Search results for: 100% renewable electricity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2088

Search results for: 100% renewable electricity

1038 Teaching Prosthetic and Orthotics in Palestine: Between Reality and Challenges

Authors: Ahmad Dawabsheh

Abstract:

The science of prosthetics is a renewable science that serves all humanity, regardless of gender, religion and race, and its causes are many: wars, conflicts, traffic accidents, and others. The researcher believes that there are challenges facing the specialization, including that society views a negative view of the amputee, especially if it is a female. This research aims to focus on the reality of teaching prosthetics in Palestine, especially in the Arab American University, as it is the only major. As well as the challenges facing this major: financial, human, academic, laboratories, and others. The researcher used the descriptive and analytical approach, which is the closest approach to studying the subject. The researcher believes that there is a failure on the part of the state and the Ministry of Health in this matter. In addition to the lack of societal culture, as well as the large quantities of prosthetic fittings.

Keywords: prothetics, orthotics, Arab American University, Palestine

Procedia PDF Downloads 149
1037 Software-Defined Networks in Utility Power Networks

Authors: Ava Salmanpour, Hanieh Saeedi, Payam Rouhi, Elahe Hamzeil, Shima Alimohammadi, Siamak Hossein Khalaj, Mohammad Asadian

Abstract:

Software-defined network (SDN) is a network architecture designed to control network using software application in a central manner. This ability enables remote control of the whole network regardless of the network technology. In fact, in this architecture network intelligence is separated from physical infrastructure, it means that required network components can be implemented virtually using software applications. Today, power networks are characterized by a high range of complexity with a large number of intelligent devices, processing both huge amounts of data and important information. Therefore, reliable and secure communication networks are required. SDNs are the best choice to meet this issue. In this paper, SDN networks capabilities and characteristics will be reviewed and different basic controllers will be compared. The importance of using SDNs to escalate efficiency and reliability in utility power networks is going to be discussed and the comparison between the SDN-based power networks and traditional networks will be explained.

Keywords: software-defined network, SDNs, utility network, open flow, communication, gas and electricity, controller

Procedia PDF Downloads 118
1036 Development of a Wind Resource Assessment Framework Using Weather Research and Forecasting (WRF) Model, Python Scripting and Geographic Information Systems

Authors: Jerome T. Tolentino, Ma. Victoria Rejuso, Jara Kaye Villanueva, Loureal Camille Inocencio, Ma. Rosario Concepcion O. Ang

Abstract:

Wind energy is rapidly emerging as the primary source of electricity in the Philippines, although developing an accurate wind resource model is difficult. In this study, Weather Research and Forecasting (WRF) Model, an open source mesoscale Numerical Weather Prediction (NWP) model, was used to produce a 1-year atmospheric simulation with 4 km resolution on the Ilocos Region of the Philippines. The WRF output (netCDF) extracts the annual mean wind speed data using a Python-based Graphical User Interface. Lastly, wind resource assessment was produced using a GIS software. Results of the study showed that it is more flexible to use Python scripts than using other post-processing tools in dealing with netCDF files. Using WRF Model, Python, and Geographic Information Systems, a reliable wind resource map is produced.

Keywords: wind resource assessment, weather research and forecasting (WRF) model, python, GIS software

Procedia PDF Downloads 444
1035 Effect of Nickel Coating on Corrosion of Alloys in Molten Salts

Authors: Divya Raghunandanan, Bhavesh D. Gajbhiye, C. S. Sona, Channamallikarjun S. Mathpati

Abstract:

Molten fluoride salts are considered as potential coolants for next generation nuclear plants where the heat can be utilized for production of hydrogen and electricity. Among molten fluoride salts, FLiNaK (LiF-NaF-KF: 46.5-11.5-42 mol %) is a potential candidate for the coolant due to its superior thermophysical properties such as high temperature stability, boiling point, volumetric heat capacity and thermal conductivity. Major technical challenge in implementation is the selection of structural material which can withstand corrosive nature of FLiNaK. Corrosion study of alloys SS 316L, Hastelloy B, Ni-201 was performed in molten FLiNaK at 650°C. Nickel was found to be more resistant to corrosive attack in molten fluoride medium. Corrosion experiments were performed to study the effect of nickel coating on corrosion of alloys SS 316L and Hastelloy B. Weight loss of the alloys due to corrosion was measured and corrosion rate was estimated. The surface morphology of the alloys was analyzed by Scanning Electron Microscopy.

