Search results for: artificial stock market
4849 Practical Application of Business Processes Simulation
Authors: M. Gregušová, V. Schindlerová, I. Šajdlerová, P. Mohyla, J. Kedroň
Abstract:
Company managers are always looking for more and more opportunities to succeed in today's fiercely competitive market. Maintain your place among the successful companies on the market today or come up with a revolutionary business idea; it is much more difficult than before. Each new or improved method, tools, or the approach that can improve the functioning of business processes or even the entire system is worth checking and verification. The use of simulation in the design of manufacturing systems and their management in practice is one of the ways without increased risk to find the optimal parameters of manufacturing processes and systems. The paper presents an example of using simulation to solve the bottleneck problem in concrete company.Keywords: practical applications, business processes, systems, simulation
Procedia PDF Downloads 6374848 Emerging Technology for Business Intelligence Applications
Authors: Hsien-Tsen Wang
Abstract:
Business Intelligence (BI) has long helped organizations make informed decisions based on data-driven insights and gain competitive advantages in the marketplace. In the past two decades, businesses witnessed not only the dramatically increasing volume and heterogeneity of business data but also the emergence of new technologies, such as Artificial Intelligence (AI), Semantic Web (SW), Cloud Computing, and Big Data. It is plausible that the convergence of these technologies would bring more value out of business data by establishing linked data frameworks and connecting in ways that enable advanced analytics and improved data utilization. In this paper, we first review and summarize current BI applications and methodology. Emerging technologies that can be integrated into BI applications are then discussed. Finally, we conclude with a proposed synergy framework that aims at achieving a more flexible, scalable, and intelligent BI solution.Keywords: business intelligence, artificial intelligence, semantic web, big data, cloud computing
Procedia PDF Downloads 944847 Developing an AI-Driven Application for Real-Time Emotion Recognition from Human Vocal Patterns
Authors: Sayor Ajfar Aaron, Mushfiqur Rahman, Sajjat Hossain Abir, Ashif Newaz
Abstract:
This study delves into the development of an artificial intelligence application designed for real-time emotion recognition from human vocal patterns. Utilizing advanced machine learning algorithms, including deep learning and neural networks, the paper highlights both the technical challenges and potential opportunities in accurately interpreting emotional cues from speech. Key findings demonstrate the critical role of diverse training datasets and the impact of ambient noise on recognition accuracy, offering insights into future directions for improving robustness and applicability in real-world scenarios.Keywords: artificial intelligence, convolutional neural network, emotion recognition, vocal patterns
Procedia PDF Downloads 524846 Synergizing Additive Manufacturing and Artificial Intelligence: Analyzing and Predicting the Mechanical Behavior of 3D-Printed CF-PETG Composites
Authors: Sirine Sayed, Mostapha Tarfaoui, Abdelmalek Toumi, Youssef Qarssis, Mohamed Daly, Chokri Bouraoui
Abstract:
This paper delves into the combination of additive manufacturing (AM) and artificial intelligence (AI) to solve challenges related to the mechanical behavior of AM-produced parts. The article highlights the fundamentals and benefits of additive manufacturing, including creating complex geometries, optimizing material use, and streamlining manufacturing processes. The paper also addresses the challenges associated with additive manufacturing, such as ensuring stable mechanical performance and material properties. The role of AI in improving the static behavior of AM-produced parts, including machine learning, especially the neural network, is to make regression models to analyze the large amounts of data generated during experimental tests. It investigates the potential synergies between AM and AI to achieve enhanced functions and personalized mechanical properties. The mechanical behavior of parts produced using additive manufacturing methods can be further improved using design optimization, structural analysis, and AI-based adaptive manufacturing. The article concludes by emphasizing the importance of integrating AM and AI to enhance mechanical operations, increase reliability, and perform advanced functions, paving the way for innovative applications in different fields.Keywords: additive manufacturing, mechanical behavior, artificial intelligence, machine learning, neural networks, reliability, advanced functionalities
Procedia PDF Downloads 104845 Synthesizing an Artificial Loess for Geotechnical Investigations of Collapsible Soil Behavior
Authors: Hamed Sadeghi, Pouya A. Panahi, Hamed Nasiri, Mohammad Sadeghi
Abstract:
