Search results for: chemical and phenolic analysis
30197 Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Neem (Azadirachta Indica) Leaf Extract and Investigation of Its Antibacterial Activities
Authors: Emineh Tsegahun Gedif
Abstract:
Zinc oxide nanoparticles (ZnO NPs) have garnered significant attention due to their diverse applications encompassing catalytic, optical, photonic, and antibacterial properties. In this study, we successfully synthesized zinc oxide nanoparticles using a rapid, environmentally benign, and cost-effective method. Neem (Azadirachta indica) leaf extract served as the reducing agent for Zn (NO₃)₂.6H2O solution under optimized conditions (pH = 9). Qualitative screening techniques and FT-IR Spectroscopy confirmed the presence of active biomolecules such as flavonoids, phenolic groups, alkaloids, terpenoids, and tannins within the Neem leaf extract, both before and after reduction. The formation of ZnO NPs was visually evident through a distinct color change from colorless to light yellow. The biosynthesized nanoparticles underwent comprehensive characterization through UV-visible, FT-IR, and XRD spectroscopies. The reduction process proved to be straightforward and user-friendly, with UV-visible spectroscopy demonstrating a surface plasmon resonance (SPR) at 321 nm, unequivocally confirming the ZnO NP formation. X-ray diffraction analysis elucidated the crystal structure, revealing an average particle size of approximately 20 nm using Scherrer's equation based on the line width of the plane. Furthermore, the synthesized zinc oxide nanoparticles were evaluated for their antimicrobial properties against both Gram-positive and Gram-negative bacteria. The results showcased significant inhibitory activity, with the highest zone of inhibition observed against Escherichia coli (15 mm) and comparatively lower activity against Staphylococcus aureus. This research underscores the potential of Neem leaf extract-mediated synthesis of ZnO NPs as an eco-friendly and effective approach for various applications, including antibacterial agents.Keywords: zinc oxide nanoparticles (ZnO NPs), bioreducing agent, green synthesis, antibacterial activity
Procedia PDF Downloads 6630196 Multisensory Science, Technology, Engineering and Mathematics Learning: Combined Hands-on and Virtual Science for Distance Learners of Food Chemistry
Authors: Paulomi Polly Burey, Mark Lynch
Abstract:
It has been shown that laboratory activities can help cement understanding of theoretical concepts, but it is difficult to deliver such an activity to an online cohort and issues such as occupational health and safety in the students’ learning environment need to be considered. Chemistry, in particular, is one of the sciences where practical experience is beneficial for learning, however typical university experiments may not be suitable for the learning environment of a distance learner. Food provides an ideal medium for demonstrating chemical concepts, and along with a few simple physical and virtual tools provided by educators, analytical chemistry can be experienced by distance learners. Food chemistry experiments were designed to be carried out in a home-based environment that 1) Had sufficient scientific rigour and skill-building to reinforce theoretical concepts; 2) Were safe for use at home by university students and 3) Had the potential to enhance student learning by linking simple hands-on laboratory activities with high-level virtual science. Two main components of the resources were developed, a home laboratory experiment component, and a virtual laboratory component. For the home laboratory component, students were provided with laboratory kits, as well as a list of supplementary inexpensive chemical items that they could purchase from hardware stores and supermarkets. The experiments used were typical proximate analyses of food, as well as experiments focused on techniques such as spectrophotometry and chromatography. Written instructions for each experiment coupled with video laboratory demonstrations were used to train students on appropriate laboratory technique. Data that students collected in their home laboratory environment was collated across the class through shared documents, so that the group could carry out statistical analysis and experience a full laboratory experience from their own home. For the virtual laboratory component, students were able to view a laboratory safety induction and advised on good characteristics of a home laboratory space prior to carrying out their experiments. Following on from this activity, students observed laboratory demonstrations of the experimental series they would carry out in their learning environment. Finally, students were embedded in a virtual laboratory environment to experience complex chemical analyses with equipment that would be too costly and sensitive to be housed in their learning environment. To investigate the impact of the intervention, students were surveyed before and after the laboratory series to evaluate engagement and satisfaction with the course. Students were also assessed on their understanding of theoretical chemical concepts before and after the laboratory series to determine the impact on their learning. At the end of the intervention, focus groups were run to determine which aspects helped and hindered learning. It was found that the physical experiments helped students to understand laboratory technique, as well as methodology interpretation, particularly if they had not been in such a laboratory environment before. The virtual learning environment aided learning as it could be utilized for longer than a typical physical laboratory class, thus allowing further time on understanding techniques.Keywords: chemistry, food science, future pedagogy, STEM education
Procedia PDF Downloads 16830195 Temporal Effects on Chemical Composition of Treated Wastewater and Borehole Water Used for Irrigation in Limpopo Province, South Africa
Authors: Pholosho M. Kgopa, Phatu W. Mashela, Alen Manyevere
Abstract:
Increasing incidents of drought spells in most Sub-Saharan Africa call for using alternative sources of water for irrigation in arid and semi-arid regions. A study was conducted to investigate chemical composition of borehole and treated wastewater from different sampling disposal sites at University of Limpopo Experimental Farm (ULEF). A 4 × 5 factorial experiment, with the borehole as a reference sampling site and three other sampling sites along the wastewater disposal system was conducted over five months. Water samples were collected at four sites namely, (a) exit from Pond 16 into the furrow, (b) entry into night-dam, (c) exit from night dam to irrigated fields and (d) exit from borehole to irrigated fields. Water samples were collected in the middle of each month, starting from July to November 2016. Samples were analysed for pH, EC, Ca, Mg, Na, K, Al, B, Zn, Cu, Cr, Pb, Cd and As. The site × time interactions were highly significant for Ca, Mg, Zn, Cu, Cr, Pb, Cd, and As variables, but not for Na and K. Sampling site was highly significant on all variables, with sampling period not significant for K and Na. Relative to water from the borehole, Na concentration in wastewater samples from the night-dam exit, night-dam entry and Pond16 exit were lower by 69, 34 and 55%, respectively. Relative to borehole water, Al was higher in wastewater sampling sites. In conclusion, both sampling site and period affected the chemical composition of treated wastewater.Keywords: irrigation water quality, spatial effects, temporal effects, water reuse, water scarcity