Keywords: corrosion, FLiNaK, hastelloy, weight loss

Procedia PDF Downloads 444
1034 The Feasibility of Using Green Architecture in the Desert Areas and Its Effectiveness

Authors: Abdulah Hamads Alatiah

Abstract:

The green architecture represents the essence of the sustainability process and the fundamental rule in the desert areas' reconstruction seeking to maintain the environmental balance. This study is based on the analytical descriptive approach, to extract the objectives of green architecture in the desert areas, and reveal the most important principles that contribute to highlight its economic, social, and environmental importance, in addition to standing on the most important technical standards that can be relied upon to deal with its environmental problems. The green architecture aims: making use of the alternative energy, reducing the conventional energy consumption, addressing its negative effects, adapting to the climate, innovation in design, providing the individuals' welfare and rationalizing the use of the available resources to maintain its environmental sustainability.

Keywords: green architecture, the warm-dry climate, natural lighting, environmental quality, renewable energy, weather changes

Procedia PDF Downloads 325
1033 Transforming Water-Energy-Gas Industry through Smart Metering and Blockchain Technology

Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang

Abstract:

Advanced metering technologies coupled with informatics creates an opportunity to form digital multi-utility service providers. These providers will be able to concurrently collect a customers’ medium-high resolution water, electricity and gas demand data and provide user-friendly platforms to feed this information back to customers and supply/distribution utility organisations. With the emergence of blockchain technology, a new research area has been explored which helps bring this multi-utility service provider concept to a much higher level. This study aims at introducing a breakthrough system architecture where smart metering technology in water, energy, and gas (WEG) are combined with blockchain technology to provide customer a novel real-time consumption report and decentralized resource trading platform. A pilot study on 4 properties in Australia has been undertaken to demonstrate this system, where benefits for customers and utilities are undeniable.

Keywords: blockchain, digital multi-utility, end use, demand forecasting

Procedia PDF Downloads 174
1032 Maximizing the Output of Solar Photovoltaic System

Authors: Vipresh Mehta , Aman Abhishek, Jatin Batra, Gautam Iyer

Abstract:

Huge amount of solar radiation reaching the earth can be harnessed to provide electricity through Photo voltaic (PV) panels. The solar PV is an exciting technology but suffers from low efficiency. A study on low efficiency in multi MW solar power plants reveals that the electric yield of the PV modules is reduced due to reflection of the irradiation from the sun and when a module’s temperature is elevated, as there is decrease in the voltage and efficiency. We intend to alter the structure of the PV system, We also intend to improve the efficiency of the Solar Photo Voltaic Panels by active cooling to reduce the temperature losses considerably and decrease reflection losses to some extent. Reflectors/concentrators and anti-reflecting coatings are also used to intensify the amount of output produced from the system. Apart from this, transformer-less Grid-tied Inverter. And also, a T-LCL immitance circuit is used to reduce the harmonics and produce a constant output from the entire system.

Keywords: PV panels, efficiency improvement, active cooling, quantum dots, organic-inorganic hybrid 3D panel, ground water tunneling

Procedia PDF Downloads 774
1031 Exergy Analyses of Wind Turbine

Authors: Muhammad Abid

Abstract:

Utilization of renewable energy resources for energy conservation, pollution prevention, resource efficiency and systems integration is very important for sustainable development. In this study, we perform energy and exergy analyses of a wind turbine, located on the roof of Mechanical Engineering Department, King Saud University, and Riyadh, Saudi Arabia. The turbine is part of a hybrid photovoltaic (PV)-wind system with hydrogen storage. The power output from this turbine varies between 1.5 and 5.5 kW with a rated wind speed of 12 m/s and a cut-in wind speed of 2.4 m/s. We utilize a wide range of experimental data in the analysis and assessment. We determine energy and exergy efficiencies. The energy efficiency changes between 0% to 45% while the exergy efficiency varies between 0% and 31.3%. We also determined some of the exergoeconomic parameters that are the ratios of energy and exergy loss rates to the capital cost (R en and R ex), respectively. (R en) changes between 0.96% and 59.03% for different values of velocity while R ex has a maximum value of 53.62% for the highest wind speed.