Collapsible soils like loess comprise an important category of problematic soils for construction purposes and sustainable development. As a result, research on both geological and geotechnical aspects of this type of soil have been in progress for decades. However, considerable natural variability in physical properties of in-situ loess strata even in a single block sample challenges the fundamental laboratory investigations. The reason behind this is that it is somehow impossible to remove the effect of a specific factor like void ratio from fair comparisons to come with a reliable conclusion. In order to cope with this limitation, two types of artificially made dispersive and calcareous loess are introduced which can be easily reproduced in any soil mechanics laboratory provided that all its compositions are known and controlled. The collapse potential is explored for a variety of soil water salinity and lime content and comparisons are made against the natural soil behavior. Trends are reported for the influence of pore water salinity on collapse potential under different osmotic flow conditions. The most important advantage of artificial loess is the ease of controlling cementing agent content like calcite or dispersive potential for studying their influence on mechanical soil behavior.Keywords: artificial loess, unsaturated soils, collapse potential, dispersive clays, laboratory tests
Procedia PDF Downloads 1964844 Estimating Anthropometric Dimensions for Saudi Males Using Artificial Neural Networks
Authors: Waleed Basuliman
Abstract:
Anthropometric dimensions are considered one of the important factors when designing human-machine systems. In this study, the estimation of anthropometric dimensions has been improved by using Artificial Neural Network (ANN) model that is able to predict the anthropometric measurements of Saudi males in Riyadh City. A total of 1427 Saudi males aged 6 to 60 years participated in measuring 20 anthropometric dimensions. These anthropometric measurements are considered important for designing the work and life applications in Saudi Arabia. The data were collected during eight months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining 15 dimensions were set to be the measured variables (Model’s outcomes). The hidden layers varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was able to estimate the body dimensions of Saudi male population in Riyadh City. The network's mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found to be 0.0348 and 3.225, respectively. These results were found less, and then better, than the errors found in the literature. Finally, the accuracy of the developed neural network was evaluated by comparing the predicted outcomes with regression model. The ANN model showed higher coefficient of determination (R2) between the predicted and actual dimensions than the regression model.Keywords: artificial neural network, anthropometric measurements, back-propagation
Procedia PDF Downloads 4874843 Experimental Assessment of Artificial Flavors Production
Authors: M. Unis, S. Turky, A. Elalem, A. Meshrghi
Abstract:
The Esterification kinetics of acetic acid with isopropnol in the presence of sulfuric acid as a homogenous catalyst was studied with isothermal batch experiments at 60,70 and 80°C and at a different molar ratio of isopropnol to acetic acid. Investigation of kinetics of the reaction indicated that the low of molar ratio is favored for esterification reaction, this is due to the reaction is catalyzed by acid. The maximum conversion, approximately 60.6% was obtained at 80°C for molar ratio of 1:3 acid : alcohol. It was found that increasing temperature of the reaction, increases the rate constant and conversion at a certain mole ratio, that is due to the esterification is exothermic. The homogenous reaction has been described with simple power-law model. The chemical equilibrium combustion calculated from the kinetic model in agreement with the measured chemical equilibrium.Keywords: artificial flavors, esterification, chemical equilibria, isothermal
Procedia PDF Downloads 3354842 Islamic Banks and the Most Important Contemporary Challenges
Authors: Mahmood Mohammed Abdulsattar Aljumaili
Abstract:
Praise be to Allah and peace and blessings be upon the Messenger of Allah. Islamic banks have not only made a lot of great achievements in a short period, but they imposed themselves in the global market, not to mention the transformation of some conventional interest-based banks to Islamic banks to the large demand on them, this transformation has pushed the Dow Jones Global Foundation to develop a new economic indicator released it (the Dow Jones Islamic market) for those who wish to invest in Islamic financial institutions. The success of Islamic financial institutions today face significant and serious challenges, that embody the serious consequences created by the current events on Islamic banking industry. This modest study, deals with these serious challenges facing the Islamic banking industry, and reflected on the success recorded in the previous period. The study deals with four main topics: The emergence of Islamic banks, the goals of Islamic banks, International challenges facing Islamic banks, internal challenges facing Islamic banks, and finally it touches on, (Basel 1-2) Agreement and its implications for Islamic banks.Keywords: Islamic banks, Basel 1-2 agreement, most important contemporary challenges, islamic banking industry, Dow Jones Islamic market
Procedia PDF Downloads 5004841 Optimizing Residential Housing Renovation Strategies at Territorial Scale: A Data Driven Approach and Insights from the French Context
Authors: Rit M., Girard R., Villot J., Thorel M.
