Search results for: classification accuracies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2204

Search results for: classification accuracies

1154 Open Joint Surgery for Temporomandibular Joint Internal Derangement: Wilkes Stages III-V

Authors: T. N. Goh, M. Hashmi, O. Hussain

Abstract:

Temporomandibular joint (TMJ) dysfunction (TMD) is a condition that may affect patients via restricted mouth opening, significant pain during normal functioning, and/or reproducible joint noise. TMD includes myofascial pain, TMJ functional derangements (internal derangement, dislocation), and TMJ degenerative/inflammatory joint disease. Internal derangement (ID) is the most common cause of TMD-related clicking and locking. These patients are managed in a stepwise approach, from patient education (homecare advice and analgesia), splint therapy, physiotherapy, botulinum toxin treatment, to arthrocentesis. Arthrotomy is offered when the aforementioned treatment options fail to alleviate symptoms and improve quality of life. The aim of this prospective study was to review the outcomes of jaw joint open surgery in TMD patients. Patients who presented from 2015-2022 at the Oral and Maxillofacial Surgery Department in the Doncaster NHS Foundation Trust, UK, with a Wilkes classification of III -V were included. These patients underwent either i) discopexy with bone-anchoring suture (9); ii) intrapositional temporalis flap (ITF) with bone-anchoring suture (3); iii) eminoplasty and discopexy with suturing to the capsule (3); iii) discectomy + ITF with bone-anchoring suture (1); iv) discoplasty + bone-anchoring suture (1); v) ITF (1). Maximum incisal opening (MIO) was assessed pre-operatively and at each follow-up. Pain score, determined via the visual analogue scale (VAS, with 0 being no pain and 10 being the worst pain), was also recorded. A total of 18 eligible patients were identified with a mean age of 45 (range 22 - 79), of which 16 were female. The patients were scored by Wilkes Classification as III (14), IV (1), or V (4). Twelve patients had anterior disc displacement without reduction (66%) and six had degenerative/arthritic changes (33%) to the TMJ. The open joint procedure resulted in an increase in MIO and reduction in pain VAS and for the majority of patients, across all Wilkes Classifications. Pre-procedural MIO was 22.9 ± 7.4 mm and VAS was 7.8 ± 1.5. At three months post-procedure there was an increase in MIO to 34.4 ± 10.4 mm (p < 0.01) and a decrease in the VAS to 1.5 ± 2.9 (p < 0.01). Three patients were lost to follow-up prior to six months. Six were discharged at six month review and five patients were discharged at 12 months review as they were asymptomatic with good mouth opening. Four patients are still attending for annual botulinum toxin treatment. Two patients (Wilkes III and V) subsequently underwent TMJ replacement (11%). One of these patients (Wilkes III) had improvement initially to MIO of 40 mm, but subsequently relapsed to less than 20 mm due to lack of compliance with jaw rehabilitation device post-operatively. Clinical improvements in 89% of patients within the study group were found, with a return to near normal MIO range and reduced pain score. Intraoperatively, the operator found bone-anchoring suture used for discopexy/discoplasty more secure than the soft tissue anchoring suturing technique.

Keywords: bone anchoring suture, open temporomandibular joint surgery, temporomandibular joint, temporomandibular joint dysfunction

Procedia PDF Downloads 105
1153 A Proposed Approach for Emotion Lexicon Enrichment

Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees

Abstract:

Document Analysis is an important research field that aims to gather the information by analyzing the data in documents. As one of the important targets for many fields is to understand what people actually want, sentimental analysis field has been one of the vital fields that are tightly related to the document analysis. This research focuses on analyzing text documents to classify each document according to its opinion. The aim of this research is to detect the emotions from text documents based on enriching the lexicon with adapting their content based on semantic patterns extraction. The proposed approach has been presented, and different experiments are applied by different perspectives to reveal the positive impact of the proposed approach on the classification results.

Keywords: document analysis, sentimental analysis, emotion detection, WEKA tool, NRC lexicon

Procedia PDF Downloads 442
1152 Evaluation of Role of Surgery in Management of Pediatric Germ Cell Tumors According to Risk Adapted Therapy Protocols

Authors: Ahmed Abdallatif

Abstract:

Background: Patients with malignant germ cell tumors have age distribution in two peaks, with the first one during infancy and the second after the onset of puberty. Gonadal germ cell tumors are the most common malignant ovarian tumor in females aged below twenty years. Sacrococcygeal and retroperitoneal abdominal tumors usually presents in a large size before the onset of symptoms. Methods: Patients with pediatric germ cell tumors presenting to Children’s Cancer Hospital Egypt and National Cancer Institute Egypt from January 2008 to June 2011 Patients underwent stratification according to risk into low, intermediate and high risk groups according to children oncology group classification. Objectives: Assessment of the clinicopathologic features of all cases of pediatric germ cell tumors and classification of malignant cases according to their stage, and the primary site to low, intermediate and high risk patients. Evaluation of surgical management in each group of patients focusing on surgical approach, the extent of surgical resection according to each site, ability to achieve complete surgical resection and perioperative complications. Finally, determination of the three years overall and disease-free survival in different groups and the relation to different prognostic factors including the extent of surgical resection. Results: Out of 131 cases surgically explored only 26 cases had re exploration with 8 cases explored for residual disease 9 cases for remote recurrence or metastatic disease and the other 9 cases for other complications. Patients with low risk kept under follow up after surgery, out of those of low risk group (48 patients) only 8 patients (16.5%) shifted to intermediate risk. There were 20 patients (14.6%) diagnosed as intermediate risk received 3 cycles of compressed (Cisplatin, Etoposide and Bleomycin) and all high risk group patients 69patients (50.4%) received chemotherapy. Stage of disease was strongly and significantly related to overall survival with a poorer survival in late stages (stage IV) as compared to earlier stages. Conclusion: Overall survival rate at 3 three years was (76.7% ± 5.4, 3) years EFS was (77.8 % ±4.0), however 3 years DFS was much better (89.8 ± 3.4) in whole study group with ovarian tumors had significantly higher Overall survival (90% ± 5.1). Event Free Survival analysis showed that Male gender was 3 times likely to have bad events than females. Patients who underwent incomplete resection were 4 times more than patients with complete resection to have bad events. Disease free survival analysis showed that Patients who underwent incomplete surgery were 18.8 times liable for recurrence compared to those who underwent complete surgery, and patients who were exposed to re-excision were 21 times more prone to recurrence compared to other patients.

Keywords: extragonadal, germ cell tumors, gonadal, pediatric

Procedia PDF Downloads 218
1151 An Adaptive Oversampling Technique for Imbalanced Datasets

Authors: Shaukat Ali Shahee, Usha Ananthakumar

Abstract:

A data set exhibits class imbalance problem when one class has very few examples compared to the other class, and this is also referred to as between class imbalance. The traditional classifiers fail to classify the minority class examples correctly due to its bias towards the majority class. Apart from between-class imbalance, imbalance within classes where classes are composed of a different number of sub-clusters with these sub-clusters containing different number of examples also deteriorates the performance of the classifier. Previously, many methods have been proposed for handling imbalanced dataset problem. These methods can be classified into four categories: data preprocessing, algorithmic based, cost-based methods and ensemble of classifier. Data preprocessing techniques have shown great potential as they attempt to improve data distribution rather than the classifier. Data preprocessing technique handles class imbalance either by increasing the minority class examples or by decreasing the majority class examples. Decreasing the majority class examples lead to loss of information and also when minority class has an absolute rarity, removing the majority class examples is generally not recommended. Existing methods available for handling class imbalance do not address both between-class imbalance and within-class imbalance simultaneously. In this paper, we propose a method that handles between class imbalance and within class imbalance simultaneously for binary classification problem. Removing between class imbalance and within class imbalance simultaneously eliminates the biases of the classifier towards bigger sub-clusters by minimizing the error domination of bigger sub-clusters in total error. The proposed method uses model-based clustering to find the presence of sub-clusters or sub-concepts in the dataset. The number of examples oversampled among the sub-clusters is determined based on the complexity of sub-clusters. The method also takes into consideration the scatter of the data in the feature space and also adaptively copes up with unseen test data using Lowner-John ellipsoid for increasing the accuracy of the classifier. In this study, neural network is being used as this is one such classifier where the total error is minimized and removing the between-class imbalance and within class imbalance simultaneously help the classifier in giving equal weight to all the sub-clusters irrespective of the classes. The proposed method is validated on 9 publicly available data sets and compared with three existing oversampling techniques that rely on the spatial location of minority class examples in the euclidean feature space. The experimental results show the proposed method to be statistically significantly superior to other methods in terms of various accuracy measures. Thus the proposed method can serve as a good alternative to handle various problem domains like credit scoring, customer churn prediction, financial distress, etc., that typically involve imbalanced data sets.

