heritability, biochemical and clinical features are associated with early and late onset preeclampsia. Prevalence of preeclampsia greatly varies all over the world and is dependent on ethnicity of the population and geographic region. To authors best knowledge, no published data on preeclampsia exist in Qatar. In this study, we are reporting the incidence of preeclampsia in Qatar. The purpose of this study is to compare the incidence and risk factors of both early onset and late onset preeclampsia in Qatar. This retrospective longitudinal cohort study was conducted using data from the hospital record of Women’s Hospital, Hamad Medical Corporation (HMC), from May 2014-May 2016. Data collection tool, which was approved by HMC, was a researcher made extraction sheet that included information such as blood pressure during admission, socio demographic characteristics, delivery mode, and new born details. A total of 1929 patients’ files were identified by the hospital information management when they apply codes of preeclampsia. Out of 1929 files, 878 had significant gestational hypertension without proteinuria, 365 had preeclampsia, 364 had severe preeclampsia, and 188 had preexisting hypertension with superimposed proteinuria. In this study, 78% of the data was obtained by hospital electronic system (Cerner) and the remaining 22% was from patient’s paper records. We have gone through detail data extraction from 560 files. Initial data analysis has revealed that 15.02% of pregnancies were complicated with preeclampsia from May 2014-May 2016. We have analyzed difference in the two different disease entities in the ethnicity, maternal age, severity of hypertension, mode of delivery and infant birth weight. We have identified promising differences in the risk factors of early onset and late onset preeclampsia. The data from clinical findings of preeclampsia will contribute to increased knowledge about two different disease entities, their etiology, and similarities/differences. The findings of this study can also be used in predicting health challenges, improving health care system, setting up guidelines, and providing the best care for women suffering from preeclampsia.

Keywords: preeclampsia, incidence, risk factors, maternal

Procedia PDF Downloads 141