Abstract:
In a scenario of extensive residential housing renovation, stakeholders need models that support decision-making through a deep understanding of the existing building stock and accurate energy demand simulations. To address this need, we have modified an optimization model using open data that enables the study of renovation strategies at both territorial and national scales. This approach provides (1) a definition of a strategy to simplify decision trees from theoretical combinations, (2) input to decision makers on real-world renovation constraints, (3) more reliable identification of energy-saving measures (changes in technology or behaviour), and (4) discrepancies between currently planned and actually achieved strategies. The main contribution of the studies described in this document is the geographic scale: all residential buildings in the areas of interest were modeled and simulated using national data (geometries and attributes). These buildings were then renovated, when necessary, in accordance with the environmental objectives, taking into account the constraints applicable to each territory (number of renovations per year) or at the national level (renovation of thermal deficiencies (Energy Performance Certificates F&G)). This differs from traditional approaches that focus only on a few buildings or archetypes. This model can also be used to analyze the evolution of a building stock as a whole, as it can take into account both the construction of new buildings and their demolition or sale. Using specific case studies of French territories, this paper highlights a significant discrepancy between the strategies currently advocated by decision-makers and those proposed by our optimization model. This discrepancy is particularly evident in critical metrics such as the relationship between the number of renovations per year and achievable climate targets or the financial support currently available to households and the remaining costs. In addition, users are free to seek optimizations for their building stock across a range of different metrics (e.g., financial, energy, environmental, or life cycle analysis). These results are a clear call to re-evaluate existing renovation strategies and take a more nuanced and customized approach. As the climate crisis moves inexorably forward, harnessing the potential of advanced technologies and data-driven methodologies is imperative.Keywords: residential housing renovation, MILP, energy demand simulations, data-driven methodology
Procedia PDF Downloads 684840 Adhering to the Traditional Standard of Originality in the Era of Artificial Intelligence Copyright Protection
Authors: Xiaochen Mu
Abstract:
Whether in common law countries that adhere to the "commercial copyright theory" or in civil law countries that center around "author's rights," the standards for judging originality have undergone continuous adjustments in response to the development of information technology. The adherence to originality standards does not arbitrarily dictate that all types of works be judged according to a single standard of originality, nor does it rigidly ignore the changes in creative methods and dissemination models brought about by technology. Adjustments and interpretations should be allowed based on the different forms of expression of works. Appropriate adjustments and interpretations are our response to technological advancements. However, what should be upheld are the principles and bottom lines of these adjustments and interpretations, namely the legislative intent and purpose of copyright law, which are to encourage the creation and dissemination of outstanding cultural works and to promote the flourishing of culture.Keywords: generative artificial intelligence, originality, works, copyright
Procedia PDF Downloads 424839 CSR Reporting, State Ownership, and Corporate Performance in China: Proof from Longitudinal Data of Publicly Traded Enterprises from 2006 to 2020
Authors: Wanda Luen-Wun Siu, Xiaowen Zhang
Abstract:
This paper offered the primary methodical proof on how CSR reporting related to enterprise earnings in listed firms in China in light of most evidence focusing on cross-sectional data or data in a short span of time. Using full economic and business panel data on China’s publicly listed enterprise from 2006 to 2020 over two decades in the China Stock Market and Accounting Research database, we found initial evidence of significant direct relations between CSR reporting and firm corporate performance in both state-owned and privately owned firms over this period, supporting the stakeholder theory. Results also revealed that state-owned enterprises performed as well as private enterprises in the current period. But private enterprises performed better than state-owned enterprises in the subsequent years. Moreover, the release of social responsibility reports had a more significant impact on the financial performance of state-owned and private enterprises in the current period than in the subsequent periods. Specifically, CSR release was not significantly associated with the financial performance of state-owned enterprises on the lag of the first, second, and third periods. But it had an impact on the lag of the first, second, and third periods among private enterprises. Such findings suggested that CSR reporting helped improve the corporate financial performance of state-owned and private enterprises in the current period, but this kind of effect was more significant among private enterprises in the lag periods.Keywords: China’s listed firms, CSR reporting, financial performance, panel analysis