Keywords: classification, imbalanced dataset, Lowner-John ellipsoid, model based clustering, oversampling

Procedia PDF Downloads 418
1150 Use of Satellite Imaging to Understand Earth’s Surface Features: A Roadmap

Authors: Sabri Serkan Gulluoglu

Abstract:

It is possible with Geographic Information Systems (GIS) that the information about all natural and artificial resources on the earth is obtained taking advantage of satellite images are obtained by remote sensing techniques. However, determination of unknown sources, mapping of the distribution and efficient evaluation of resources are defined may not be possible with the original image. For this reasons, some process steps are needed like transformation, pre-processing, image enhancement and classification to provide the most accurate assessment numerically and visually. Many studies which present the phases of obtaining and processing of the satellite images have examined in the literature study. The research showed that the determination of the process steps may be followed at this subject with the existence of a common whole may provide to progress the process rapidly for the necessary and possible studies which will be.

Keywords: remote sensing, satellite imaging, gis, computer science, information

Procedia PDF Downloads 318
1149 Spectral Domain Fast Multipole Method for Solving Integral Equations of One and Two Dimensional Wave Scattering

Authors: Mohammad Ahmad, Dayalan Kasilingam

Abstract:

In this paper, a spectral domain implementation of the fast multipole method is presented. It is shown that the aggregation, translation, and disaggregation stages of the fast multipole method (FMM) can be performed using the spectral domain (SD) analysis. The spectral domain fast multipole method (SD-FMM) has the advantage of eliminating the near field/far field classification used in conventional FMM formulation. The study focuses on the application of SD-FMM to one-dimensional (1D) and two-dimensional (2D) electric field integral equation (EFIE). The case of perfectly conducting strip, circular and square cylinders are numerically analyzed and compared with the results from the standard method of moments (MoM).

Keywords: electric field integral equation, fast multipole method, method of moments, wave scattering, spectral domain

Procedia PDF Downloads 406
1148 Trabecular Texture Analysis Using Fractal Metrics for Bone Fragility Assessment

Authors: Khaled Harrar, Rachid Jennane

Abstract:

The purpose of this study is the discrimination of 28 postmenopausal with osteoporotic femoral fractures from an age-matched control group of 28 women using texture analysis based on fractals. Two pre-processing approaches are applied on radiographic images; these techniques are compared to highlight the choice of the pre-processing method. Furthermore, the values of the fractal dimension are compared to those of the fractal signature in terms of the classification of the two populations. In a second analysis, the BMD measure at proximal femur was compared to the fractal analysis, the latter, which is a non-invasive technique, allowed a better discrimination; the results confirm that the fractal analysis of texture on calcaneus radiographs is able to discriminate osteoporotic patients with femoral fracture from controls. This discrimination was efficient compared to that obtained by BMD alone. It was also present in comparing subgroups with overlapping values of BMD.

Keywords: osteoporosis, fractal dimension, fractal signature, bone mineral density

Procedia PDF Downloads 425
1147 Monitoring of Forest Cover Dynamics in the High Atlas of Morocco (Zaouit Ahansal) Using Remote Sensing Techniques and GIS

Authors: Abdelaziz Moujane, Abedelali Boulli, Abdellah Ouigmane

Abstract:

The present work focuses on the assessment of forestlandscape changes in the region of ZaouitAhansal, usingmultitemporal satellite images at high spatial resolution.Severalremotesensingmethodswereappliednamely: The supervised classification algorithm and NDVI whichwerecombined in a GIS environment to quantify the extent and change in density of forest stands (holmoak, juniper, thya, Aleppo pine, crops, and others).The resultsobtainedshowedthat the forest of ZaouitAhansal has undergonesignificantdegradationresulting in a decrease in the area of juniper, cedar, and zeenoak, as well as an increase in the area of baresoil and agricultural land. The remotesensing data providedsatisfactoryresults for identifying and quantifying changes in forestcover. In addition, thisstudycould serve as a reference for the development of management strategies and restoration programs.

Keywords: remote sensing, GIS, satellite image, NDVI, deforestation, zaouit ahansal

Procedia PDF Downloads 153
1146 Liquid Biopsy Based Microbial Biomarker in Coronary Artery Disease Diagnosis

Authors: Eyup Ozkan, Ozkan U. Nalbantoglu, Aycan Gundogdu, Mehmet Hora, A. Emre Onuk

Abstract:

The human microbiome has been associated with cardiological conditions and this relationship is becoming to be defined beyond the gastrointestinal track. In this study, we investigate the alteration in circulatory microbiota in the context of Coronary Artery Disease (CAD). We received circulatory blood samples from suspected CAD patients and maintain 16S ribosomal RNA sequencing to identify each patient’s microbiome. It was found that Corynebacterium and Methanobacteria genera show statistically significant differences between healthy and CAD patients. The overall biodiversities between the groups were observed to be different revealed by machine learning classification models. We also achieve and demonstrate the performance of a diagnostic method using circulatory blood microbiome-based estimation.