Procedia PDF Downloads 23830194 CO₂ Absorption Studies Using Amine Solvents with Fourier Transform Infrared Analysis
Authors: Avoseh Funmilola, Osman Khalid, Wayne Nelson, Paramespri Naidoo, Deresh Ramjugernath
Abstract:
The increasing global atmospheric temperature is of great concern and this has led to the development of technologies to reduce the emission of greenhouse gases into the atmosphere. Flue gas emissions from fossil fuel combustion are major sources of greenhouse gases. One of the ways to reduce the emission of CO₂ from flue gases is by post combustion capture process and this can be done by absorbing the gas into suitable chemical solvents before emitting the gas into the atmosphere. Alkanolamines are promising solvents for this capture process. Vapour liquid equilibrium of CO₂-alkanolamine systems is often represented by CO₂ loading and partial pressure of CO₂ without considering the liquid phase. The liquid phase of this system is a complex one comprising of 9 species. Online analysis of the process is important to monitor the concentrations of the liquid phase reacting and product species. Liquid phase analysis of CO₂-diethanolamine (DEA) solution was performed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. A robust Calibration was performed for the CO₂-aqueous DEA system prior to an online monitoring experiment. The partial least square regression method was used for the analysis of the calibration spectra obtained. The models obtained were used for prediction of DEA and CO₂ concentrations in the online monitoring experiment. The experiment was performed with a newly built recirculating experimental set up in the laboratory. The set up consist of a 750 ml equilibrium cell and ATR-FTIR liquid flow cell. Measurements were performed at 400°C. The results obtained indicated that the FTIR spectroscopy combined with Partial least square method is an effective tool for online monitoring of speciation.Keywords: ATR-FTIR, CO₂ capture, online analysis, PLS regression
Procedia PDF Downloads 19830193 Physico‑chemical Behavior and Microstructural Manipulation of Nanocomposites Containing Hydroxyapatite, Alumina, and Graphene Oxide
Authors: Reim A. Almotiri, Manal M. Alkhamisi
Abstract:
Ternary nanocomposites based on hydroxyapatite (HAP) and alumina (Al2O3) were embedded through graphene oxide (GO) nanosheets to be investigated for medical applications. The composition of the preparations has been confirmed by X-ray photoelectron spectroscopy, energy-dispersive X-ray analysis, and Fourier-Transform infrared spectroscopy. Scanning and transmission electron microscopy have shown the typical morphologies of the components of the nanocomposites with hydroxyapatite nanorods reaching an average diameter of 22.26±2 nm and an average length of 69.56±19.25 nm in the ternary nanocomposites. The ternary nanocomposite has a microhardness of 5.8±0.1 GPa and a higher average roughness of 6.5 nm compared to pure HAP preparation with an average roughness of 2.7 nm. All preparations have shown an acceptable cytotoxicity profile with a percent osteoblasts cell viability of 98.6±1.3% after culturing with the ternary nanocomposite. The TNC has also shown the highest antibacterial activity compared to preparations of each of its constituents and their nanocomposites, with a zone of inhibition’s diameter of 14.1±0.8 mm and 13.6±0.6 mm against Staphylococcus aureus and Escherichia coli, respectively, compared to no zone of inhibition for the pure hydroxyapatite preparation.Keywords: hydroxypatite, cytotoxicity, nanocomposites, X-ray analysis
Procedia PDF Downloads 8330192 A Review of Spatial Analysis as a Geographic Information Management Tool
Authors: Chidiebere C. Agoha, Armstong C. Awuzie, Chukwuebuka N. Onwubuariri, Joy O. Njoku
Abstract:
Spatial analysis is a field of study that utilizes geographic or spatial information to understand and analyze patterns, relationships, and trends in data. It is characterized by the use of geographic or spatial information, which allows for the analysis of data in the context of its location and surroundings. It is different from non-spatial or aspatial techniques, which do not consider the geographic context and may not provide as complete of an understanding of the data. Spatial analysis is applied in a variety of fields, which includes urban planning, environmental science, geosciences, epidemiology, marketing, to gain insights and make decisions about complex spatial problems. This review paper explores definitions of spatial analysis from various sources, including examples of its application and different analysis techniques such as Buffer analysis, interpolation, and Kernel density analysis (multi-distance spatial cluster analysis). It also contrasts spatial analysis with non-spatial analysis.Keywords: aspatial technique, buffer analysis, epidemiology, interpolation
Procedia PDF Downloads 31930191 The Application of New Ligands including Different Atoms and Evaluation of Their Nucleophile Effects against Various Metals
Authors: Saman Hajmohamadi, Sohrab Hajmohamadi
Abstract:
The objectives of this experiment were to investigate the application of new ligands including different atoms and evaluation of their nucleophile effects against various metals. Chemistry researchers are really interested in this field. From among various ligands, there are some ligands with different coordinating ligands as well. There are great number of intermediate complexes and major elements of organic compositions with various atoms. There is a regular adding of new compositions. Complexes are the most important chemical combinations with various catalysts and biological, medicinal and other applications. Those complexes with ligands including different atom givers are really important and their synthesis could solve most of chemical problems. Supplying of new ligands is an important and key part of coordination chemistry which may cause some varieties and different properties in complexes with equal central nucleus. As a result, this research has evaluated new ligands including different coordination atoms, such as oxygen, nitrogen etc. along with their behavior against various metals like copper, nickel, iron etc.Keywords: ligands, nucleophile, iron, cobalt, copper
