Search results for: antibiotics detection
2853 Nano-Plasmonic Diagnostic Sensor Using Ultraflat Single-Crystalline Au Nanoplate and Cysteine-Tagged Protein G
Authors: Hwang Ahreum, Kang Taejoon, Kim Bongsoo
Abstract:
Nanosensors for high sensitive detection of diseases have been widely studied to improve the quality of life. Here, we suggest robust nano-plasmonic diagnostic sensor using cysteine tagged protein G (Cys3-protein G) and ultraflat, ultraclean and single-crystalline Au nanoplates. Protein G formed on an ultraflat Au surface provides ideal background for dense and uniform immobilization of antibodies. The Au is highly stable in diverse biochemical environment and can immobilize antibodies easily through Au-S bonding, having been widely used for various biosensing applications. Especially, atomically smooth single-crystalline Au nanomaterials synthesized using chemical vapor transport (CVT) method are very suitable to fabricate reproducible sensitive sensors. As the C-reactive protein (CRP) is a nonspecific biomarker of inflammation and infection, it can be used as a predictive or prognostic marker for various cardiovascular diseases. Cys3-protein G immobilized uniformly on the Au nanoplate enable CRP antibody (anti-CRP) to be ordered in a correct orientation, making their binding capacity be maximized for CRP detection. Immobilization condition for the Cys3-protein G and anti-CRP on the Au nanoplate is optimized visually by AFM analysis. Au nanoparticle - Au nanoplate (NPs-on-Au nanoplate) assembly fabricated from sandwich immunoassay for CRP can reduce zero-signal extremely caused by nonspecific bindings, providing a distinct surface-enhanced Raman scattering (SERS) enhancement still in 10-18 M of CRP concentration. Moreover, the NP-on-Au nanoplate sensor shows an excellent selectivity against non-target proteins with high concentration. In addition, comparing with control experiments employing a Au film fabricated by e-beam assisted deposition and linker molecule, we validate clearly contribution of the Au nanoplate for the attomolar sensitive detection of CRP. We expect that the devised platform employing the complex of single-crystalline Au nanoplates and Cys3-protein G can be applied for detection of many other cancer biomarkers.Keywords: Au nanoplate, biomarker, diagnostic sensor, protein G, SERS
Procedia PDF Downloads 2582852 A Study on Abnormal Behavior Detection in BYOD Environment
Authors: Dongwan Kang, Joohyung Oh, Chaetae Im
Abstract:
Advancement of communication technologies and smart devices in the recent times is leading to changes into the integrated wired and wireless communication environments. Since early days, businesses had started introducing environments for mobile device application to their operations in order to improve productivity (efficiency) and the closed corporate environment gradually shifted to an open structure. Recently, individual user's interest in working environment using mobile devices has increased and a new corporate working environment under the concept of BYOD is drawing attention. BYOD (bring your own device) is a concept where individuals bring in and use their own devices in business activities. Through BYOD, businesses can anticipate improved productivity (efficiency) and also a reduction in the cost of purchasing devices. However, as a result of security threats caused by frequent loss and theft of personal devices and corporate data leaks due to low security, companies are reluctant about adopting BYOD system. In addition, without considerations to diverse devices and connection environments, there are limitations in detecting abnormal behaviors such as information leaks which use the existing network-based security equipment. This study suggests a method to detect abnormal behaviors according to individual behavioral patterns, rather than the existing signature-based malicious behavior detection and discusses applications of this method in BYOD environment.Keywords: BYOD, security, anomaly behavior detection, security equipment, communication technologies
Procedia PDF Downloads 3242851 Robust Batch Process Scheduling in Pharmaceutical Industries: A Case Study
Authors: Tommaso Adamo, Gianpaolo Ghiani, Antonio Domenico Grieco, Emanuela Guerriero
Abstract:
Batch production plants provide a wide range of scheduling problems. In pharmaceutical industries a batch process is usually described by a recipe, consisting of an ordering of tasks to produce the desired product. In this research work we focused on pharmaceutical production processes requiring the culture of a microorganism population (i.e. bacteria, yeasts or antibiotics). Several sources of uncertainty may influence the yield of the culture processes, including (i) low performance and quality of the cultured microorganism population or (ii) microbial contamination. For these reasons, robustness is a valuable property for the considered application context. In particular, a robust schedule will not collapse immediately when a cell of microorganisms has to be thrown away due to a microbial contamination. Indeed, a robust schedule should change locally in small proportions and the overall performance measure (i.e. makespan, lateness) should change a little if at all. In this research work we formulated a constraint programming optimization (COP) model for the robust planning of antibiotics production. We developed a discrete-time model with a multi-criteria objective, ordering the different criteria and performing a lexicographic optimization. A feasible solution of the proposed COP model is a schedule of a given set of tasks onto available resources. The schedule has to satisfy tasks precedence constraints, resource capacity constraints and time constraints. In particular time constraints model tasks duedates and resource availability time windows constraints. To improve the schedule robustness, we modeled the concept of (a, b) super-solutions, where (a, b) are input parameters of the COP model. An (a, b) super-solution is one in which if a variables (i.e. the completion times of a culture tasks) lose their values (i.e. cultures are contaminated), the solution can be repaired by assigning these variables values with a new values (i.e. the completion times of a backup culture tasks) and at most b other variables (i.e. delaying the completion of at most b other tasks). The efficiency and applicability of the proposed model is demonstrated by solving instances taken from Sanofi Aventis, a French pharmaceutical company. Computational results showed that the determined super-solutions are near-optimal.Keywords: constraint programming, super-solutions, robust scheduling, batch process, pharmaceutical industries
Procedia PDF Downloads 6182850 Teicoplanin Derivatives with Antiviral Activity: Synthesis and Biological Evaluation
Authors: Zsolt Szucs, Viktor Kelemen, Son Le Thai, Magdolna Csavas, Erzsebet Roth, Gyula Batta, Annelies Stevaert, Evelien Vanderlinden, Aniko Borbas, Lieve Naesens, Pal Herczegh
Abstract:
The approval of modern glycopeptide antibiotics such as dalbavancin and oritavancin which have excellent activity against Gram-positive bacteria, encouraged our research group to prepare semisynthetic compounds from several members of glycopeptides by various chemical methods. Derivatives from the aglycone of ristocetin, eremomycin, vancomycin and a pseudoaglycon of teicoplanin have been synthesized in a systematic manner. Interestingly, some of the aglycoristocetin derivatives displayed noteworthy anti-influenza activity. More recently our group has been focusing on the modifications of one of the pseudoaglycons of teicoplanin. The reaction of N-ethoxycarbonyl maleimide derivatives with the primary amino function, the copper-catalysed azide-alkyne click reaction and the sulfonylation of the N-terminus were utilized to obtain systematic series of compounds. All substituents provide a more lipophilic character to the new molecules compared to the parent antibiotics, which is known to be favourable for activity against resistant bacteria. Lipoglycopeptides are also known to have antiviral properties, which has been predominantly studied on HIV by others. The structure-activity relationship study of our compounds revealed the influence of a few structural elements on biological activity. In many cases, minimal changes in lipophilicity and structure produced great differences in efficacy and cytotoxicity. In vitro experiments showed that these compounds are not only active against glycopeptide resistant Gram-positive bacteria but in several cases they prevent the infection of cell cultures by different strains of influenza viruses. This is probably related to the inhibition of the viral entry into the host cell nucleus, of which the exact mechanism is unknown. In some instances, reasonably low concentrations were sufficient to observe this effect. Several derivatives were highly cytotoxic at the same time, but some of them displayed a good selectivity index. The antiviral properties of the compounds are not restricted to influenza viruses e.g., some of them showed good activity against Human Coronavirus 229E. This work could potentially lead to the development of antiviral drugs which possess the crucial structural motifs that are needed for antiviral activity, while missing those which contribute to the antibacterial effect.Keywords: antiviral, glycopeptide, semisynthetic, teicoplanin
Procedia PDF Downloads 1572849 Anomaly Detection of Log Analysis using Data Visualization Techniques for Digital Forensics Audit and Investigation
Authors: Mohamed Fadzlee Sulaiman, Zainurrasyid Abdullah, Mohd Zabri Adil Talib, Aswami Fadillah Mohd Ariffin
Abstract:
In common digital forensics cases, investigation may rely on the analysis conducted on specific and relevant exhibits involved. Usually the investigation officer may define and advise digital forensic analyst about the goals and objectives to be achieved in reconstructing the trail of evidence while maintaining the specific scope of investigation. With the technology growth, people are starting to realize the importance of cyber security to their organization and this new perspective creates awareness that digital forensics auditing must come in place in order to measure possible threat or attack to their cyber-infrastructure. Instead of performing investigation on incident basis, auditing may broaden the scope of investigation to the level of anomaly detection in daily operation of organization’s cyber space. While handling a huge amount of data such as log files, performing digital forensics audit for large organization proven to be onerous task for the analyst either to analyze the huge files or to translate the findings in a way where the stakeholder can clearly understand. Data visualization can be emphasized in conducting digital forensic audit and investigation to resolve both needs. This study will identify the important factors that should be considered to perform data visualization techniques in order to detect anomaly that meet the digital forensic audit and investigation objectives.Keywords: digital forensic, data visualization, anomaly detection , log analysis, forensic audit, visualization techniques
Procedia PDF Downloads 2872848 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model
Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis
Abstract:
Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry
Procedia PDF Downloads 2252847 Determination of MDA by HPLC in Blood of Levofloxacin Treated Rats
Authors: D. S. Mohale, A. P. Dewani, A. S.tripathi, A. V. Chandewar
Abstract:
Present work demonstrates the applicability of high-performance liquid chromatography (HPLC) with UV-Vis detection for the quantification of malondialdehyde as malondialdehyde-thiobarbituric acid complex (MDA-TBA) in-vivo in rats. The HPLC method for MDA-TBA was achieved by isocratic mode on a reverse-phase C18 column (250mm×4.6mm) at a flow rate of 1.0mLmin−1 followed by detection at 532 nm. The chromatographic conditions were optimized by varying the concentration and pH of water followed by changes in percentage of organic phase optimal mobile phase consisted of mixture of water (0.2% triethylamine pH adjusted to 2.3 by ortho-phosphoric acid) and acetonitrile in ratio (80:20v/v). The retention time of MDA-TBA complex was 3.7 min. The developed method was sensitive as limit of detection and quantification (LOD and LOQ) for MDA-TBA complex were (standard deviation and slope of calibration curve) 110 ng/ml and 363 ng/ml respectively. Calibration studies were done by spiking MDA into rat plasma at concentrations ranging from 500 to 1000 ng/ml. The precision of developed method measured in terms of relative standard deviations for intra-day and inter-day studies was 1.6–5.0% and 1.9–3.6% respectively. The HPLC method was applied for monitoring MDA levels in rats subjected to chronic treatment of levofloxacin (LEV) (5mg/kg/day) for 21 days. Results were compared by findings in control group rats. Mean peak areas of both study groups was subjected for statistical treatment to unpaired student t-test to find p-values. The p value was <0.001 indicating significant results and suggesting increased MDA levels in rats subjected to chronic treatment of LEV of 21 days.Keywords: malondialdehyde-thiobarbituric acid complex, levofloxacin, HPLC, oxidative stress
Procedia PDF Downloads 3342846 Made on Land, Ends Up in the Water "I-Clare" Intelligent Remediation System for Removal of Harmful Contaminants in Water using Modified Reticulated Vitreous Carbon Foam
Authors: Sabina Żołędowska, Tadeusz Ossowski, Robert Bogdanowicz, Jacek Ryl, Paweł Rostkowski, Michał Kruczkowski, Michał Sobaszek, Zofia Cebula, Grzegorz Skowierzak, Paweł Jakóbczyk, Lilit Hovhannisyan, Paweł Ślepski, Iwona Kaczmarczyk, Mattia Pierpaoli, Bartłomiej Dec, Dawid Nidzworski
Abstract:
The circular economy of water presents a pressing environmental challenge in our society. Water contains various harmful substances, such as drugs, antibiotics, hormones, and dioxides, which can pose silent threats. Water pollution has severe consequences for aquatic ecosystems. It disrupts the balance of ecosystems by harming aquatic plants, animals, and microorganisms. Water pollution poses significant risks to human health. Exposure to toxic chemicals through contaminated water can have long-term health effects, such as cancer, developmental disorders, and hormonal imbalances. However, effective remediation systems can be implemented to remove these contaminants using electrocatalytic processes, which offer an environmentally friendly alternative to other treatment methods, and one of them is the innovative iCLARE system. The project's primary focus revolves around a few main topics: Reactor design and construction, selection of a specific type of reticulated vitreous carbon foams (RVC), analytical studies of harmful contaminants parameters and AI implementation. This high-performance electrochemical reactor will be build based on a novel type of electrode material. The proposed approach utilizes the application of reticulated vitreous carbon foams (RVC) with