Keywords: coronary artery disease, blood microbiome, machine learning, angiography, next-generation sequencing

Procedia PDF Downloads 157
1145 UAV’s Enhanced Data Collection for Heterogeneous Wireless Sensor Networks

Authors: Kamel Barka, Lyamine Guezouli, Assem Rezki

Abstract:

In this article, we propose a protocol called DataGA-DRF (a protocol for Data collection using a Genetic Algorithm through Dynamic Reference Points) that collects data from Heterogeneous wireless sensor networks. This protocol is based on DGA (Destination selection according to Genetic Algorithm) to control the movement of the UAV (Unmanned aerial vehicle) between dynamic reference points that virtually represent the sensor node deployment. The dynamics of these points ensure an even distribution of energy consumption among the sensors and also improve network performance. To determine the best points, DataGA-DRF uses a classification algorithm such as K-Means.

Keywords: heterogeneous wireless networks, unmanned aerial vehicles, reference point, collect data, genetic algorithm

Procedia PDF Downloads 82
1144 Features Reduction Using Bat Algorithm for Identification and Recognition of Parkinson Disease

Authors: P. Shrivastava, A. Shukla, K. Verma, S. Rungta

Abstract:

Parkinson's disease is a chronic neurological disorder that directly affects human gait. It leads to slowness of movement, causes muscle rigidity and tremors. Gait serve as a primary outcome measure for studies aiming at early recognition of disease. Using gait techniques, this paper implements efficient binary bat algorithm for an early detection of Parkinson's disease by selecting optimal features required for classification of affected patients from others. The data of 166 people, both fit and affected is collected and optimal feature selection is done using PSO and Bat algorithm. The reduced dataset is then classified using neural network. The experiments indicate that binary bat algorithm outperforms traditional PSO and genetic algorithm and gives a fairly good recognition rate even with the reduced dataset.

Keywords: parkinson, gait, feature selection, bat algorithm

Procedia PDF Downloads 545
1143 Classification of Impact Damages with Respect of Damage Tolerance Design Approach and Airworthiness Requirements

Authors: T. Mrna, R. Doubrava

Abstract:

This paper describes airworthiness requirements with respect damage tolerance. Damage tolerance determines the amount and magnitude of damage on parts of the airplane. Airworthiness requirements determine the amount of damage that can still be in flight capable of the condition. Component damage can be defined as barely visible impact damage, visible impact damage or clear visible impact damage. Damage is also distributed it according to the velocity. It is divided into low or high velocity impact damage. The severity of damage to the part of airplane divides the airworthiness requirements into several categories according to severity. Airworthiness requirements are determined by type airplane. All types of airplane do not have the same conditions for airworthiness requirements. This knowledge is important for designing and operating an airplane.

Keywords: airworthiness requirements, composite, damage tolerance, low and high velocity impact

Procedia PDF Downloads 569
1142 Unsupervised Images Generation Based on Sloan Digital Sky Survey with Deep Convolutional Generative Neural Networks

Authors: Guanghua Zhang, Fubao Wang, Weijun Duan

Abstract:

Convolution neural network (CNN) has attracted more and more attention on recent years. Especially in the field of computer vision and image classification. However, unsupervised learning with CNN has received less attention than supervised learning. In this work, we use a new powerful tool which is deep convolutional generative adversarial networks (DCGANs) to generate images from Sloan Digital Sky Survey. Training by various star and galaxy images, it shows that both the generator and the discriminator are good for unsupervised learning. In this paper, we also took several experiments to choose the best value for hyper-parameters and which could help to stabilize the training process and promise a good quality of the output.

Keywords: convolution neural network, discriminator, generator, unsupervised learning

Procedia PDF Downloads 268
1141 Application of an Artificial Neural Network to Determine the Risk of Malignant Tumors from the Images Resulting from the Asymmetry of Internal and External Thermograms of the Mammary Glands

Authors: Amdy Moustapha Drame, Ilya V. Germashev, E. A. Markushevskaya

Abstract:

Among the main problems of medicine is breast cancer, from which a significant number of women around the world are constantly dying. Therefore, the detection of malignant breast tumors is an urgent task. For many years, various technologies for detecting these tumors have been used, in particular, in thermal imaging in order to determine different levels of breast cancer development. These periodic screening methods are a diagnostic tool for women and may have become an alternative to older methods such as mammography. This article proposes a model for the identification of malignant neoplasms of the mammary glands by the asymmetry of internal and external thermal imaging fields.