Keywords: exergy, efficiency, performance evaluation, wind energy

Procedia PDF Downloads 373
1030 Ab Initio Multiscale Catalytic Synthesis/Cracking Reaction Modelling of Ammonia as Liquid Hydrogen Carrier

Authors: Blaž Likozar, Andraž Pavlišič, Matic Pavlin, Taja Žibert, Aleksandra Zamljen, Sašo Gyergyek, Matej Huš

Abstract:

Ammonia is gaining recognition as a carbon-free fuel for energy-intensive applications, particularly transportation, industry, and power generation. Due to its physical properties, high energy density of 3 kWh kg-1, and high gravimetric hydrogen capacity of 17.6 wt%, ammonia is an efficient energy vector for green hydrogen, capable of mitigating hydrogen’s storage, distribution, and infrastructure deployment limitations. Chemicalstorage in the form of ammonia provides an efficient and affordable solution for energy storage, which is currently a critical step in overcoming the intermittency of abundant renewable energy sources with minimal or no environmental impact. Experiments were carried out to validate the modelling in a packed bed reactor, which proved to be agreeing.

Keywords: hydrogen, ammonia, catalysis, modelling, kinetics

Procedia PDF Downloads 72
1029 Energy Consumption Modeling for Strawberry Greenhouse Crop by Adaptive Nero Fuzzy Inference System Technique: A Case Study in Iran

Authors: Azar Khodabakhshi, Elham Bolandnazar

Abstract:

Agriculture as the most important food manufacturing sector is not only the energy consumer, but also is known as energy supplier. Using energy is considered as a helpful parameter for analyzing and evaluating the agricultural sustainability. In this study, the pattern of energy consumption of strawberry greenhouses of Jiroft in Kerman province of Iran was surveyed. The total input energy required in the strawberries production was calculated as 113314.71 MJ /ha. Electricity with 38.34% contribution of the total energy was considered as the most energy consumer in strawberry production. In this study, Neuro Fuzzy networks was used for function modeling in the production of strawberries. Results showed that the best model for predicting the strawberries function had a correlation coefficient, root mean square error (RMSE) and mean absolute percentage error (MAPE) equal to 0.9849, 0.0154 kg/ha and 0.11% respectively. Regards to these results, it can be said that Neuro Fuzzy method can be well predicted and modeled the strawberry crop function.

Keywords: crop yield, energy, neuro-fuzzy method, strawberry

Procedia PDF Downloads 386
1028 Energy Management Techniques in Mobile Robots

Authors: G. Gurguze, I. Turkoglu

Abstract:

Today, the developing features of technological tools with limited energy resources have made it necessary to use energy efficiently. Energy management techniques have emerged for this purpose. As with every field, energy management is vital for robots that are being used in many areas from industry to daily life and that are thought to take up more spaces in the future. Particularly, effective power management in autonomous and multi robots, which are getting more complicated and increasing day by day, will improve the performance and success. In this study, robot management algorithms, usage of renewable and hybrid energy sources, robot motion patterns, robot designs, sharing strategies of workloads in multiple robots, road and mission planning algorithms are discussed for efficient use of energy resources by mobile robots. These techniques have been evaluated in terms of efficient use of existing energy resources and energy management in robots.

Keywords: energy management, mobile robot, robot administration, robot management, robot planning

Procedia PDF Downloads 272
1027 Evaluation of Drilling-Induced Delamination of Flax/Epoxy Composites by Non-Destructive Testing Methods

Authors: Hadi Rezghimaleki, Masatoshi Kubouchi, Yoshihiko Arao

Abstract:

The use of natural fiber composites (NFCs) is growing at a fast rate regarding industrial applications and principle researches due to their eco-friendly, renewable nature, and low density/costs. Drilling is one of the most important machining operations that are carried out on natural fiber composites. Delamination is a major concern in the drilling process of NFCs that affects the structural integrity and long-term reliability of the machined components. Flax fiber reinforced epoxy composite laminates were prepared by hot press technique. In this research, we evaluated drilling-induced delamination of flax/epoxy composites by X-ray computed tomography (CT), ultrasonic testing (UT), and optical methods and compared the results.