deposited modified metal oxides (MMO) and diamond thin films. The following setup is characterized by high surface area development and satisfactory mechanical and electrochemical properties, designed for high electrocatalytic process efficiency. The consortium validated electrode modification methods that are the base of the iCLARE product and established the procedures for the detection of chemicals detection: - deposition of metal oxides WO3 and V2O5-deposition of boron-doped diamond/nanowalls structures by CVD process. The chosen electrodes (porous Ferroterm electrodes) were stress tested for various parameters that might occur inside the iCLARE machine–corosis, the long-term structure of the electrode surface during electrochemical processes, and energetic efficacy using cyclic polarization and electrochemical impedance spectroscopy (before and after electrolysis) and dynamic electrochemical impedance spectroscopy (DEIS). This tool allows real-time monitoring of the changes at the electrode/electrolyte interphase. On the other hand, the toxicity of iCLARE chemicals and products of electrolysis are evaluated before and after the treatment using MARA examination (IBMM) and HPLC-MS-MS (NILU), giving us information about the harmfulness of using electrode material and the efficiency of iClare system in the disposal of pollutants. Implementation of data into the system that uses artificial intelligence and the possibility of practical application is in progress (SensDx).Keywords: waste water treatement, RVC, electrocatalysis, paracetamol
Procedia PDF Downloads 882845 Genome Sequencing and Analysis of the Spontaneous Nanosilver Resistant Bacterium Proteus mirabilis Strain scdr1
Authors: Amr Saeb, Khalid Al-Rubeaan, Mohamed Abouelhoda, Manojkumar Selvaraju, Hamsa Tayeb
Abstract:
Background: P. mirabilis is a common uropathogenic bacterium that can cause major complications in patients with long-standing indwelling catheters or patients with urinary tract anomalies. In addition, P. mirabilis is a common cause of chronic osteomyelitis in diabetic foot ulcer (DFU) patients. Methodology: P. mirabilis SCDR1 was isolated from a diabetic ulcer patient. We examined P. mirabilis SCDR1 levels of resistance against nano-silver colloids, the commercial nano-silver and silver containing bandages and commonly used antibiotics. We utilized next generation sequencing techniques (NGS), bioinformatics, phylogenetic analysis and pathogenomics in the identification and characterization of the infectious pathogen. Results: P. mirabilis SCDR1 is a multi-drug resistant isolate that also showed high levels of resistance against nano-silver colloids, nano-silver chitosan composite and the commercially available nano-silver and silver bandages. The P. mirabilis-SCDR1 genome size is 3,815,621 bp with G+C content of 38.44%. P. mirabilis-SCDR1 genome contains a total of 3,533 genes, 3,414 coding DNA sequence genes, 11, 10, 18 rRNAs (5S, 16S, and 23S), and 76 tRNAs. Our isolate contains all the required pathogenicity and virulence factors to establish a successful infection. P. mirabilis SCDR1 isolate is a potential virulent pathogen that despite its original isolation site, wound, it can establish kidney infection and its associated complications. P. mirabilis SCDR1 contains several mechanisms for antibiotics and metals resistance including, biofilm formation, swarming mobility, efflux systems, and enzymatic detoxification. Conclusion: P. mirabilis SCDR1 is the spontaneous nano-silver resistant bacterial strain. P. mirabilis SCDR1 strain contains all reported pathogenic and virulence factors characteristic for the species. In addition, it possesses several mechanisms that may lead to the observed nano-silver resistance.Keywords: Proteus mirabilis, multi-drug resistance, silver nanoparticles, resistance, next generation sequencing techniques, genome analysis, bioinformatics, phylogeny, pathogenomics, diabetic foot ulcer, xenobiotics, multidrug resistance efflux, biofilm formation, swarming mobility, resistome, glutathione S-transferase, copper/silver efflux system, altruism
Procedia PDF Downloads 3342844 Comparative Proteomic Profiling of Planktonic and Biofilms from Staphylococcus aureus Using Tandem Mass Tag-Based Mass Spectrometry
Authors: Arifur Rahman, Ardeshir Amirkhani, Honghua Hu, Mark Molloy, Karen Vickery
Abstract:
Introduction and Objectives: Staphylococcus aureus and coagulase-negative staphylococci comprises approximately 65% of infections associated with medical devices and are well known for their biofilm formatting ability. Biofilm-related infections are extremely difficult to eradicate owing to their high tolerance to antibiotics and host immune defences. Currently, there is no efficient method for early biofilm detection. A better understanding to enable detection of biofilm specific proteins in vitro and in vivo can be achieved by studying planktonic and different growth phases of biofilms using a proteome analysis approach. Our goal was to construct a reference map of planktonic and biofilm associated proteins of S. aureus. Methods: S. aureus reference strain (ATCC 25923) was used to grow 24 hours planktonic, 3-day wet biofilm (3DWB), and 12-day wet biofilm (12DWB). Bacteria were grown in tryptic soy broth (TSB) liquid medium. Planktonic growth was used late logarithmic bacteria, and the Centres for Disease Control (CDC) biofilm reactor was used to grow 3 days, and 12-day hydrated biofilms, respectively. Samples were subjected to reduction, alkylation and digestion steps prior to Multiplex labelling using Tandem Mass Tag (TMT) 10-plex reagent (Thermo Fisher Scientific). The labelled samples were pooled and fractionated by high pH RP-HPLC which followed by loading of the fractions on a nanoflow UPLC system (Eksigent UPLC system, AB SCIEX). Mass spectrometry (MS) data were collected on an Orbitrap Elite (Thermo Fisher Scientific) Mass Spectrometer. Protein identification and relative quantitation of protein levels were performed using Proteome Discoverer (version 1.3, Thermo Fisher Scientific). After the extraction of protein ratios with Proteome Discoverer, additional processing, and statistical analysis was done using the TMTPrePro R package. Results and Discussion: The present study showed that a considerable proteomic difference exists among planktonic and biofilms from S. aureus. We identified 1636 total extracellular secreted proteins, of which 350 and 137 proteins of 3DWB and 12DWB showed significant abundance variation from planktonic preparation, respectively. Of these, simultaneous up-regulation in between 3DWB and 12DWB proteins such as extracellular matrix-binding protein ebh, enolase, transketolase, triosephosphate isomerase, chaperonin, peptidase, pyruvate kinase, hydrolase, aminotransferase, ribosomal protein, acetyl-CoA acetyltransferase, DNA gyrase subunit A, glycine glycyltransferase and others we found in this biofilm producer. On the contrary, simultaneous down-regulation in between 3DWB and 12DWB proteins such as alpha and delta-hemolysin, lipoteichoic acid synthase, enterotoxin I, serine protease, lipase, clumping factor B, regulatory protein Spx, phosphoglucomutase, and others also we found in this biofilm producer. In addition, we also identified a big percentage of hypothetical proteins including unique proteins. Therefore, a comprehensive knowledge of planktonic and biofilm associated proteins identified by S. aureus will provide a basis for future studies on the development of vaccines and diagnostic biomarkers. Conclusions: In this study, we constructed an initial reference map of planktonic and various growth phase of biofilm associated proteins which might be helpful to diagnose biofilm associated infections.Keywords: bacterial biofilms, CDC bioreactor, S. aureus, mass spectrometry, TMT