Procedia PDF Downloads 20330190 A Non-Destructive TeraHertz System and Method for Capsule and Liquid Medicine Identification
Authors: Ke Lin, Steve Wu Qing Yang, Zhang Nan
Abstract:
The medicine and drugs has in the past been manufactured to the final products and then used laboratory analysis to verify their quality. However the industry needs crucially a monitoring technique for the final batch to batch quality check. The introduction of process analytical technology (PAT) provides an incentive to obtain real-time information about drugs on the production line, with the following optical techniques being considered: near-infrared (NIR) spectroscopy, Raman spectroscopy and imaging, mid-infrared spectroscopy with the use of chemometric techniques to quantify the final product. However, presents problems in that the spectra obtained will consist of many combination and overtone bands of the fundamental vibrations observed, making analysis difficult. In this work, we describe a non-destructive system and method for capsule and liquid medicine identification, more particularly, using terahertz time-domain spectroscopy and/or designed terahertz portable system for identifying different types of medicine in the package of capsule or in liquid medicine bottles. The target medicine can be detected directly, non-destructively and non-invasively.Keywords: terahertz, non-destructive, non-invasive, chemical identification
Procedia PDF Downloads 13130189 Novel Electrospun Polymeric Nanofibers Loaded Different Medicaments as Drug Delivery Systems for Regenerative Endodontics
Authors: Nura Brimo, Dilek Cokeliler Serdaroglu, Tansel Uyar, Busra Uysal, Elif Bahar Cakici, Miris Dikmen, Zerrin Canturk
Abstract:
Background: A combination of antibiotics, including metronidazole (MET), ciprofloxacin (CIP), and minocycline (MINO), has been demonstrated to disinfect bacteria in necrotic teeth before regenerative processes. It has been presented clinically that antibiotic pastes may drive to possible stem cell death and difficulties in removing from the canal system, which can limit the regenerative procedure. This study was designed to (1) synthesize nanofibrous webs containing various concentrations of different medicaments (triple, double, and calcium hydroxide,Ca(OH)2), and (2) coat thiselectrospun fibrous gutta-percha (GP) cones. Methods: Poly(vinylpyrrolidone) (PVP)-based electrospun fibrous webs were processed with low medicaments concentrations. Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), and X-Ray Photoelectron Spectroscopy (XPS) were carried out to investigate fiber morphology, antibiotic incorporation, and characterized GP-coated fibrous webs, respectively. The chemical and physical properties of dentine were carried out via Fourier Transform Infrared Spectroscopy (FTIR) and Nano-SEM, respectively. The antimicrobial properties of the different fibrous webs were assessed against various bacteria by direct nanofiber/bacteria contact. Cytocompatibility was measured by applying the MTT method. Results: The mean fiber diameter of the experiment groups of medicament-containing fibers ranged in the nm scale and was significantly smaller than PVP fibers. EDX analysis confirmed the presence of medicaments in the nanofibers. XPS analysis presented a complete coating of the fibers with GPs; FTIR and Nano-SEM showed no chemical and physical configuration of intracanal medicaments on the dentine surface. Meanwhile, nanofibrous webs led to a significant reduction in the percentage of viable bacteria compared with the negative control and PVP. Conclusion: Our findings suggest that TA-NFs, DA-NFs, and Cₐ(OH)₂)-NFs coated GP cones have significant potential in eliminating intracanal bacteria, cell-friendly behavior, and clinical usage features.Keywords: drug delivery, drug carrier, electrospinning, nano/microfibers, regenerative endodontic, morphology
Procedia PDF Downloads 11230188 Influence of Pouring Temperature on the Formation of Spheroidal and Lamellar Graphite in Cast Iron
Authors: Mehmet Ekici
Abstract:
The objective of this research is to investigate the effect of pouring temperature on the microstructure of the cast iron. The pattern was designed with 300 mm of width, and the thickness variations are 1.25 mm and poured at five different temperatures; 1300, 1325, 1350, 1375 and 1400°C. Several cast irons, prepared with different chemical compositions and microstructures (three lamellar and three spheroidal structures) have been examined by extensive mechanical testing and optical microscopy. The fluidity of spheroidal and lamellar graphite in cast iron increases with the pouring temperature. The numbers of nodules were decreased by increasing pouring temperature for spheroidal structures. Whereas, the numbers of flakes of lamellar structures changed by both pouring temperature and chemical composition. In general, with increasing pouring temperature, the amount of pearlite in the internal structure of both lamellar and spheroidal graphite cast iron materials were increased.Keywords: spheroidal graphite cast iron, lamellar graphite in cast iron, pouring temperature, tensile test and impact test
Procedia PDF Downloads 33530187 Structural Characterization of the 3D Printed Silicon Carbon/Carbon Fibers Nanocomposites
Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao
Abstract:
A process that utilizes a combination of additive manufacturing (AM), a preceramic polymer, and a chopped carbon fiber precursorto fabricate Silicon Carbon/ Carbon fibers (SiC/C) composites have been developed. The study has shown a promising, cost-effective, and efficient route to fabricate complex SiC/C composites using additive manufacturing. A key part of this effort was the mapping of the material’s microstructure through the thickness of the composite. Microstructural features in the pyrolyzed composites through the successive AM layers, such as defects, crystal size and their distribution, interatomic spacing, chemical bonds, were investigated using high-resolution scanning and transmission electron microscopy. As a result, the microstructure developed in SiC/C composites after printing, cure, and pyrolysis has been successfully mapped through the thickness of the derived composites. Dense and nearly defect-free parts after polymer to ceramic conversion were observed. The ceramic matrix composite displayed three coexisting phases, including silicon carbide, silicon oxycarbide, and turbostratic carbon. Lattice fringes imaging and X-Ray Diffraction analysis showed well-defined SiC and turbostratic carbon features. The cross-sectional mapping of the printed-then-pyrolyzed structures has confirmed consistent structural and chemical features within the internal layers of the AM parts. Noteworthy, however, is that a crust-like area with high crystallinity has been observed in the first and last external layers. Not only do these crust-like regions have structural characteristics distinct from the internal layers, but they also have elemental distributions different than the internal layers.Keywords: SiC, preceramic polymer, additive manufacturing, ceramic