Keywords: asymmetry, breast cancer, tumors, deep learning, thermogram, convolutional transformation, classification

Procedia PDF Downloads 60
1140 Location Tracking of Human Using Mobile Robot and Wireless Sensor Networks

Authors: Muazzam A. Khan

Abstract:

In order to avoid dangerous environmental disasters, robots are being recognized as good entrants to step in as human rescuers. Robots has been gaining interest of many researchers in rescue matters especially which are furnished with advanced sensors. In distributed wireless robot system main objective for a rescue system is to track the location of the object continuously. This paper provides a novel idea to track and locate human in disaster area using stereo vision system and ZigBee technology. This system recursively predict and updates 3D coordinates in a robot coordinate camera system of a human which makes the system cost effective. This system is comprised of ZigBee network which has many advantages such as low power consumption, self-healing low data rates and low cost.

Keywords: stereo vision, segmentation, classification, human tracking, ZigBee module

Procedia PDF Downloads 493
1139 Critical Activity Effect on Project Duration in Precedence Diagram Method

Authors: Salman Ali Nisar, Koshi Suzuki

Abstract:

Precedence Diagram Method (PDM) with its additional relationships i.e., start-to-start, finish-to-finish, and start-to-finish, between activities provides more flexible schedule than traditional Critical Path Method (CPM). But, changing the duration of critical activities in PDM network will have anomalous effect on critical path. Researchers have proposed some classification of critical activity effects. In this paper, we do further study on classifications of critical activity effect and provide more information in detailed. Furthermore, we determine the maximum amount of time for each class of critical activity effect by which the project managers can control the dynamic feature (shortening/lengthening) of critical activities and project duration more efficiently.

Keywords: construction project management, critical path method, project scheduling, precedence diagram method

Procedia PDF Downloads 511
1138 A Review on Light Shafts Rendering for Indoor Scenes

Authors: Hatam H. Ali, Mohd Shahrizal Sunar, Hoshang Kolivand, Mohd Azhar Bin M. Arsad

Abstract:

Rendering light shafts is one of the important topics in computer gaming and interactive applications. The methods and models that are used to generate light shafts play crucial role to make a scene more realistic in computer graphics. This article discusses the image-based shadows and geometric-based shadows that contribute in generating volumetric shadows and light shafts, depending on ray tracing, radiosity, and ray marching technique. The main aim of this study is to provide researchers with background on a progress of light scattering methods so as to make it available for them to determine the technique best suited to their goals. It is also hoped that our classification helps researchers find solutions to the shortcomings of each method.

Keywords: shaft of lights, realistic images, image-based, and geometric-based

Procedia PDF Downloads 279
1137 Seafloor and Sea Surface Modelling in the East Coast Region of North America

Authors: Magdalena Idzikowska, Katarzyna Pająk, Kamil Kowalczyk

Abstract:

Seafloor topography is a fundamental issue in geological, geophysical, and oceanographic studies. Single-beam or multibeam sonars attached to the hulls of ships are used to emit a hydroacoustic signal from transducers and reproduce the topography of the seabed. This solution provides relevant accuracy and spatial resolution. Bathymetric data from ships surveys provides National Centers for Environmental Information – National Oceanic and Atmospheric Administration. Unfortunately, most of the seabed is still unidentified, as there are still many gaps to be explored between ship survey tracks. Moreover, such measurements are very expensive and time-consuming. The solution is raster bathymetric models shared by The General Bathymetric Chart of the Oceans. The offered products are a compilation of different sets of data - raw or processed. Indirect data for the development of bathymetric models are also measurements of gravity anomalies. Some forms of seafloor relief (e.g. seamounts) increase the force of the Earth's pull, leading to changes in the sea surface. Based on satellite altimetry data, Sea Surface Height and marine gravity anomalies can be estimated, and based on the anomalies, it’s possible to infer the structure of the seabed. The main goal of the work is to create regional bathymetric models and models of the sea surface in the area of the east coast of North America – a region of seamounts and undulating seafloor. The research includes an analysis of the methods and techniques used, an evaluation of the interpolation algorithms used, model thickening, and the creation of grid models. Obtained data are raster bathymetric models in NetCDF format, survey data from multibeam soundings in MB-System format, and satellite altimetry data from Copernicus Marine Environment Monitoring Service. The methodology includes data extraction, processing, mapping, and spatial analysis. Visualization of the obtained results was carried out with Geographic Information System tools. The result is an extension of the state of the knowledge of the quality and usefulness of the data used for seabed and sea surface modeling and knowledge of the accuracy of the generated models. Sea level is averaged over time and space (excluding waves, tides, etc.). Its changes, along with knowledge of the topography of the ocean floor - inform us indirectly about the volume of the entire water ocean. The true shape of the ocean surface is further varied by such phenomena as tides, differences in atmospheric pressure, wind systems, thermal expansion of water, or phases of ocean circulation. Depending on the location of the point, the higher the depth, the lower the trend of sea level change. Studies show that combining data sets, from different sources, with different accuracies can affect the quality of sea surface and seafloor topography models.