Procedia PDF Downloads 1712843 Nano-Immunoassay for Diagnosis of Active Schistosomal Infection
Authors: Manal M. Kame, Hanan G. El-Baz, Zeinab A.Demerdash, Engy M. Abd El-Moneem, Mohamed A. Hendawy, Ibrahim R. Bayoumi
Abstract:
There is a constant need to improve the performance of current diagnostic assays of schistosomiasis as well as develop innovative testing strategies to meet new testing challenges. This study aims at increasing the diagnostic efficiency of monoclonal antibody (MAb)-based antigen detection assays through gold nanoparticles conjugated with specific anti-Schistosoma mansoni monoclonal antibodies. In this study, several hybidoma cell lines secreting MAbs against adult worm tegumental Schistosoma antigen (AWTA) were produced at Immunology Department of Theodor Bilharz Research Institute and preserved in liquid nitrogen. One MAb (6D/6F) was chosen for this study due to its high reactivity to schistosome antigens with highest optical density (OD) values. Gold nanoparticles (AuNPs) were functionalized and conjugated with MAb (6D/6F). The study was conducted on serum samples of 116 subjects: 71 patients with S. mansoni eggs in their stool samples group (gp 1), 25 with other parasites (gp2) and 20 negative healthy controls (gp3). Patients in gp1 were further subdivided according to egg count in their stool samples into Light infection {≤ 50 egg per gram(epg) (n= 17)}, moderate {51-100 epg (n= 33)} and severe infection {>100 epg(n= 21)}. Sandwich ELISA was performed using (AuNPs -MAb) for detection of circulating schistosomal antigen (CSA) levels in serum samples of all groups and the results were compared with that after using MAb/ sandwich ELISA system. Results Gold- MAb/ ELISA system reached a lower detection limit of 10 ng/ml compared to 85 ng/ml on using MAb/ ELISA and the optimal concentrations of AuNPs -MAb were found to be 12 folds less than that of MAb/ ELISA system for detection of CSA. The sensitivity and specificity of sandwich ELISA for detection of CSA levels using AuNPs -MAb were 100% & 97.8 % respectively compared to 87.3% &93.38% respectively on using MAb/ ELISA system. It was found that CSA was detected in 9 out of 71 S.mansoni infected patients on using AuNPs - MAb/ ELISA system and was not detected by MAb/ ELISA system. All those patients (9) was found to have an egg count below 50 epg feces (patients with light infections). ROC curve analyses revealed that sandwich ELISA using gold-MAb was an excellent diagnostic investigator that could differentiate Schistosoma patients from healthy controls, on the other hand it revealed that sandwich ELISA using MAb was not accurate enough as it could not recognize nine out of 71 patients with light infections. Conclusion Our data demonstrated that: Loading gold nanoparticles with MAb (6D/6F) increases the sensitivity and specificity of sandwich ELISA for detection of CSA, thus active (early) and light infections could be easily detected. Moreover this binding will decrease the amount of MAb consumed in the assay and lower the coast. The significant positive correlation that was detected between ova count (intensity of infection) and OD reading in sandwich ELISA using gold- MAb enables its use to detect the severity of infections and follow up patients after treatment for monitoring of cure.Keywords: Schistosomiasis, nanoparticles, gold, monoclonal antibodies, ELISA
Procedia PDF Downloads 3712842 The Effect of Technology on Advanced Automotive Electronics
Authors: Abanob Nady Wasef Moawed
Abstract:
In more complicated systems, inclusive of automotive gearboxes, a rigorous remedy of the data is essential because there are several transferring elements (gears, bearings, shafts, and many others.), and in this way, there are numerous viable sources of mistakes and also noise. The fundamental goal of these elements are the detection of damage in car gearbox. The detection strategies used are the wavelet technique, the bispectrum, advanced filtering techniques (selective filtering) of vibrational alerts and mathematical morphology. Gearbox vibration assessments were achieved (gearboxes in proper circumstance and with defects) of a manufacturing line of a huge car assembler. The vibration indicators have acquired the use of five accelerometers in distinct positions of the sample. The effects acquired using the kurtosis, bispectrum, wavelet and mathematical morphology confirmed that it's far possible to identify the lifestyles of defects in automobile gearboxes.Keywords: 3D-shaped electronics, electronic components, thermoforming, component positioningautomotive gearbox, mathematical morphology, wavelet, bispectrum
Procedia PDF Downloads 292841 A New Method for Fault Detection
Authors: Mehmet Hakan Karaata, Ali Hamdan, Omer Yusuf Adam Mohamed
Abstract:
Consider a distributed system that delivers messages from a process to another. Such a system is often required to deliver each message to its destination regardless of whether or not the system components experience arbitrary forms of faults. In addition, each message received by the destination must be a message sent by a system process. In this paper, we first identify the necessary and sufficient conditions to detect some restricted form of Byzantine faults referred to as modifying Byzantine faults. An observable form of a Byzantine fault whose effect is limited to the modification of a message metadata or content, timing and omission faults, and message replay is referred to as a modifying Byzantine fault. We then present a distributed protocol to detect modifying Byzantine faults using optimal number of messages over node-disjoint paths.Keywords: Byzantine faults, distributed systems, fault detection, network protocols, node-disjoint paths
Procedia PDF Downloads 4482840 Superparamagnetic Sensor with Lateral Flow Immunoassays as Platforms for Biomarker Quantification
Authors: M. Salvador, J. C. Martinez-Garcia, A. Moyano, M. C. Blanco-Lopez, M. Rivas
Abstract:
Biosensors play a crucial role in the detection of molecules nowadays due to their advantages of user-friendliness, high selectivity, the analysis in real time and in-situ applications. Among them, Lateral Flow Immunoassays (LFIAs) are presented among technologies for point-of-care bioassays with outstanding characteristics such as affordability, portability and low-cost. They have been widely used for the detection of a vast range of biomarkers, which do not only include proteins but also nucleic acids and even whole cells. Although the LFIA has traditionally been a positive/negative test, tremendous efforts are being done to add to the method the quantifying capability based on the combination of suitable labels and a proper sensor. One of the most successful approaches involves the use of magnetic sensors for detection of magnetic labels. Bringing together the required characteristics mentioned before, our research group has developed a biosensor to detect biomolecules. Superparamagnetic nanoparticles (SPNPs) together with LFIAs play the fundamental roles. SPMNPs are detected by their interaction with a high-frequency current flowing on a printed micro track. By means of the instant and proportional variation of the impedance of this track provoked by the presence of the SPNPs, quantitative and rapid measurement of the number of particles can be obtained. This way of detection