Procedia PDF Downloads 7830186 Influence of Dairy Cows Food on Uncooked Pressed Dough Cheese "Edam" Quality
Authors: Nougha Meriem, Sadouki Mohammed
Abstract:
Cheese quality is an important manufacturing requirement. It deals with traceability, from the dairy cows feed to the storage location. In this study, we have seen the impact of distributing two different types of green feed (purple clover VS alfalfa), in a ration composed of oat hay, silage of corn and concentrated feed, in equal quantities, on resulting milk destined for an Edam manufacturing. It reveals that alfalfa allows a high production of milk, comparatively to purple clover. However, this latter allows a high quality of milk, in point of view physico-chemical properties, especially regarding proteins and fat yields, two essential factors affecting Edam quality. The obtained results indicated that milk allowed by purple clover shows a best physico-chemical quality beside alfalfa, for it use in Edam manufacturing according to the values recommended by standardized dairies.Keywords: dairy cows, Edam, food, quality
Procedia PDF Downloads 32130185 Farmers' Perspective on Soil Health in the Indian Punjab: A Quantitative Analysis of Major Soil Parameters
Authors: Sukhwinder Singh, Julian Park, Dinesh Kumar Benbi
Abstract:
Although soil health, which is recognized as one of the key determinants of sustainable agricultural development, can be measured by a range of physical, chemical and biological parameters, the widely used parameters include pH, electrical conductivity (EC), organic carbon (OC), plant available phosphorus (P) and potassium (K). Soil health is largely affected by the occurrence of natural events or human activities and can be improved by various land management practices. A database of 120 soil samples collected from farmers’ fields spread across three major agro-climatic zones of Punjab suggested that the average pH, EC, OC, P and K was 8.2 (SD = 0.75, Min = 5.5, Max = 9.1), 0.27 dS/m (SD = 0.17, Min = 0.072 dS/m, Max = 1.22 dS/m), 0.49% (SD = 0.20, Min = 0.06%, Max = 1.2%), 19 mg/kg soil (SD = 22.07, Min = 3 mg/kg soil, Max = 207 mg/kg soil) and 171 mg/kg soil (SD = 47.57, Min = 54 mg/kg soil, Max = 288 mg/kg soil), respectively. Region-wise, pH, EC and K were the highest in south-western district of Ferozpur whereas farmers in north-eastern district of Gurdaspur had the best soils in terms of OC and P. The soils in the central district of Barnala had lower OC, P and K than the respective overall averages while its soils were normal but skewed towards alkalinity. Besides agro-climatic conditions, the size of landholding and farmer education showed a significant association with Soil Fertility Index (SFI), a composite index calculated using the aforementioned parameters’ normalized weightage. All the four stakeholder groups cited the current cropping patterns, burning of rice crop residue, and imbalanced use of chemical fertilizers for change in soil health. However, the current state of soil health in Punjab is unclear, which needs further investigation based on temporal data collected from the same field to see the short and long-term impacts of various crop combinations and varied cropping intensity levels on soil health.Keywords: soil health, punjab agriculture, sustainability, soil fertility index
Procedia PDF Downloads 36230184 Metabolomics Fingerprinting Analysis of Melastoma malabathricum L. Leaf of Geographical Variation Using HPLC-DAD Combined with Chemometric Tools
Authors: Dian Mayasari, Yosi Bayu Murti, Sylvia Utami Tunjung Pratiwi, Sudarsono
Abstract:
Melastoma malabathricum L. is an Indo-Pacific herb that has been traditionally used to treat several ailments such as wounds, dysentery, diarrhea, toothache, and diabetes. This plant is common across tropical Indo-Pacific archipelagos and is tolerant of a range of soils, from low-lying areas subject to saltwater inundation to the salt-free conditions of mountain slopes. How the soil and environmental variation influences secondary metabolite production in the herb, and an understanding of the plant’s utility as traditional medicine, remain largely unknown and unexplored. The objective of this study is to evaluate the variability of the metabolic profiles of M. malabathricum L. across its geographic distribution. By employing high-performance liquid chromatography-diode array detector (HPLC-DAD), a highly established, simple, sensitive, and reliable method was employed for establishing the chemical fingerprints of 72 samples of M. malabathricum L. leaves from various geographical locations in Indonesia. Specimens collected from six terrestrial and archipelago regions of Indonesia were analyzed by HPLC to generate chromatogram peak profiles that could be compared across each region. Data corresponding to the common peak areas of HPLC chromatographic fingerprint were analyzed by hierarchical component analysis (HCA) and principal component analysis (PCA) to extract information on the most significant variables contributing to characterization and classification of analyzed samples data. Principal component values were identified as PC1 and PC2 with 41.14% and 19.32%, respectively. Based on variety and origin, the high-performance liquid chromatography method validated the chemical fingerprint results used to screen the in vitro antioxidant activity of M. malabathricum L. The result shows that the developed method has potential values for the quality of similar M. malabathrium L. samples. These findings provide a pathway for the development and utilization of references for the identification of M. malabathricum L. Our results indicate the importance of considering geographic distribution during field-collection efforts as they demonstrate regional metabolic variation in secondary metabolites of M. malabathricum L., as illustrated by HPLC chromatogram peaks and their antioxidant activities. The results also confirm the utility of this simple approach to a rapid evaluation of metabolic variation between plants and their potential ethnobotanical properties, potentially due to the environments from whence they were collected. This information will facilitate the optimization of growth conditions to suit particular medicinal qualities.Keywords: fingerprint, high performance liquid chromatography, Melastoma malabathricum l., metabolic profiles, principal component analysis