Procedia PDF Downloads 1664838 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks
Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton
Abstract:
Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.Keywords: modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition
Procedia PDF Downloads 1564837 AI Ethical Values as Dependent on the Role and Perspective of the Ethical AI Code Founder- A Mapping Review
Authors: Moshe Davidian, Shlomo Mark, Yotam Lurie
Abstract:
With the rapid development of technology and the concomitant growth in the capability of Artificial Intelligence (AI) systems and their power, the ethical challenges involved in these systems are also evolving and increasing. In recent years, various organizations, including governments, international institutions, professional societies, civic organizations, and commercial companies, have been choosing to address these various challenges by publishing ethical codes for AI systems. However, despite the apparent agreement that AI should be “ethical,” there is debate about the definition of “ethical artificial intelligence.” This study investigates the various AI ethical codes and their key ethical values. From the vast collection of codes that exist, it analyzes and compares 25 ethical codes that were found to be representative of different types of organizations. In addition, as part of its literature review, the study overviews data collected in three recent reviews of AI codes. The results of the analyses demonstrate a convergence around seven key ethical values. However, the key finding is that the different AI ethical codes eventually reflect the type of organization that designed the code; i.e., the organizations’ role as regulator, user, or developer affects the view of what ethical AI is. The results show a relationship between the organization’s role and the dominant values in its code. The main contribution of this study is the development of a list of the key values for all AI systems and specific values that need to impact the development and design of AI systems, but also allowing for differences according to the organization for which the system is being developed. This will allow an analysis of AI values in relation to stakeholders.Keywords: artificial intelligence, ethical codes, principles, values
Procedia PDF Downloads 1074836 Ecological and Health Risk Assessment of the Heavy Metal Contaminant in Surface Soils around Effurun Market
Authors: A. O. Ogunkeyede, D. Amuchi, A. A. Adebayo
Abstract:
Heavy metal contaminations in soil have received great attention. Anthropogenic activities such as vehicular emission, industrial activities and constructions have resulted in elevated concentration of heavy metals in the surface soils. The metal particles can be free from the surface soil when they are disturbed and re-entrained in air, which necessitated the need to investigate surface soil at market environment where adults and children are present on daily basis. This study assesses concentration of heavy metal pollution, ecological and health risk factors in surface soil at Effurun market. 8 samples were collected at household material (EMH), fish (EMFs), fish and commodities (EMF-C), Abattoir (EMA 1 & 2), fruit sections (EMF 1 & 2) and lastly main road (EMMR). The samples were digested and analyzed in triplicate for contents of Lead (Pb), Nickel (Ni), Cadmium (Cd) and Copper (Cu). The mean concentration of the Pb mg/kg (112.27 ± 1.12) and Cu mg/kg (156.14 ± 1.10) were highest in the abattoir section (EMA 1). The mean concentrations of the heavy metal were then used to calculate the ecological and health risk for people within the market. Pb contamination at EMMR, EMF 2, EMFs were moderately while Pb shows considerable contamination at EMH, EMA 1, EMA 2 and EMF-C sections of the Effurun market. The ecological risk factor varies between low to moderate pollution for Pb and EMA 1 has the highest potential ecological risk that falls within moderate pollution. The hazard quotient results show that dermal exposure pathway is the possible means of heavy metal exposure to the traders while ingestion is the least sources of exposure to adult. The ingestion suggested that children around the EMA 1 have the highest possible exposure to children due to hand-to-mouth and object-to-mouth behaviour. The results further show that adults at the EMA1 will have the highest exposure to Pb due to inhalation during burning of cow with tyre that contained Pb and Cu. The carcinogenic risk values of most sections were higher than acceptable values, while Ni at EMMR, EMF 1 & 2, EMFs and EMF-C sections that were below the acceptable values. The cancer risk for inhalation exposure pathway for Pb (1.01E+17) shows a significant level of contamination than all the other sections of the market. It suggested that the people working at the Abattoir were very prone to cancer risk.Keywords: carcinogenic, ecological, heavy metal, risk