Keywords: seafloor, sea surface height, bathymetry, satellite altimetry

Procedia PDF Downloads 80
1136 Measuring Multi-Class Linear Classifier for Image Classification

Authors: Fatma Susilawati Mohamad, Azizah Abdul Manaf, Fadhillah Ahmad, Zarina Mohamad, Wan Suryani Wan Awang

Abstract:

A simple and robust multi-class linear classifier is proposed and implemented. For a pair of classes of the linear boundary, a collection of segments of hyper planes created as perpendicular bisectors of line segments linking centroids of the classes or part of classes. Nearest Neighbor and Linear Discriminant Analysis are compared in the experiments to see the performances of each classifier in discriminating ripeness of oil palm. This paper proposes a multi-class linear classifier using Linear Discriminant Analysis (LDA) for image identification. Result proves that LDA is well capable in separating multi-class features for ripeness identification.

Keywords: multi-class, linear classifier, nearest neighbor, linear discriminant analysis

Procedia PDF Downloads 538
1135 Multiple Fault Detection and Classification in a Coupled Motor with Rotor Using Artificial Neural Network

Authors: Mehrdad Nouri Khajavi, Gollamhassan Payganeh, Mohsen Fallah Tafti

Abstract:

Fault diagnosis is an important aspect of maintaining rotating machinery health and increasing productivity. Many researches has been done in this regards. Many faults such as unbalance, misalignment, looseness, bearing faults, etc. have been considered and diagnosed with different techniques. Most of the researches in fault diagnosis of rotating machinery deal with single fault. Where as in reality faults usually occur simultaneously and it is, therefore, necessary to recognize them at the same time. In this research, two of the most common faults namely unbalance and misalignment have been considered simultaneously with different intensity and then identified and classified with the use of Multi-Layer Perception Neural Network (MLPNN). Processed Vibration signals are used as the input to the MLPNN, and the class of mixed unbalancy, and misalignment is the output of the NN.

Keywords: unbalance, parallel misalignment, combined faults, vibration signals

Procedia PDF Downloads 354
1134 Criminal Liability for Criminal Tax

Authors: Theresia Simatupang dan Rahmayanti

Abstract:

Tax Law is a legal product and therefore should be subject to the legal norms, both about this actions, implementation, and about the material. Law has always aimed at providing justice, and besides that the law as a tool used to organize the order or rule of law. tax classification of a crime in this is very necessary, because the crime of taxation is very detrimental to the country and is still very high in society and socialization associated with punishment in sentencing that would have to provide a deterrent for the perpetrators, so refer to the this, these criminal offenses can endanger the stability of the nation's economy and the country that require special snacks. The application of legal sanctions against the perpetrators of the crime of taxation already has a strong legal basis, namely UU KUP. UU KUP have loaded threat (sanctions) severe punishment for tax payers who commit offenses and crimes in the field of taxation, which is contained in Article 38, and Article 39, Article 41, Article 41 A, and 41 B as well as Article 43 of Law and Law No. 12 KUP about 1985 Land Tax and Building. Criminal sanctions against violators of the tax provision are important because tax payers sanctions for violating tax laws.

Keywords: accountability, tax crime, criminal liability, taxation

Procedia PDF Downloads 341
1133 Study of the Behavior of Bolted Joints with and Without Reinforcement

Authors: Karim Akkouche

Abstract:

Many methods have been developed for characterizing the behavior of bolted joints. However, in the presence of a certain model of stiffeners, no orientation was given in relation to their modeling. To this end, multitude of coarse errors can arise in the reproduction of the propagation of efforts and in representation of the modes of deformations. Considering these particularities, a numerical investigation was carried out in our laboratory. In this paper we will present a comparative study between three types of assemblies. A non-linear 3D modeling was chosen, given that it takes into consideration geometric and material non-linearity, using the Finite Element calculation code ABAQUS. Initially, we evaluated the influence of the presence of each stiffener on the "global" behavior of the assemblies, this by analyzing their Moment-Rotation curves, also by referring to the classification system proposed by NF EN 1993- 1.8 which is based on the resisting moment Mj-Rd and the initial stiffness Sj.int. In a second step, we evaluated the "local" behavior of their components by referring to the stress-strain curves.