requires no external magnetic field application, which reduces the device complexity. On the other hand, the major limitations of LFIAs are that they are only qualitative or semiquantitative when traditional gold or latex nanoparticles are used as color labels. Moreover, the necessity of always-constant ambient conditions to get reproducible results, the exclusive detection of the nanoparticles on the surface of the membrane, and the short durability of the signal are drawbacks that can be advantageously overcome with the design of magnetically labeled LFIAs. The approach followed was to coat the SPIONs with a specific monoclonal antibody which targets the protein under consideration by chemical bonds. Then, a sandwich-type immunoassay was prepared by printing onto the nitrocellulose membrane strip a second antibody against a different epitope of the protein (test line) and an IgG antibody (control line). When the sample flows along the strip, the SPION-labeled proteins are immobilized at the test line, which provides magnetic signal as described before. Preliminary results using this practical combination for the detection and quantification of the Prostatic-Specific Antigen (PSA) shows the validity and consistency of the technique in the clinical range, where a PSA level of 4.0 ng/mL is the established upper normal limit. Moreover, a LOD of 0.25 ng/mL was calculated with a confident level of 3 according to the IUPAC Gold Book definition. Its versatility has also been proved with the detection of other biomolecules such as troponin I (cardiac injury biomarker) or histamine.Keywords: biosensor, lateral flow immunoassays, point-of-care devices, superparamagnetic nanoparticles
Procedia PDF Downloads 2322839 Deep Convolutional Neural Network for Detection of Microaneurysms in Retinal Fundus Images at Early Stage
Authors: Goutam Kumar Ghorai, Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, G. Sarkar, Ashis K. Dhara
Abstract:
Diabetes mellitus is one of the most common chronic diseases in all countries and continues to increase in numbers significantly. Diabetic retinopathy (DR) is damage to the retina that occurs with long-term diabetes. DR is a major cause of blindness in the Indian population. Therefore, its early diagnosis is of utmost importance towards preventing progression towards imminent irreversible loss of vision, particularly in the huge population across rural India. The barriers to eye examination of all diabetic patients are socioeconomic factors, lack of referrals, poor access to the healthcare system, lack of knowledge, insufficient number of ophthalmologists, and lack of networking between physicians, diabetologists and ophthalmologists. A few diabetic patients often visit a healthcare facility for their general checkup, but their eye condition remains largely undetected until the patient is symptomatic. This work aims to focus on the design and development of a fully automated intelligent decision system for screening retinal fundus images towards detection of the pathophysiology caused by microaneurysm in the early stage of the diseases. Automated detection of microaneurysm is a challenging problem due to the variation in color and the variation introduced by the field of view, inhomogeneous illumination, and pathological abnormalities. We have developed aconvolutional neural network for efficient detection of microaneurysm. A loss function is also developed to handle severe class imbalance due to very small size of microaneurysms compared to background. The network is able to locate the salient region containing microaneurysms in case of noisy images captured by non-mydriatic cameras. The ground truth of microaneurysms is created by expert ophthalmologists for MESSIDOR database as well as private database, collected from Indian patients. The network is trained from scratch using the fundus images of MESSIDOR database. The proposed method is evaluated on DIARETDB1 and the private database. The method is successful in detection of microaneurysms for dilated and non-dilated types of fundus images acquired from different medical centres. The proposed algorithm could be used for development of AI based affordable and accessible system, to provide service at grass root-level primary healthcare units spread across the country to cater to the need of the rural people unaware of the severe impact of DR.Keywords: retinal fundus image, deep convolutional neural network, early detection of microaneurysms, screening of diabetic retinopathy
Procedia PDF Downloads 1422838 Study of Anti-Symmetric Flexural Mode Propagation along Wedge Tip with a Crack
Authors: Manikanta Prasad Banda, Che Hua Yang
Abstract:
Anti-symmetric wave propagation along the particle motion of the wedge waves is known as anti-symmetric flexural (ASF) modes which travel along the wedge tips of the mid-plane apex with a small truncation. This paper investigates the characteristics of the ASF modes propagation with the wedge tip crack. The simulation and experimental results obtained by a three-dimensional (3-D) finite element model explained the contact acoustic non-linear (CAN) behavior in explicit dynamics in ABAQUS and the ultrasonic non-destructive testing (NDT) method is used for defect detection. The effect of various parameters on its high and low-level conversion modes are known for complex reflections and transmissions involved with direct reflections and transmissions. The results are used to predict the location of crack through complex transmission and reflection coefficients.Keywords: ASF mode, crack detection, finite elements method, laser ultrasound technique, wedge waves
Procedia PDF Downloads 1362837 Faulty Sensors Detection in Planar Array Antenna Using Pelican Optimization Algorithm
Authors: Shafqat Ullah Khan, Ammar Nasir
Abstract:
Using planar antenna array (PAA) in radars, Broadcasting, satellite antennas, and sonar for the detection of targets, Helps provide instant beam pattern control. High flexibility and Adaptability are achieved by multiple beam steering by using a Planar array and are particularly needed in real-life Sanrio’s where the need arises for several high-directivity beams. Faulty sensors in planar arrays generate asymmetry, which leads to service degradation, radiation pattern distortion, and increased levels of sidelobe. The POA, a nature-inspired optimization algorithm, accurately determines faulty sensors within an array, enhancing the reliability and performance of planar array antennas through extensive simulations and experiments. The analysis was done for different types of faults in 7 x 7 and 8 x 8 planar arrays in MATLAB.Keywords: Planar antenna array, , Pelican optimisation Algorithm, , Faculty sensor, Antenna arrays
Procedia PDF Downloads 802836 Railway Process Automation to Ensure Human Safety with the Aid of IoT and Image Processing
Authors: K. S. Vedasingha, K. K. M. T. Perera, K. I. Hathurusinghe, H. W. I. Akalanka, Nelum Chathuranga Amarasena, Nalaka R. Dissanayake
Abstract:
Railways provide the most convenient and economically beneficial mode of transportation, and it has been the most popular transportation method among all. According to the past analyzed data, it reveals a considerable number of accidents which occurred at railways and caused damages to not only precious lives but also to the economy of the countries. There are some major issues which need to be addressed in railways of South Asian countries since they fall under the developing category. The goal of this research is to minimize the influencing aspect of railway level crossing accidents by developing the “railway process automation system”, as there are high-risk areas that are prone to accidents, and safety at these places is of utmost significance. This paper describes the implementation methodology and the success of the study. The main purpose of the system is to ensure human safety by using the Internet of Things (IoT) and image processing techniques. The system can detect the current location of the train and close the railway gate automatically. And it is possible to do the above-mentioned process through a decision-making system by using past data. The specialty is both processes working parallel. As usual, if the system fails to close the railway gate due to technical or a network failure, the proposed system can identify the current location and close the railway gate through a decision-making system, which is a revolutionary feature. The proposed system introduces further two features to reduce the causes of railway accidents. Railway track crack detection and motion detection are those features which play a significant role in reducing the risk of railway accidents. Moreover, the system is capable of detecting rule violations at a level crossing by using sensors. The proposed system is implemented through a prototype, and it is tested with real-world scenarios to gain the above 90% of accuracy.Keywords: crack detection, decision-making, image processing, Internet of Things, motion detection, prototype, sensors
Procedia PDF Downloads 1772835 Current Status and Future Trends of Mechanized Fruit Thinning Devices and Sensor Technology
Authors: Marco Lopes, Pedro D. Gaspar, Maria P. Simões
Abstract:
This paper reviews the different concepts that have been investigated concerning the mechanization of fruit thinning as well as multiple working principles and solutions that have been developed for feature extraction of horticultural products, both in the field and industrial environments. The research should be committed towards selective methods, which inevitably need to incorporate some kinds of sensor technology. Computer vision often comes out as an obvious solution for unstructured detection problems, although leaves despite the chosen point of view frequently occlude fruits. Further research on non-traditional sensors that are capable of object differentiation is needed. Ultrasonic and Near Infrared (NIR) technologies have been investigated for applications related to horticultural produce and show a potential to satisfy this need while simultaneously providing spatial information as time of flight sensors. Light Detection and Ranging (LIDAR) technology also shows a huge potential but it implies much greater costs and the related equipment is usually much larger, making it less suitable for portable devices, which may serve a purpose on smaller unstructured orchards. Portable devices may serve a purpose on these types of orchards. In what concerns sensor methods, on-tree fruit detection, major challenge is to overcome the problem of fruits’ occlusion by leaves and branches. Hence, nontraditional sensors capable of providing some type of differentiation should be investigated.Keywords: fruit thinning, horticultural field, portable devices, sensor technologies
Procedia PDF Downloads 1392834 Swimming Pool Water Chlorination Detection System Utilizing TDSTestr
Authors: Fahad Alamoudi, Yaser Miaji, Fawzy Jalalah
Abstract:
The growing popularity of swimming pools and other activities in the water for sport, fitness, therapy or just enjoyable relaxation have led to the increased use of swimming pools and the establishment of a variety of specific-use pools such as spa pools, Waterslides and more recently, hydrotherapy and wave pools. In this research a few simple equipments are used for test, Detect and alert for detection of water cleanness and pollution. YSI Photometer Systems, TDSTestr High model, rio 12HF, and Electrode A1. The researchers used electrolysis as a method of separating bonded elements and compounds by passing an electric current through them. The results which use 41 experiments show the higher the salt concentration, the more efficient the electrode and the smaller the gap between the plates and The lower the electrode voltage. Furthermore, it is proved that the larger the surface area, the lower the cell voltage and the higher current used the more chlorine produced.Keywords: photometer, electrode, electrolysis, swimming pool chlorination
Procedia PDF Downloads 3492833 Carboxylic Acid-Functionalized Multi-Walled Carbon Nanotubes-Polyindole/Ti2O3 Nanocomposite: Electrochemical Nanomolar Detection of α-Lipoic Acid in Vegetables
Authors: Ragu Sasikumar, Palraj Ranganathan, Shen-Ming Chen, Syang-Peng Rwei
Abstract:
A highly sensitive, and selective α-Lipoic acid (ALA) sensor based on a functionalized multi-walled carbon nanotubes-polyindole/Ti2O3 (f-MWCNTs-PIN/Ti2O3) nanocomposite modified glassy carbon electrode (GCE) was developed. The fabricated f-MWCNTs-PIN/Ti2O3/GCE displayed an enhanced voltammetric response for oxidation towards ALA relative to that of a f-MWCNTs/GCE, f-MWCNTs-PIN/GCE, Ti2O3/GCE, and a bare GCE. Under optimum conditions, the f-MWCNTs-PIN/Ti2O3/GCE showed a wide linear range at ALA concentrations of 0.39-115.8 µM. The limit of detection of 12 nM and sensitivity of about 6.39 µA µM-1cm-2. The developed sensor showed anti-interference, reproducibility, good repeatability, and operational stability. Applied possibility of the sensor has been confirmed in vegetable samples.Keywords: f-MWCNT, polyindole, Ti2O3, Alzheimer’s diseases, ALA sensor
Procedia PDF Downloads 2252832 Plasmonic Biosensor for Early Detection of Environmental DNA (eDNA) Combined with Enzyme Amplification
Authors: Monisha Elumalai, Joana Guerreiro, Joana Carvalho, Marta Prado
Abstract:
DNA biosensors popularity has been increasing over the past few years. Traditional analytical techniques tend to require complex steps and expensive equipment however DNA biosensors have the advantage of getting simple, fast and economic. Additionally, the combination of DNA biosensors with nanomaterials offers the opportunity to improve the selectivity, sensitivity and the overall performance of the devices. DNA biosensors are based on oligonucleotides as sensing elements. These oligonucleotides are highly specific to complementary DNA sequences resulting in the hybridization of the strands. DNA biosensors are not only an advantage in the clinical field but also applicable in numerous research areas such as food analysis or environmental control. Zebra Mussels (ZM), Dreissena polymorpha are invasive species responsible for enormous negative impacts on the environment and ecosystems. Generally, the detection of ZM is made when the observation of adult or macroscopic larvae's is made however at this stage is too late to avoid the harmful effects. Therefore, there is a need to develop an analytical tool for the early detection of ZM. Here, we present a portable plasmonic biosensor for the detection of environmental DNA (eDNA) released to the environment from this invasive species. The plasmonic DNA biosensor combines gold nanoparticles, as transducer elements, due to their great optical properties and high sensitivity. The detection strategy is based on the immobilization of a short base pair DNA sequence on the nanoparticles surface followed by specific hybridization in the presence of a complementary target DNA. The hybridization events are tracked by the optical response provided by the nanospheres and their surrounding environment. The identification