Procedia PDF Downloads 1444835 Hydraulic Resources Management under Imperfect Competition with Thermal Plants in the Wholesale Electricity Market
Authors: Abdessalem Abbassi, Ahlem Dakhlaoui, Lota D. Tamini
Abstract:
In this paper, we analyze infinite discrete-time games between hydraulic and thermal power operators in the wholesale electricity market under Cournot competition. We consider a deregulated electrical industry where certain demand is satisfied by hydraulic and thermal technologies. The hydraulic operator decides the production in each season of each period that maximizes the sum of expected profits from power generation with respect to the stochastic dynamic constraint on the water stored in the dam, the environmental constraint and the non-negative output constraint. In contrast, the thermal plant is operated with quadratic cost function, with respect to the capacity production constraint and the non-negativity output constraint. We show that under imperfect competition, the hydraulic operator has a strategic storage of water in the peak season. Then, we quantify the strategic inter-annual and intra-annual water transfer and compare the numerical results. Finally, we show that the thermal operator can restrict the hydraulic output without compensation.Keywords: asymmetric risk aversion, electricity wholesale market, hydropower dams, imperfect competition
Procedia PDF Downloads 3594834 The 'Saudade' Market and the Development of Tourism in the Azores: An Analysis of Travel Preferences of Azorean Emigrants
Authors: Silvia Rocha, Flavio Tiago, Maria Teresa Tiago, Sandra Faria, Joao Couto
Abstract:
The Azores have a tourist potential that has been developing, especially after an increase in promotion and the liberalization of airspace. However, there is still a gap with regard to the understanding of tourists from North America. Previous studies referred to the existence of two basic types of touristic flows: Emigrants and locals. Looking to help fill this gap, a study of travelers from North America was conducted. Using cluster analysis, it was determined the existence of three segments: nostalgic, regular and frequent. The recognition of these three segments is important to determine the necessary adjustments in tourist offerings to this market.Keywords: tourism, diaspora, nostalgia, culture
Procedia PDF Downloads 1934833 Carbon Sequestering and Structural Capabilities of Eucalyptus Cloeziana
Authors: Holly Sandberg, Christina McCoy, Khaled Mansy
Abstract:
Eucalyptus Cloeziana, commonly known as Gympie Messmate, is a fast-growing hardwood native to Australia. Its quick growth makes it advantageous for carbon sequestering, while its strength class lends itself to structural applications. Market research shows that the demand for timber is growing, especially mass timber. An environmental product declaration, or EPD, for eucalyptus Cloeziana in the Australian market has been evaluated and compared to the EPD’s of steel and Douglas fir of the same region. An EPD follows a product throughout its life cycle, stating values for global warming potential, ozone depletion potential, acidification potential, eutrophication potential, photochemical ozone creation potential, and abiotic depletion potential. This paper highlights the market potential, as well as the environmental benefits and challenges to using Gympie Messmate as a structural building material. In addition, a case study is performed to compare steel, Douglas fir, and eucalyptus in terms of embodied carbon and structural weight within a single structural bay. Comparisons among the three materials highlight both the differences in structural capabilities as well as environmental impact.Keywords: eucalyptus, timber, construction, structural, material
Procedia PDF Downloads 1844832 Studying the Value-Added Chain for the Fish Distribution Process at Quang Binh Fishing Port in Vietnam
Authors: Van Chung Nguyen
Abstract:
The purpose of this study is to study the current status of the value chain for fish distribution at Quang Binh Fishing Port with 360 research samples in which the research subjects are fishermen, traders, retailers, and businesses. The research uses the approach of applying the value chain theoretical framework of Kaplinsky and Morris to quantify and describe market channels and actors participating in the value chain and analyze the value-added process of these companies according to market channels. The analysis results show that fishermen directly catch fish with high economic efficiency, but processing enterprises and, especially retailers, are the agents to obtain higher added value. Processing enterprises play a role that is not really clear due to outdated processing technology; in contrast, retailers have the highest added value. This shows that the added value of the fish supply chain at Quang Binh fishing port is still limited, leading to low output quality. Therefore, the selling price of fish to the market is still high compared to the abundant fish resources, leading to low consumption and limiting exports due to the quality of processing enterprises. This reduces demand and fishing capacity, and productivity is lower than potential. To improve the fish value chain at fishing ports, it is necessary to focus on improving product quality, strengthening linkages between actors, building brands and product consumption markets at the same time, improving the capacity of export processing enterprises.Keywords: Quang Binh fishing port, value chain, market, distributions channel