Keywords: assembly, post-beam, end plate, nonlinearity

Procedia PDF Downloads 74
1132 The Effects of High Technology on Communicative Translation: A Case Study of Yoruba Language

Authors: Modupe Beatrice Adeyinka

Abstract:

European Languages are languages of literature, science and technology. Whereas, African languages are of literature, both written and oral, making it difficult for Yoruba, the African language of Kwa linguistic classification, to neatly and accurately translate European scientific and technological words, expressions and technologies. Unless a pragmatic and communicative approach is adopted, equivalence of European technical and scientific texts might be a mission impossible for Yoruba scholars. In view of the aforementioned difficult task, this paper tends to highlight the need for a thorough study and evaluation of English or French words, expressions, idiomatic expressions, technical and scientific terminologies then, trying to find ways of adopting them to Yoruba environment through interpretative translation.

Keywords: communication, high technology, translation, Yoruba language

Procedia PDF Downloads 512
1131 A Molding Surface Auto-inspection System

Authors: Ssu-Han Chen, Der-Baau Perng

Abstract:

Molding process in IC manufacturing secures chips against the harms done by hot, moisture or other external forces. While a chip was being molded, defects like cracks, dilapidation, or voids may be embedding on the molding surface. The molding surfaces the study poises to treat and the ones on the market, though, differ in the surface where texture similar to defects is everywhere. Manual inspection usually passes over low-contrast cracks or voids; hence an automatic optical inspection system for molding surface is necessary. The proposed system is consisted of a CCD, a coaxial light, a back light as well as a motion control unit. Based on the property of statistical textures of the molding surface, a series of digital image processing and classification procedure is carried out. After training of the parameter associated with above algorithm, result of the experiment suggests that the accuracy rate is up to 93.75%, contributing to the inspection quality of IC molding surface.

Keywords: molding surface, machine vision, statistical texture, discrete Fourier transformation

Procedia PDF Downloads 431
1130 Introduction of the Harmfulness of the Seismic Signal in the Assessment of the Performance of Reinforced Concrete Frame Structures

Authors: Kahil Amar, Boukais Said, Kezmane Ali, Hannachi Naceur Eddine, Hamizi Mohand

Abstract:

The principle of the seismic performance evaluation methods is to provide a measure of capability for a building or set of buildings to be damaged by an earthquake. The common objective of many of these methods is to supply classification criteria. The purpose of this study is to present a method for assessing the seismic performance of structures, based on Pushover method, we are particularly interested in reinforced concrete frame structures, which represent a significant percentage of damaged structures after a seismic event. The work is based on the characterization of seismic movement of the various earthquake zones in terms of PGA and PGD that is obtained by means of SIMQK_GR and PRISM software and the correlation between the points of performance and the scalar characterizing the earthquakes will be developed.

Keywords: seismic performance, pushover method, characterization of seismic motion, harmfulness of the seismic

Procedia PDF Downloads 383
1129 Post-Soviet LULC Analysis of Tbilisi, Batumi and Kutaisi Using of Remote Sensing and Geo Information System

Authors: Lela Gadrani, Mariam Tsitsagi

Abstract:

Human is a part of the urban landscape and responsible for it. Urbanization of cities includes the longest phase; thus none of the environment ever undergoes such anthropogenic impact as the area of large cities. The post-Soviet period is very interesting in terms of scientific research. The changes that have occurred in the cities since the collapse of the Soviet Union have not yet been analyzed best to our knowledge. In this context, the aim of this paper is to analyze the changes in the land use of the three large cities of Georgia (Tbilisi, Kutaisi, Batumi). Tbilisi as a capital city, Batumi as a port city, and Kutaisi as a former industrial center. Data used during the research process are conventionally divided into satellite and supporting materials. For this purpose, the largest topographic maps (1:10 000) of all three cities were analyzed, Tbilisi General Plans (1896, 1924), Tbilisi and Kutaisi historical maps. The main emphasis was placed on the classification of Landsat images. In this case, we have classified the images LULC (LandUse / LandCover) of all three cities taken in 1987 and 2016 using the supervised and unsupervised methods. All the procedures were performed in the programs: Arc GIS 10.3.1 and ENVI 5.0. In each classification we have singled out the following classes: built-up area, water bodies, agricultural lands, green cover and bare soil, and calculated the areas occupied by them. In order to check the validity of the obtained results, additionally we used the higher resolution images of CORONA and Sentinel. Ultimately we identified the changes that took place in the land use in the post-Soviet period in the above cities. According to the results, a large wave of changes touched Tbilisi and Batumi, though in different periods. It turned out that in the case of Tbilisi, the area of developed territory has increased by 13.9% compared to the 1987 data, which is certainly happening at the expense of agricultural land and green cover, in particular, the area of agricultural lands has decreased by 4.97%; and the green cover by 5.67%. It should be noted that Batumi has obviously overtaken the country's capital in terms of development. With the unaided eye it is clear that in comparison with other regions of Georgia, everything is different in Batumi. In fact, Batumi is an unofficial summer capital of Georgia. Undoubtedly, Batumi’s development is very important both in economic and social terms. However, there is a danger that in the uneven conditions of urban development, we will eventually get a developed center - Batumi, and multiple underdeveloped peripheries around it. Analysis of the changes in the land use is of utmost importance not only for quantitative evaluation of the changes already implemented, but for future modeling and prognosis of urban development. Raster data containing the classes of land use is an integral part of the city's prognostic models.