of the DNA sequences (synthetic target and probes) to detect Zebra mussel were designed by using Geneious software in order to maximize the specificity. Moreover, to increase the optical response enzyme amplification of DNA might be used. The gold nanospheres were synthesized and characterized by UV-visible spectrophotometry and transmission electron microscopy (TEM). The obtained nanospheres present the maximum localized surface plasmon resonance (LSPR) peak position are found to be around 519 nm and a diameter of 17nm. The DNA probes modified with a sulfur group at one end of the sequence were then loaded on the gold nanospheres at different ionic strengths and DNA probe concentrations. The optimal DNA probe loading will be selected based on the stability of the optical signal followed by the hybridization study. Hybridization process leads to either nanoparticle dispersion or aggregation based on the presence or absence of the target DNA. Finally, this detection system will be integrated into an optical sensing platform. Considering that the developed device will be used in the field, it should fulfill the inexpensive and portability requirements. The sensing devices based on specific DNA detection holds great potential and can be exploited for sensing applications in-loco.Keywords: ZM DNA, DNA probes, nicking enzyme, gold nanoparticles
Procedia PDF Downloads 2452831 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 192830 Evaluation of Real-Time Background Subtraction Technique for Moving Object Detection Using Fast-Independent Component Analysis
Authors: Naoum Abderrahmane, Boumehed Meriem, Alshaqaqi Belal
Abstract:
Background subtraction algorithm is a larger used technique for detecting moving objects in video surveillance to extract the foreground objects from a reference background image. There are many challenges to test a good background subtraction algorithm, like changes in illumination, dynamic background such as swinging leaves, rain, snow, and the changes in the background, for example, moving and stopping of vehicles. In this paper, we propose an efficient and accurate background subtraction method for moving object detection in video surveillance. The main idea is to use a developed fast-independent component analysis (ICA) algorithm to separate background, noise, and foreground masks from an image sequence in practical environments. The fast-ICA algorithm is adapted and adjusted with a matrix calculation and searching for an optimum non-quadratic function to be faster and more robust. Moreover, in order to estimate the de-mixing matrix and the denoising de-mixing matrix parameters, we propose to convert all images to YCrCb color space, where the luma component Y (brightness of the color) gives suitable results. The proposed technique has been verified on the publicly available datasets CD net 2012 and CD net 2014, and experimental results show that our algorithm can detect competently and accurately moving objects in challenging conditions compared to other methods in the literature in terms of quantitative and qualitative evaluations with real-time frame rate.Keywords: background subtraction, moving object detection, fast-ICA, de-mixing matrix
Procedia PDF Downloads 962829 Microfluidic Plasmonic Device for the Sensitive Dual LSPR-Thermal Detection of the Cardiac Troponin Biomarker in Laminal Flow
Authors: Andreea Campu, Ilinica Muresan, Simona Cainap, Simion Astilean, Monica Focsan
Abstract:
Acute myocardial infarction (AMI) is the most severe cardiovascular disease, which has threatened human lives for decades, thus a continuous interest is directed towards the detection of cardiac biomarkers such as cardiac troponin I (cTnI) in order to predict risk and, implicitly, fulfill the early diagnosis requirements in AMI settings. Microfluidics is a major technology involved in the development of efficient sensing devices with real-time fast responses and on-site applicability. Microfluidic devices have gathered a lot of attention recently due to their advantageous features such as high sensitivity and specificity, miniaturization and portability, ease-of-use, low-cost, facile fabrication, and reduced sample manipulation. The integration of gold nanoparticles into the structure of microfluidic sensors has led to the development of highly effective detection systems, considering the unique properties of the metallic nanostructures, specifically the Localized Surface Plasmon Resonance (LSPR), which makes them highly sensitive to their microenvironment. In this scientific context, herein, we propose the implementation of a novel detection device, which successfully combines the efficiency of gold bipyramids (AuBPs) as signal transducers and thermal generators with the sample-driven advantages of the microfluidic channels into a miniaturized, portable, low-cost, specific, and sensitive test for the dual LSPR-thermographic cTnI detection. Specifically, AuBPs with longitudinal LSPR response at 830 nm were chemically synthesized using the seed-mediated growth approach and characterized in terms of optical and morphological properties. Further, the colloidal AuBPs were deposited onto pre-treated silanized glass substrates thus, a uniform nanoparticle coverage of the substrate was obtained and confirmed by extinction measurements showing a 43 nm blue-shift of the LSPR response as a consequence of the refractive index change. The as-obtained plasmonic substrate was then integrated into a microfluidic “Y”-shaped polydimethylsiloxane (PDMS) channel, fabricated using a Laser Cutter system. Both plasmonic and microfluidic elements were plasma treated in order to achieve a permanent bond. The as-developed microfluidic plasmonic chip was further coupled to an automated syringe pump system. The proposed biosensing protocol implicates the successive injection inside the microfluidic channel as follows: p-aminothiophenol and glutaraldehyde, to achieve a covalent bond between the metallic surface and cTnI antibody, anti-cTnI, as a recognition element, and target cTnI biomarker. The successful functionalization and capture of cTnI was monitored by LSPR detection thus, after each step, a red-shift of the optical response was recorded. Furthermore, as an innovative detection technique, thermal determinations were made after each injection by exposing the microfluidic plasmonic chip to 785 nm laser excitation, considering that the AuBPs exhibit high light-to-heat conversion performances. By the analysis of the thermographic images, thermal curves were obtained, showing a decrease in the thermal efficiency after the anti-cTnI-cTnI reaction was realized. Thus, we developed a microfluidic plasmonic chip able to operate as both LSPR and thermal sensor for the detection of the cardiac troponin I biomarker, leading thus to the progress of diagnostic devices.Keywords: gold nanobipyramids, microfluidic device, localized surface plasmon resonance detection, thermographic detection
Procedia PDF Downloads 1292828 Identification of the Antimicrobial Property of Double Metal Oxide/Bioactive Glass Nanocomposite Against Multi Drug Resistant Staphylococcus aureus Causing Implant Infections
Authors: M. H. Pazandeh, M. Doudi, S. Barahimi, L. Rahimzadeh Torabi
Abstract:
The use of antibiotics is essential in reducing the occurrence of adverse effects and inhibiting the emergence of antibiotic resistance in microbial populations. The necessity for a novel methodology concerning local administration of antibiotics has arisen, with particular focus on dealing with localized infections prompted by bacterial colonization of medical devices or implant materials. Bioactive glasses (BG) are extensively employed in the field of regenerative medicine, encompassing a diverse range of materials utilized for drug delivery systems. In the present investigation, various drug carriers for imipenem and tetracycline, namely single systems BG/SnO2, BG/NiO with varying proportions of metal oxide, and nanocomposite BG/SnO2/NiO, were synthesized through the sol-gel technique. The antibacterial efficacy of the synthesized samples was assessed through the utilization of the disk diffusion method with the aim of neutralizing Staphylococcus aureus as the bacterial model. The current study involved the examination of the bioactivity of two samples, namely BG10SnO2/10NiO and BG20SnO2, which were chosen based on their heightened bacterial inactivation properties. This evaluation entailed the employment of two techniques: the measurement of the pH of simulated body fluid (SBF) solution and the analysis of the sample tablets through X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The sample tablets were submerged in SBF for varying durations of 7, 14, and 28 days. The bioactivity of the composite bioactive glass sample was assessed through characterization of alterations in its surface morphology, structure, and chemical composition. This evaluation was performed using scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction spectroscopy. Subsequently, the sample was immersed in simulated liquids to simulate its behavior in biological environments. The specific body fat percentage (SBF) was assessed over a 28-day period. The confirmation of the formation of a hydroxyapatite surface layer serves as a distinct indicator of bioactivity. The infusion of antibiotics into the composite bioactive glass specimen was done separately, and then the release kinetics of tetracycline and imipenem were tested in simulated body fluid (SBF). Antimicrobial effectiveness against various bacterial strains have been proven in numerous instances using both melt and sol-gel techniques to create multiple bioactive glass compositions. An elevated concentration of calcium ions within a solution has been observed to cause an increase in the pH level. In aqueous suspensions, bioactive glass particles manifest a significant antimicrobial impact. The composite bioactive glass specimen exhibits a gradual and uninterrupted release, which is highly desirable for a drug delivery system over a span of 72 hours. The reduction in absorption, which signals the loss of a portion of the antibiotic during the loading process from the initial phosphate-buffered saline solution, indicates the successful bonding of the two antibiotics to the surfaces of the bioactive glass samples. The sample denoted as BG/10SnO2/10NiO exhibits a higher loading of particles compared to the sample designated as BG/20SnO2 in the context of bioactive glass. The enriched sample demonstrates a heightened bactericidal impact on the bacteria under investigation while concurrently preserving its antibacterial characteristics. Tailored bioactive glass that incorporates hydroxyapatite, with a regulated and efficient release of drugs targeting bacterial infections, holds promise as a potential framework for bone implant scaffolds following rigorous clinical evaluation, thereby establishing potential future biomedical uses. During the modification process, the introduction of metal oxides into bioactive glass resulted in improved antibacterial characteristics, particularly in the composite bioactive glass sample that displayed the highest level of efficiency.Keywords: antibacterial, bioactive glasses, implant infections, multi drug resistant
Procedia PDF Downloads 1002827 Characterization of Monoclonal Antibodies Specific for Synthetic Cannabinoids
Authors: Hiroshi Nakayama, Yuji Ito
Abstract:
Synthetic cannabinoids have attracted much public attention recently in Japan. 1-pentyl-3-(1-naphthoyl)-indole (JWH-018), 1-pentyl-2-methyl-3-(1-naphthoyl) indole (JWH-015), 1-(5-fluoropentyl)-3- (1-(2,2,3,3- tetramethylcyclopropyl)) indole (XLR-11) and 1-methyl-3- (1-admantyl) indole (JWH-018 adamantyl analog) are known as synthetic cannabinoids and are also considered dangerous illegal drugs in Japan. It has become necessary to develop sensitive and useful methods for detection of synthetic cannabinoids. We produced two monoclonal antibodies (MAb) against synthetic cannabinoids, named NT1 (IgG1) and NT2 (IgG1), using Hybridoma technology. The cross-reactivity of these produced MAbs was evaluated using a competitive enzyme-linked immunosorbent assay (ELISA). In the results, we found both of these antibodies recognize many kinds of synthetic cannabinoids analog. However, neither of these antibodies recognizes naphtoic acid, 1-methyl-indole and indole known as a raw material of synthetic cannabinoid. Thus, the MAbs produced in this study could be a useful tool for the detection of synthetic cannabinoids.Keywords: ELISA, monoclonal antibody, sensor, synthetic cannabinoid
Procedia PDF Downloads 3552826 Application of Unmanned Aerial Vehicle in Urban Rail Transit Intelligent Inspection
Authors: Xinglu Nie, Feifei Tang, Chuntao Wei, Zhimin Ruan, Qianhong Zhu
Abstract:
Current method of manual-style inspection can not fully meet the requirement of the urban rail transit security in China. In this paper, an intelligent inspection method using unmanned aerial vehicle (UAV) is utilized. A series of orthophoto of rail transit monitored area was collected by UAV, image correction and registration were operated among multi-phase images, then the change detection was used to detect the changes, judging the engineering activities and human activities that may become potential threats to the security of urban rail. Not only qualitative judgment, but also quantitative judgment of changes in the security control area can be provided by this method, which improves the objectives and efficiency of the patrol results. The No.6 line of Chongqing Municipality was taken as an example to verify the validation of this method.Keywords: rail transit, control of protected areas, intelligent inspection, UAV, change detection
Procedia PDF Downloads 3702825 Screening for Hit Identification against Mycobacterium abscessus
Authors: Jichan Jang
Abstract:
Mycobacterium abscessus is a rapidly growing life-threatening mycobacterium with multiple drug-resistance mechanisms. In this study, we screened the library to identify active molecules targeting Mycobacterium abscessus using resazurin live/dead assays. In this screening assay, the Z-factor was 0.7, as an indication of the statistical confidence of the assay. A cut-off of 80% growth inhibition in the screening resulted in the identification of four different compounds at a single concentration (20 μM). Dose-response curves identified three different hit candidates, which generated good inhibitory curves. All hit candidates were expected to have different molecular targets. Thus, we found that compound X, identified, may be a promising candidate in the M. abscessus drug discovery pipeline.Keywords: Mycobacterium abscessus, antibiotics, drug discovery, emerging Pathogen
Procedia PDF Downloads 2092824 Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability
Authors: Srinivasan Chandrasekaran, Thailammai Chithambaram, Shihas A. Khader
Abstract:
The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.Keywords: condition assessment, damage detection, structural health monitoring, structural response, wireless sensor network
Procedia PDF Downloads 276