Keywords: natural fiber composites, flax/epoxy, X-ray CT, ultrasonic testing

Procedia PDF Downloads 302
1026 Aeration of Fish Pond Aquaculture Using Wind Power

Authors: Fatima Hassan Mohamed Ahmed

Abstract:

This study discusses the possibility techniques of using wind energy to operate the aeration devices which are used in the intensive fish farm for Nile Tilapia. The main objective is to show at what expense this renewable energy source can increase the production. The study was done for the oxygen consumption by 1 kg fishes of tilapia put in 1 m3. The theoretical study shows that the fishes consume around 0.5 gO2/hour when using paddle wheels with average oxygen transfer rate 2.6 kgO2/kW.h comparing this with dissolved oxygen consumed by fishes it was found that 1 kW will aerate 5200 m3 and the same power will aerate 1800 m3 when using air diffuser system with average oxygen transfer rate 0.9 kgO2/kW.h, this power can be supplied by the wind turbine with dimension with a tower 6 m high and diameter 2.7 m.

Keywords: aeration, fish pond, wind, power

Procedia PDF Downloads 644
1025 Banking Innovation and Customers' Satisfaction in Nigeria: A Case Study of Some Selected Banks

Authors: Jameelah O. Yaqub

Abstract:

The financial industry all over the world has undergone and still undergoing great transformation especially with the introduction of e-products which involves the use of computers and telecommunications to enable banking transactions to be done by telephone or computer rather than by humans. The adoption of e-banking in Nigeria is becoming more popular with customers now being able to use the ATM cards for different transactions. The internet banking, POS machines, telephone banking as well as mobile banking are some other e-products being used in Nigeria. This study examines how satisfied bank customers are with the e-products. The study found that the ATM is the most popular e-products among bank customers in Nigeria; followed by the POS. The least use of the e-products is telephone banking. The study also found that visits to banks for transactions declined with the use of e-products. The chi-square analysis shows that there is significant relationship between the use of banks’ e-products and customers’ satisfaction. One of the major reason adduced by respondents for low usage of e-products is insecurity or fear of cyber fraud, it is therefore recommended that banks should provide adequate. Security for transactions and ensure the proper backing up of critical data files. In addition, government should ensure stable electricity supply to reduce banks’ running costs and consequently, customers’ cost of transactions.

Keywords: banks, e-products, innovation, Nigeria

Procedia PDF Downloads 340
1024 Assessment of Quality of Drinking Water in Residential Houses of Kuwait by Using GIS Method

Authors: Huda Aljabi

Abstract:

The existence of heavy metals similar to cadmium, arsenic, lead and mercury in the drinking water be able to be a threat to public health. The amount of the substances of these heavy metals in drinking water has expected importance. The National Primary Drinking Water Regulations have set limits for the concentrations of these elements in drinking water because of their toxicity. Furthermore, bromate shaped during the disinfection of drinking water by Ozonation can also be a health hazard. The Paper proposed here will concentrate on the compilation of all available data and information on the presence of trace metals and bromate in the drinking water at residential houses distributed over different areas in Kuwait. New data will also be collected through a sampling of drinking water at some of the residential houses present in different areas of Kuwait and their analysis for the contents of trace metals and bromate. The collected data will be presented on maps showing the distribution of these metals and bromate in the drinking water of Kuwait. Correlation among different chemical parameters will also be investigated using the GRAPHER software. This will help both the Ministry of Electricity and Water (MEW) and the Ministry of Health (MOH) in taking corrective measures and also in planning the infrastructure activities for the future.