Procedia PDF Downloads 734831 Exploring Public Opinions Toward the Use of Generative Artificial Intelligence Chatbot in Higher Education: An Insight from Topic Modelling and Sentiment Analysis
Authors: Samer Muthana Sarsam, Abdul Samad Shibghatullah, Chit Su Mon, Abd Aziz Alias, Hosam Al-Samarraie
Abstract:
Generative Artificial Intelligence chatbots (GAI chatbots) have emerged as promising tools in various domains, including higher education. However, their specific role within the educational context and the level of legal support for their implementation remain unclear. Therefore, this study aims to investigate the role of Bard, a newly developed GAI chatbot, in higher education. To achieve this objective, English tweets were collected from Twitter's free streaming Application Programming Interface (API). The Latent Dirichlet Allocation (LDA) algorithm was applied to extract latent topics from the collected tweets. User sentiments, including disgust, surprise, sadness, anger, fear, joy, anticipation, and trust, as well as positive and negative sentiments, were extracted using the NRC Affect Intensity Lexicon and SentiStrength tools. This study explored the benefits, challenges, and future implications of integrating GAI chatbots in higher education. The findings shed light on the potential power of such tools, exemplified by Bard, in enhancing the learning process and providing support to students throughout their educational journey.Keywords: generative artificial intelligence chatbots, bard, higher education, topic modelling, sentiment analysis
Procedia PDF Downloads 834830 Employing Bayesian Artificial Neural Network for Evaluation of Cold Rolling Force
Authors: P. Kooche Baghy, S. Eskandari, E.javanmard
Abstract:
Neural network has been used as a predictive means of cold rolling force in this dissertation. Thus, imposed average force on rollers as a mere input and five pertaining parameters to its as a outputs are regarded. According to our study, feed-forward multilayer perceptron network has been selected. Besides, Bayesian algorithm based on the feed-forward back propagation method has been selected due to noisy data. Further, 470 out of 585 all tests were used for network learning and others (115 tests) were considered as assessment criteria. Eventually, by 30 times running the MATLAB software, mean error was obtained 3.84 percent as a criteria of network learning. As a consequence, this the mentioned error on par with other approaches such as numerical and empirical methods is acceptable admittedly.Keywords: artificial neural network, Bayesian, cold rolling, force evaluation
Procedia PDF Downloads 4434829 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment
Authors: P. K. Singhal, R. Naresh, V. Sharma
Abstract:
This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.Keywords: artificial bee colony algorithm, economic dispatch, unit commitment, wind power
Procedia PDF Downloads 3754828 An Overview of Risk Types and Risk Management Strategies to Improve Financial Performance
Authors: Azar Baghtaghi
Abstract:
Financial risk management is critically important as it enables companies to maintain stability and profitability amidst market fluctuations and unexpected events. It involves the precise identification of risks that could impact investments, assets, and potential revenues. By implementing effective risk management strategies, companies can insure themselves against adverse market changes and prevent potential losses. In today's era, where markets are highly complex and influenced by various factors such as macroeconomic policies, exchange rate fluctuations, and natural disasters, the need for meticulous planning to cope with these uncertainties is more pronounced. Ultimately, financial risk management means being prepared for the future and the ability to sustain business in changing environments. A company capable of managing its risks not only achieves sustainable profitability but also gains the confidence of shareholders, investors, and business partners, enhancing its competitive position in the market. In this article, the types of financial risk and risk management strategies for improving financial performance were investigated. By identifying the risks stated in this article and their evaluation techniques, it is possible to improve the organization's financial performance.Keywords: strategy, risk, risk management, financial performance.