Procedia PDF Downloads 16230183 Fermentation with Lactobacillus plantarum CK10 Enhanced Antioxidant Activity of Blueberry Puree
Authors: So Yae Koh, YeonWoo Song, Ji-Yeon Ryu, Jeong Yong Moon, Somi Kim Cho
Abstract:
Blueberry, a perennial shrub, is one of the most popular fruits due to its flavor and strong free radical scavenging properties. In this study, the blueberry puree was fermented by Lactobacillus plantarum CK10 and the antioxidant activities of fermentation products were examined. Various conditions with different supplements (5% sucrose or 10% skim milk) were evaluated for fermentation efficiency and the effects on antioxidant properties. The viable cell count of lactic acid bacteria, pH, total phenolic compounds and flavonoids contents were measured after 7 days of fermentation. DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS [2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)] radical scavenging activities were highly enhanced compared to non-fermented blueberry puree after fermentation. Interestingly, the antioxidant activities were greatly increased in the fermentation of blueberry puree alone without supplements. The present results indicate that the blueberry puree fermented by Lactobacillus plantarum CK10 could be used as a potential source of natural antioxidants and these findings will facilitate the utilization of blueberry as a resource for food additive.Keywords: antioxidant activity, blueberry, lactobacillus plantarum CK10, fermentation
Procedia PDF Downloads 34930182 An Investigation into the Potential of Industrial Low Grade Heat in Membrane Distillation for Freshwater Production
Authors: Yehia Manawi, Ahmad Kayvanifard
Abstract:
Membrane distillation is an emerging technology which has been used to produce freshwater and purify different types of aqueous mixtures. Qatar is an arid country where almost 100% of its freshwater demand is supplied through the energy-intensive thermal desalination process. The country’s need for water has reached an all-time high which stipulates finding an alternative way to augment freshwater without adding any drastic affect to the environment. The objective of this paper was to investigate the potential of using the industrial low grade waste heat to produce freshwater using membrane distillation. The main part of this work was conducting a heat audit on selected Qatari chemical industries to estimate the amounts of freshwater produced if such industrial waste heat were to be recovered. By the end of this work, the main objective was met and the heat audit conducted on the Qatari chemical industries enabled us to estimate both the amounts of waste heat which can be potentially recovered in addition to the amounts of freshwater which can be produced if such waste heat were to be recovered. By the end, the heat audit showed that around 605 Mega Watts of waste heat can be recovered from the studied Qatari chemical industries which resulted in a total daily production of 5078.7 cubic meter of freshwater. This water can be used in a wide variety of applications such as human consumption or industry. The amount of produced freshwater may look small when compared to that produced through thermal desalination plants; however, one must bear in mind that this water comes from waste and can be used to supply water for small cities or remote areas which are not connected to the water grid. The idea of producing freshwater from the two widely-available wastes (thermal rejected brine and waste heat) seems promising as less environmental and economic impacts will be associated with freshwater production which may in the near future augment the conventional way of producing freshwater currently being thermal desalination. This work has shown that low grade waste heat in the chemical industries in Qatar and perhaps the rest of the world can contribute to additional production of freshwater using membrane distillation without significantly adding to the environmental impact.Keywords: membrane distillation, desalination, heat recovery, environment
Procedia PDF Downloads 31930181 Evaluation of Dynamic and Vibrational Analysis of the Double Chambered Cylinder along Thermal Interactions
Authors: Mohammadreza Akbari, Leila Abdollahpour, Sara Akbari, Pooya Soleimani
Abstract:
Transferring thermo at the field of solid materials for instance tube-shaped structures, causing dynamical vibration at them. Majority of thermal and fluid processes are done engineering science at solid materials, for example, thermo-transferred pipes, fluids, chemical and nuclear reactors, include thermal processes, so, they need to consider the moment solid-fundamental structural strength unto these thermal interactions. Fluid and thermo retentive materials in front of external force to it like thermodynamical force, hydrodynamical force and static force continuously according to a function of time vibrated, and this action causes relative displacement of the structural materials elements, as a result, the moment resistance analysis preservation materials in thermal processes, the most important parameters for design are discussed. Including structural substrate holder temperature and fluid of the administrative and industrial center, is a cylindrical tube that for vibration analysis of cylindrical cells with heat and fluid transfer requires the use of vibration differential equations governing the structure of a tubular and thermal differential equations as the vibrating motive force at double-glazed cylinders.Keywords: heat transfer, elements in cylindrical coordinates, analytical solving the governing equations, structural vibration
Procedia PDF Downloads 34630180 Bayesian Inference of Physicochemical Quality Elements of Tropical Lagoon Nokoué (Benin)
Authors: Hounyèmè Romuald, Maxime Logez, Mama Daouda, Argillier Christine
Abstract:
In view of the very strong degradation of aquatic ecosystems, it is urgent to set up monitoring systems that are best able to report on the effects of the stresses they undergo. This is particularly true in developing countries, where specific and relevant quality standards and funding for monitoring programs are lacking. The objective of this study was to make a relevant and objective choice of physicochemical parameters informative of the main stressors occurring on African lakes and to identify their alteration thresholds. Based on statistical analyses of the relationship between several driving forces and the physicochemical parameters of the Nokoué lagoon, relevant Physico-chemical parameters were selected for its monitoring. An innovative method based on Bayesian statistical modeling was used. Eleven Physico-chemical parameters were selected for their response to at least one stressor and their threshold quality standards were also established: Total Phosphorus (<4.5mg/L), Orthophosphates (<0.2mg/L), Nitrates (<0.5 mg/L), TKN (<1.85 mg/L), Dry Organic Matter (<5 mg/L), Dissolved Oxygen (>4 mg/L), BOD (<11.6 mg/L), Salinity (7.6 .), Water Temperature (<28.7 °C), pH (>6.2), and Transparency (>0.9 m). According to the System for the Evaluation of Coastal Water Quality, these thresholds correspond to” good to medium” suitability classes, except for total phosphorus. One of the original features of this study is the use of the bounds of the credibility interval of the fixed-effect coefficients as local weathering standards for the characterization of the Physico-chemical status of this anthropized African ecosystem.Keywords: driving forces, alteration thresholds, acadjas, monitoring, modeling, human activities