Keywords: analysis, geo information system, remote sensing, LULC

Procedia PDF Downloads 451
1128 Nature-Based Solutions: An Intelligent Method to Enhance Urban Resilience in Response to Climate Change

Authors: Mario Calabrese, Francesca Iandolo, Pietro Vito, Raffaele D'Amore, Francesco Caputo

Abstract:

This article presents a synopsis of Nature-Based Solutions (NBS), a fresh and emerging concept in mitigating and adapting to climate change. It outlines a classification of NBS, from the least intrusive to the most advanced engineering, and provides illustrations of each. Moreover, it gives an overview of the 'Life Metro Adapt' initiative, which dealt with the climatic challenges faced by the Milan Metropolitan City and encouraged the development of climate change adaptation methods using alternative, nature-focused solutions. Lastly, the article emphasizes the necessity of raising awareness about environmental issues to ensure that NBS becomes a regular practice today and can be refined in the future.

Keywords: nature-based solutions, urban resilience, climate change adaptation, life metro adapt initiative

Procedia PDF Downloads 113
1127 Economic Stability in a Small Open Economy with Income Effect on Leisure Demand

Authors: Yu-Shan Hsu

Abstract:

This paper studies a two-sector growth model with a technology of social constant returns and with a utility that features either a zero or a positive income effect on the demand for leisure. The purpose is to investigate how the existence of aggregate instability or equilibrium indeterminacy depends on both the intensity of the income effect on the demand for leisure and the value of the labor supply elasticity. The main finding is that when there is a factor intensity reversal between the private perspective and the social perspective, indeterminacy arises even if the utility has a positive income effect on leisure demand. Moreover, we find that a smaller value of the labor supply elasticity increases the range of the income effect on leisure demand and thus increases the possibility of equilibrium indeterminacy. JEL classification: E3; O41

Keywords: indeterminacy, non-separable preferences, income effect, labor supply elasticity

Procedia PDF Downloads 177
1126 Evidence of Scientific-Ness of Scriptures

Authors: Shyam Sunder Gupta

Abstract:

Written scriptures are created out of Words of God, revealed or inspired. This process of conversion, from revealed Words to written scriptures, happens after a long gap of time and with the involvement of a large number of persons, and unintentionally, scientific and other types of errors get into scriptures; otherwise, scriptures are, in reality, truly scientific. Description of Chronology of life in the womb (Fetal Development), Rotation of Universe, spherical shape of the earth, evolution process of non-living matter and living species, classification of species by nature of birth, etc., most convincing prove that scriptures are truly scientific. In fact, there are many facts for which, to date, science has not found answers but are available in scriptures, like the creation of singularity from which the Big Bang took place and the Universe got created innumerable universes, and the most fundamental particle Param-anu. These findings demonstrate that scriptures contain scientific knowledge that predates scientific discoveries.

Keywords: Big Bang, evolution, Param-anu, scientific, scriptures, singularity, universe

Procedia PDF Downloads 33
1125 Musical Instrument Recognition in Polyphonic Audio Through Convolutional Neural Networks and Spectrograms

Authors: Rujia Chen, Akbar Ghobakhlou, Ajit Narayanan

Abstract:

This study investigates the task of identifying musical instruments in polyphonic compositions using Convolutional Neural Networks (CNNs) from spectrogram inputs, focusing on binary classification. The model showed promising results, with an accuracy of 97% on solo instrument recognition. When applied to polyphonic combinations of 1 to 10 instruments, the overall accuracy was 64%, reflecting the increasing challenge with larger ensembles. These findings contribute to the field of Music Information Retrieval (MIR) by highlighting the potential and limitations of current approaches in handling complex musical arrangements. Future work aims to include a broader range of musical sounds, including electronic and synthetic sounds, to improve the model's robustness and applicability in real-time MIR systems.

Keywords: binary classifier, CNN, spectrogram, instrument

Procedia PDF Downloads 78