Procedia PDF Downloads 94827 Associated Map and Inter-Purchase Time Model for Multiple-Category Products
Authors: Ching-I Chen
Abstract:
The continued rise of e-commerce is the main driver of the rapid growth of global online purchase. Consumers can nearly buy everything they want at one occasion through online shopping. The purchase behavior models which focus on single product category are insufficient to describe online shopping behavior. Therefore, analysis of multi-category purchase gets more and more popular. For example, market basket analysis explores customers’ buying tendency of the association between product categories. The information derived from market basket analysis facilitates to make cross-selling strategies and product recommendation system. To detect the association between different product categories, we use the market basket analysis with the multidimensional scaling technique to build an associated map which describes how likely multiple product categories are bought at the same time. Besides, we also build an inter-purchase time model for associated products to describe how likely a product will be bought after its associated product is bought. We classify inter-purchase time behaviors of multi-category products into nine types, and use a mixture regression model to integrate those behaviors under our assumptions of purchase sequences. Our sample data is from comScore which provides a panelist-label database that captures detailed browsing and buying behavior of internet users across the United States. Finding the inter-purchase time from books to movie is shorter than the inter-purchase time from movies to books. According to the model analysis and empirical results, this research finally proposes the applications and recommendations in the management.Keywords: multiple-category purchase behavior, inter-purchase time, market basket analysis, e-commerce
Procedia PDF Downloads 3684826 Applying And Connecting The Microgrid Of Artificial Intelligence In The Form Of A Spiral Model To Optimize Renewable Energy Sources
Authors: PR
Abstract:
Renewable energy is a sustainable substitute to fossil fuels, which are depleting and attributing to global warming as well as greenhouse gas emissions. Renewable energy innovations including solar, wind, and geothermal have grown significantly and play a critical role in meeting energy demands recently. Consequently, Artificial Intelligence (AI) could further enhance the benefits of renewable energy systems. The combination of renewable technologies and AI could facilitate the development of smart grids that can better manage energy distribution and storage. AI thus has the potential to optimize the efficiency and reliability of renewable energy systems, reduce costs, and improve their overall performance. The conventional methods of using smart micro-grids are to connect these micro-grids in series or parallel or a combination of series and parallel. Each of these methods has its advantages and disadvantages. In this study, the proposal of using the method of connecting microgrids in a spiral manner is investigated. One of the important reasons for choosing this type of structure is the two-way reinforcement and exchange of each inner layer with the outer and upstream layer. With this model, we have the ability to increase energy from a small amount to a significant amount based on exponential functions. The geometry used to close the smart microgrids is based on nature.This study provides an overview of the applications of algorithms and models of AI as well as its advantages and challenges in renewable energy systems.Keywords: artificial intelligence, renewable energy sources, spiral model, optimize
Procedia PDF Downloads 84825 Predicting Survival in Cancer: How Cox Regression Model Compares to Artifial Neural Networks?
Authors: Dalia Rimawi, Walid Salameh, Amal Al-Omari, Hadeel AbdelKhaleq
Abstract:
Predication of Survival time of patients with cancer, is a core factor that influences oncologist decisions in different aspects; such as offered treatment plans, patients’ quality of life and medications development. For a long time proportional hazards Cox regression (ph. Cox) was and still the most well-known statistical method to predict survival outcome. But due to the revolution of data sciences; new predication models were employed and proved to be more flexible and provided higher accuracy in that type of studies. Artificial neural network is one of those models that is suitable to handle time to event predication. In this study we aim to compare ph Cox regression with artificial neural network method according to data handling and Accuracy of each model.Keywords: Cox regression, neural networks, survival, cancer.