Procedia PDF Downloads 9430179 Hydrothermal Synthesis of Hydrosodalite by Using Ultrasounds
Authors: B. Białecka, Z. Adamczyk, M. Cempa
Abstract:
The use of ultrasounds in zeolization of fly ash can increase the efficiency of this process. The molar ratios of the reagents, as well as the time and temperature of the synthesis, are the main parameters determining the type and properties of the zeolite formed. The aim of the work was to create hydrosodalite in a short time (8h), with low NaOH concentration (3 M) and in low temperature (80°C). A zeolite material contained in fly ash from hard coal combustion in one of Polish Power Plant was subjected to hydrothermal alkaline synthesis. The phase composition of the ash consisted mainly of glass, mullite, quartz, and hematite. The dominant chemical components of the ash were SiO₂ (over 50%mas.) and Al₂O₃ (more than 28%mas.), whereas the contents of the remaining components, except Fe₂O₃ (6.34%mas.), did not exceed 4% mas. The hydrothermal synthesis of the zeolite material was carried out in the following conditions: 3M-solution of NaOH, synthesis time – 8 hours, 40 kHz-frequency ultrasounds during the first two hours of synthesis. The mineral components of the input ash as well as product after synthesis were identified in microscopic observations, in transmitted light, using X-ray diffraction (XRD) and electron scanning microscopy (SEM/EDS). The chemical composition of the input ash was identified by the method of X-ray fluorescence (XRF). The obtained material apart from phases found in the initial fly ash sample, also contained new phases, i.e., hydrosodalite and NaP-type zeolite. The chemical composition in micro areas of grains indicated their diversity: i) SiO₂ content was in the range 30-59%mas., ii) Al₂O₃ content was in the range 24-35%mas., iii) Na₂O content was in the range 6-15%mas. This clearly indicates that hydrosodalite forms hypertrophies with NaP type zeolite as well as relict grains of fly ash. A small amount of potassium in the examined grains is noteworthy, which may indicate the substitution of sodium with potassium. This is confirmed by the high value of the correlation coefficient between these two components.Keywords: fly ash, hydrosodalite, ultrasounds, zeolite
Procedia PDF Downloads 15230178 Determining the Octanol-Water Partition Coefficient for Armchair Polyhex BN Nanotubes Using Topological Indices
Authors: Esmat Mohammadinasab
Abstract:
The aim of this paper is to investigate theoretically and establish a predictive model for determination LogP of armchair polyhex BN nanotubes by using simple descriptors. The relationship between the octanol-water partition coefficient (LogP) and quantum chemical descriptors, electric moments, and topological indices of some armchair polyhex BN nanotubes with various lengths and fixed circumference are represented. Based on density functional theory (DFT) electric moments and physico-chemical properties of those nanotubes are calculated. The DFT method performed based on the Becke’s 3-parameter formulation with the Lee-Yang-Parr functional (B3LYP) method and 3-21G standard basis sets. For the first time, the relationship between partition coefficient and different properties of polyhex BN nanotubes is investigated.Keywords: topological indices, quantum descriptors, DFT method, nanotubes
Procedia PDF Downloads 33530177 Phytochemical Exploration of Plectranthus stocksii Hook. F. for Antioxidant and Cytotoxic Properties
Authors: Kasipandi Muniyandi, Parimelazhagan Thangaraj
Abstract:
Plants are important prospective wealth of a country, combination of local health care information about a specific plant together with data published by several groups of scientists, can help in deciding whether it should be considered acceptable for medicinal use. In the developed countries, too, plant-derived drugs may be of importance. The wide variety of ailments that are being treated with Plectranthus is an indication of the medicinal value of the genus. A number of species are not toxic and so may be taken orally, whilst others are used topically on the skin or as enemas. This study was designed to evaluate the different properties of Plectranthus stocksii and the aerial parts were collected and extracted with petroleum ether, chloroform, ethyl acetate, acetone and methanol by Soxhlet apparatus and finally macerated with hot water. The quantification assays revealed that, leaf methanol extract showed higher total phenolic (415.41 mg GAE/ g extract) and tannin (177.53 mg GAE/ g extract) contents whereas leaf ethyl acetate exhibited higher flavonoids (777.11 mg RE/ g extract) content. The antioxidant efficiency of the extracts was analyzed by various radical scavenging assays. Among the different antioxidant assays, leaf ethyl acetate extract showed higher free radical scavenging activities against DPPH (IC50 = 3.46 µg/mL), ABTS (27417.65 µM TE/ g extract), FRAP (152.17 mM Fe(II)E/ mg extract) NO• radical (21.46%) and Superoxide radical (IC50 = 24.16 µg/mL) assays. All the parts P. stocksii extracts showed significant protection against OH• induced DNA damage at 50 µg concentration. The HPLC analysis of leaf ethyl acetate extract revealed the presence of Quercetin (30.29 µg/mg of extract) was the major compound. Anticancer activity of leaf ethyl acetate extract showed better IC50 values were 48.87 and 36.08 µg/ mL against MCF-7 and Caco-2 respectively. From this study, P. stocksii can act as a potent antioxidant and cytotoxic antimicrobial agent. The scope for drug development from this plant is endless and there is undoubtedly a call for further research in pharmaceutical industries.Keywords: antioxidant, cytotoxicity, phenolics, plectranthus stocksii
Procedia PDF Downloads 38330176 Effect of Temperature on the Structural and Optical Properties of ZnS Thin Films Obtained by Chemical Bath Deposition in Acidic Medium
Authors: Hamid Merzouk, Dajhida Talantikite, Amel Tounsi
Abstract:
Thin films of ZnS have been deposited by chemical route into acidic medium. The deposition time fixed at 5 hours, and the bath temperature varied from 80° C to 95°C with an interval of 5°C. The X-ray diffraction (XRD), UV/ visible spectrophotometry, Fourier Transform Infrared spectroscopy (FTIR) have been used to study the effect of temperature on the structural and optical properties of ZnS thin films. The XRD spectrum of the ZnS layer obtained shows an increase of peaks intensity of ZnS with increasing bath temperature. The study of optical properties exhibit good transmittance (60–80% in the visible region), and the band gap energy of the ZnS thin film decrease from 3.71 eV to 3.64 eV while the refractive index (n) increase with increasing temperature bath. The FTIR analyze confirm our studies and show characteristics bands of vibration of Zn-S.Keywords: ZnS thin films, XRD spectra, optical gap, XRD
Procedia PDF Downloads 15530175 Development of Starch Nanoparticles as Vehicles for Curcumin Delivery
Authors: Fernando G. Torres, Omar P. Troncoso
Abstract:
Starch is a highly biocompatible, non-toxic, and biodegradable polymer. It is widely used in biomedical applications, including drug delivery systems and tissue engineering scaffolds. Curcumin, a phenolic compound found in the dried root of Curcuma longa, has been used as a nutritional supplement due to its antimicrobial, anti-inflammatory, and antioxidant effects. However, the major problem with ingesting curcumin by itself is its poor bioavailability due to its poor absorption and rapid metabolism. In this study, we report a novel methodology to prepare starch nanoparticles loaded with curcumin. The nanoparticles were synthesized via nanoprecipitation of starch granules extracted from native Andean potatoes (Solanum tuberosum ssp. and Andigena var Huamantanga varieties). The nanoparticles were crosslinked and stabilized by using sodium tripolyphosphate and Tween®80, respectively. The characterization of the nanoparticles loaded with curcumin was assessed by Fourier Transform Infrared Spectroscopy, Dynamic Light Scattering, Zeta potential, and Differential scanning calorimetry. UV-vis spectrophotometry was used to evaluate the loading efficiency and capacity of the samples. The results showed that native starch nanoparticles could be used to prepare promising nanocarriers for the controlled release of curcumin.Keywords: starch nanoparticle, nanoprecipitation, curcumin, biomedical applications
Procedia PDF Downloads 12730174 Lower Cretaceous Clay in Anti-Lebanon Mountains, Syria and their Importance in Ceramic Manufacturing
Authors: Abdul Salam Turkmani
Abstract:
The Lower Cretaceous rocks are exposed only in the mountains regions of Syria, such as the Anti- Lebanon mountain on the western side of Damascus. The lower cretaceous sequences are made up of different rocks. The upper and middle parts of the section are composed mainly of carbonate sediments and, less frequently, gypsum and anhydrite. The lower beds are mainly composed of sandstone, conglomerate and clay. Clay samples were collected from the study area, which is located about 45 km west of the city of Damascus, near the border village of Kfer Yabous and to the left of the Damascus -Beirut International Road, within the lower Cretaceous upper Aptian deposits. The properties of clay were carried out by X-ray diffraction (XRD) and, X-ray fluorescence (XRF) and Thermal Analysis (DTA-TG-DSC) techniques. The studied samples of clay were mainly composed of kaolinite, quartz, illite. Chemical analysis shows the content of SiO₂ varied between 46.06 to 73 % Al₂O₃ 14.55-26.56%, about the staining oxides (Fe₂O₃ + TiO₂), the total content is about 4.3 to 12.5%. The physical properties were determined by studying the behavior of the body before and after firing, showed low bending strength values (22.5 kg/cm²) after drying, and (about 247 kg/cm²) after firing at 1180°C, water absorption value was about 10%. The cubic thermal expansion coefficient at 1140°C is 213.77 x 10-7 /°C. All of the presented results confirm the suitability of this clay for the ceramic industry.Keywords: anti-Lebanon, Damascus, ceramic, clay, thermal analysis, thermal expansion coefficient
Procedia PDF Downloads 18730173 Chemical-Induced Mutation for Development of Resistance in Banana cv. Nanjangud rasabale
Authors: H. Kishor, G. Prabhuling, D. S. Ambika, D. P. Prakash
Abstract:
The chemical mutagens have become important tool to enhance agronomic traits of banana crop. It is being used to develop fusarium resistance lines in various susceptible banana cultivars. There are several mutagens like EMS and NaN3 available for banana crop improvement and each mutagen has its own important role as positive or negative effects on growth and development of banana plants. Explants from shoot tip culture were treated with various EMS (0.30, 0.60, 0.90 and 0.12%) and NaN3 (0.01, 0.02 and 0.03%) concentrations. The putative mutants obtained after in vitro rooting were subjected for artificial inoculation of Fusarium oxysporum f.sp. cubense. Screening putative mutants resistance to Panama disease was carried out by using syringe method of inoculation. It was observed that, EMS treated mutants were more susceptible compared to NaN3 treatment. Among the NaN3 doses 0.01% found to produce 3 resistant lines during preliminary screening under greenhouse conditions.Keywords: Nanjangud rasabale, EMS, NaN3, putative mutants
Procedia PDF Downloads 18730172 Facile, Cost Effective and Green Synthesis of Graphene in Alkaline Aqueous Solution
Authors: Illyas Isa, Siti Nur Akmar Mohd Yazid, Norhayati Hashim
Abstract:
We report a simple, green and cost effective synthesis of graphene via chemical reduction of graphene oxide in alkaline aqueous solution. Extensive characterizations have been studied to confirm the formation of graphene in sodium carbonate solution. Cyclic voltammetry was used to study the electrochemical properties of the prepared graphene-modified glassy carbon electrode using potassium ferricyanide as a redox probe. Based on the result, with the addition of graphene to the glassy carbon electrode the current flow increases and the peak also broadens as compared to graphite and graphene oxide. This method is fast, cost effective, and green as nontoxic solvents are used which will not result in contamination of the products. Thus, this method can serve for the preparation of graphene which can be effectively used in sensors, electronic devices and supercapacitors.Keywords: chemical reduction, electrochemical, graphene, green synthesis
Procedia PDF Downloads 33730171 Anaerobic Fermentation Process for Production of Biohydrogen from Pretreated Fruit Wastes
Authors: A. K. R. Gobinath, He Jianzhong, Kun-Lin Yang
Abstract:
Fruit waste was used as a feedstock to produce biohydrogen in this study. Fruit waste used in this study was collected from several fruit juice stalls in Singapore. Based on our observation, the fruit waste contained 35-40% orange, 10-20% watermelon, 10-15% apple, 10-15% pineapple, 1-5% mango. They were mixed with water (1:1 ratio based on wet biomass) and blended to attain homogenous mixtures. Later, fruit waste was subjected to one of the following pretreatments: autoclave (121 °C for 20min), microwave (20min) or both. After pretreatment, the total sugar concentration in the hydrolysate was high (>12g/l) when both autoclave and microwave were applied. In contrast, samples without pretreatment measured only less than 2g/l of sugar. While using these hydrolysates as carbon sources, Clostridium strain BOH3 produces 2526-3126 ml/l of hydrogen after 72h of anaerobic fermentation. The hydrogen yield was 295-300 ml/g of sugar which is close to the hydrogen yields from glucose (338 ml/gm) and xylose (330 ml/gm). Our HPLC analysis showed that fruit waste hydrolysate contained oligosugars (25-27%), sucrose (18-23%), fructose (25-30%), glucose (10-15%) and mannose (2-5%). Additionally, pretreatment led to the release of free amino acids (160-512 mg/l), calcium (7.8-12.9 ppm), magnesium (4.32-6.55 ppm), potassium (5.4-65.1 ppm) and sodium (0.4-0.5 ppm) into the hydrolysate. These nutrients were able to support strain-BOH3 to grow and produce high level of hydrogen. Notably, unlike other pretreatment methods (with strong acids and bases), these pretreatment techniques did not generate any inhibitors (e.g. furfural and phenolic acids) to suppress the hydrogen production. Interestingly, strain BOH3 can also ferment pretreated fruit waste slurry and produce hydrogen with a high yield (156-343 ml/gm fruit waste). While fermenting pretreated fruit waste slurry, strain-BOH3 excreted several saccharolytic enzymes majorly xylanase (1.84U/ml), amylase (1.10U/ml), pectinase (0.36U/ml) and cellulase (0.43U/ml). Due to expressions of these enzymes, strain BOH3 was able to directly utilize pretreated fruit waste hydrolysate and produces high-level of hydrogen.Keywords: autoclave pretreatment, biohydrogen production, clostridial fermentation, fruit waste, and microwave pretreatment
Procedia PDF Downloads 53530170 Development and Characterization of a Fluorinated-Ethylene-Propylene (FEP) Polymer Coating on Brass Faucets
Authors: S. Zouari, H. Ghorbel, H. Liao, R. Elleuch
Abstract:
Research is increasingly moving towards the use of surface treatment processes to limit environmental effects. Electrolytic plating has traditionally been seen as a way to protect brass products, especially faucets, from mechanical and chemical damage. However, this method was not effective industrially, economically and ecologically. The aim of this work is to develop non-usual polymer coatings for brass faucets in order to improve the performance of brass and to replace electrolytic chromium coatings, thereby reducing environmental impact. Fluorinated-Ethylene-Propylene polymer (FEP) was chosen for its excellent mechanical and chemical properties and its good environmental performance. This coating was developed by spraying (painting) process onto brass substrates. The coatings obtained were characterized using a scanning electron microscope to evaluate the morphology of the deposits and their porosity rate. Grid adhesion, surface energy and corrosion tests (salt spray) were also performed to evaluate the mechanical and chemical behavior of these coatings properly. The results show that the deposits obtained have a homogeneous microstructure with a very low porosity rate. The results of the grid adhesion test prove the conformity of the test according to the NF077 standard. The coatings have a hydrophobic character following the low values of surface energy obtained and a very good resistance to corrosion. These results are interesting and may represent real technological issues in the industrial field.Keywords: FEP coatings, spraying process, brass, adhesion, surface energy, corrosion resistance
Procedia PDF Downloads 14130169 Development of Polymeric Fluorescence Sensor for the Determination of Bisphenol-A
Authors: Neşe Taşci, Soner Çubuk, Ece Kök Yetimoğlu, M. Vezir Kahraman
Abstract:
Bisphenol-A (BPA), 2,2-bis(4-hydroxyphenly)propane, is one of the highest usage volume chemicals in the world. Studies showed that BPA maybe has negative effects on the central nervous system, immune and endocrine systems. Several of analytical methods for the analysis of BPA have been reported including electrochemical processes, chemical oxidation, ozonization, spectrophotometric, chromatographic techniques. Compared with other conventional analytical techniques, optic sensors are reliable, providing quick results, low cost, easy to use, stands out as a much more advantageous method because of the high precision and sensitivity. In this work, a new photocured polymeric fluorescence sensor was prepared and characterized for Bisphenol-A (BPA) analysis. Characterization of the membrane was carried out by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Scanning Electron Microscope (SEM) techniques. The response characteristics of the sensor including dynamic range, pH effect and response time were systematically investigated. Acknowledgment: This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 115Y469.Keywords: bisphenol-a, fluorescence, photopolymerization, polymeric sensor
Procedia PDF Downloads 23630168 Evaluation of Antioxidant and Antimicrobial Potential of Rutin in Cheddar Cheese
Authors: Haroon Jamshaid Qazi, Namrah Wahid, Sanaullah Iqbal, Raheel Suleman
Abstract:
The aim of the current study was to evaluate the antioxidant and antimicrobial potential of Rutin in cheddar cheese. The study was conducted by adding the Rutin in the cheddar cheese in different concentrations according to experimental design, i.e., T1 (20 ppm Rutin), T2 (40 ppm Rutin), T3 (60 ppm Rutin), T4 (80 ppm Rutin). BHT was taken as a positive control at a concentration of 200 ppm, and negative control had neither Rutin nor BHT. The ripening time for cheeses was 90 days at a temperature of 8°C. The results of the various antioxidants assays (Total phenolic contents (TPC) and Antioxidant activity (AA), with storage stability tests (Anisidine value (AV) and Thiobarbituric acid value (TBARS)) performed during different storage intervals 0, 30, 60 and 90 days exhibited that AA in linoleic acid and TPC were significantly (p < 0.05) increased by the addition of rutin to cheese at all concentrations. Moreover, significant reduction in the TBARS values was also observed during the storage period. Rutin also showed a good potential to inhibit the microbial proliferation in the treated samples of cheese. There was a significant decreasing trend seen in total plate count and yeasts and molds count. The sensorial attributes i.e., color, flavor, odor and overall acceptability were increased after adding Rutin to cheddar cheese.Keywords: cheddar cheese, Rutin, antioxidant, antimicrobial
Procedia PDF Downloads 185