Procedia PDF Downloads 2004824 Using Swarm Intelligence to Forecast Outcomes of English Premier League Matches
Authors: Hans Schumann, Colin Domnauer, Louis Rosenberg
Abstract:
In this study, machine learning techniques were deployed on real-time human swarm data to forecast the likelihood of outcomes for English Premier League matches in the 2020/21 season. These techniques included ensemble models in combination with neural networks and were tested against an industry standard of Vegas Oddsmakers. Predictions made from the collective intelligence of human swarm participants managed to achieve a positive return on investment over a full season on matches, empirically proving the usefulness of a new artificial intelligence valuing human instinct and intelligence.Keywords: artificial intelligence, data science, English Premier League, human swarming, machine learning, sports betting, swarm intelligence
Procedia PDF Downloads 2134823 Imputing the Minimum Social Value of Public Healthcare: A General Equilibrium Model of Israel
Authors: Erez Yerushalmi, Sani Ziv
Abstract:
The rising demand for healthcare services, without a corresponding rise in public supply, led to a debate on whether to increase private healthcare provision - especially in hospital services and second-tier healthcare. Proponents for increasing private healthcare highlight gains in efficiency, while opponents its risk to social welfare. None, however, provide a measure of the social value and its impact on the economy in terms of a monetary value. In this paper, we impute a minimum social value of public healthcare that corresponds to indifference between gains in efficiency, with losses to social welfare. Our approach resembles contingent valuation methods that introduce a hypothetical market for non-commodities, but is different from them because we use numerical simulation techniques to exploit certain market failure conditions. In this paper, we develop a general equilibrium model that distinguishes between public-private healthcare services and public-private financing. Furthermore, the social value is modelled as a by product of healthcare services. The model is then calibrated to our unique health focused Social Accounting Matrix of Israel, and simulates the introduction of a hypothetical health-labour market - given that it is heavily regulated in the baseline (i.e., the true situation in Israel today). For baseline parameters, we estimate the minimum social value at around 18% public healthcare financing. The intuition is that the gain in economic welfare from improved efficiency, is offset by the loss in social welfare due to a reduction in available social value. We furthermore simulate a deregulated healthcare scenario that internalizes the imputed value of social value and searches for the optimal weight of public and private healthcare provision.Keywords: contingent valuation method (CVM), general equilibrium model, hypothetical market, private-public healthcare, social value of public healthcare
Procedia PDF Downloads 1464822 Design of a Dietetic Food: Case of Lebanese Kishk
Authors: Henri El Zakhem, Dona Shalhoub, Elias Atallah, Jessica Koura
Abstract:
Due to the increase of demand on dietetic food and the need for more types of diet food, the production of dietetic food is increasing and improving. This demand on dietetic food has triggered us to study the market in which we found that Kishk (Lebanese dairy product) diet is not available. Production of a low fat product which is diet Kishk was our concern. A strategy was followed to choose the right idea that will satisfy the need of the market. The whole process was studied and explained thoroughly. The percentage of fat was found to be 32.52 % in regular Kishk and 3.84 % in the diet Kishk produced. The new product has the advantage to be high in protein, low in fat.Keywords: design and industrialization, dietetic, diet Kishk, fat
Procedia PDF Downloads 3744821 Application of Artificial Neural Networks to Adaptive Speed Control under ARDUINO
Authors: Javier Fernandez De Canete, Alvaro Fernandez-Quintero
Abstract:
Nowadays, adaptive control schemes are being used when model based control schemes are applied in presence of uncertainty and model mismatches. Artificial neural networks have been employed both in modelling and control of non-linear dynamic systems with unknown dynamics. In fact, these are powerful tools to solve this control problem when only input-output operational data are available. A neural network controller under SIMULINK together with the ARDUINO hardware platform has been used to perform real-time speed control of a computer case fan. Comparison of performance with a PID controller has also been presented in order to show the efficacy of neural control under different command signals tracking and also when disturbance signals are present in the speed control loops.Keywords: neural networks, ARDUINO platform, SIMULINK, adaptive speed control
Procedia PDF Downloads 3634820 A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors
Authors: Maryam Kheirollahpour, Mahmoud Danaee, Amir Faisal Merican, Asma Ahmad Shariff
Abstract:
Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy.Keywords: hybrid model, structural equation modeling, artificial neural networks, eating behavior patterns
Procedia PDF Downloads 156