Keywords: bromate, ozonation, GIS, heavy metals

Procedia PDF Downloads 184
1023 Dynamic Self-Scheduling of Pumped-Storage Power Plant in Energy and Ancillary Service Markets Using Sliding Window Technique

Authors: P. Kanakasabapathy, S. Radhika

Abstract:

In the competitive electricity market environment, the profit of the pumped-storage plant in the energy market can be maximized by operating it as a generator, when market clearing price is high and as a pump, to pump water from lower reservoir to upper reservoir, when the price is low. An optimal self-scheduling plan has been developed for a pumped-storage plant, carried out on weekly basis in order to maximize the profit of the plant, keeping into account of all the major uncertainties such as the sudden ancillary service delivery request and the price forecasting errors. For a pumped storage power plant to operate in a real time market successive self-scheduling has to be done by considering the forecast of the day-ahead market and the modified reservoir storage due to the ancillary service request of the previous day. Sliding Window Technique has been used for successive self-scheduling to ensure profit for the plant.

Keywords: ancillary services, BPSO, power system economics, self-scheduling, sliding window technique

Procedia PDF Downloads 406
1022 Estimation of Eucalyptus Wood Calorific Potential for Energy Recovering

Authors: N. Ouslimani, N. Hakimi, H. Aksas

Abstract:

The reduction of oil reserves in the world makes that many countries are directed towards the study and the use of local and renewable energies. For this purpose, wood energy represents the material of choice. The energy production is primarily thermal and corresponds to a heating of comfort, auxiliary or principal. Wood is generally conditioned in the form of logs, of pellets, even of plates. In Algeria, this way of energy saving could contribute to the safeguarding of the environment, as to the recovery of under wood products (branches, barks and various wastes on the various transformation steps). This work is placed within the framework general of the search for new sources of energy starting from the recovery of the lignocellulosic matter. In this direction, we proposed various sources of products (biomass, under product and by-products) relating to the ‘Eucalyptus species’ being able to be developed, of which we carried out a preliminary physicochemical study, necessary to the development of the densified products with high calorific value.

Keywords: biomass, calorific value, combustion, energy recovery

Procedia PDF Downloads 295
1021 Energy Atlas: Geographic Information Systems-Based Energy Analysis and Planning Tool

Authors: Katarina Pogacnik, Ursa Zakrajsek, Nejc Sirk, Ziga Lampret

Abstract:

Due to an increase in living standards along with global population growth and a trend of urbanization, municipalities and regions are faced with an ever rising energy demand. A challenge has arisen for cities around the world to modify the energy supply chain in order to reduce its consumption and CO₂ emissions. The aim of our work is the development of a computational-analytical platform for dynamic support in decision-making and the determination of economic and technical indicators of energy efficiency in a smart city, named Energy Atlas. Similar products in this field focuse on a narrower approach, whereas in order to achieve its aim, this platform encompasses a wider spectrum of beneficial and important information for energy planning on a local or regional scale. GIS based interactive maps provide an extensive database on the potential, use and supply of energy and renewable energy sources along with climate, transport and spatial data of the selected municipality. Beneficiaries of Energy atlas are local communities, companies, investors, contractors as well as residents. The Energy Atlas platform consists of three modules named E-Planning, E-Indicators and E-Cooperation. The E-Planning module is a comprehensive data service, which represents a support towards optimal decision-making and offers a sum of solutions and feasibility of measures and their effects in the area of efficient use of energy and renewable energy sources. The E-Indicators module identifies, collects and develops optimal data and key performance indicators and develops an analytical application service for dynamic support in managing a smart city in regards to energy use and sustainable environment. In order to support cooperation and direct involvement of citizens of the smart city, the E-cooperation is developed with the purpose of integrating the interdisciplinary and sociological aspects of energy end-users. Interaction of all the above-described modules contributes to regional development because it enables for a precise assessment of the current situation, strategic planning, detection of potential future difficulties and also the possibility of public involvement in decision-making. From the implementation of the technology in Slovenian municipalities of Ljubljana, Piran, and Novo mesto, there is evidence to suggest that the set goals are to be achieved to a great extent. Such thorough urban energy planning tool is viewed as an important piece of the puzzle towards achieving a low-carbon society, circular economy and therefore, sustainable society.

Keywords: circular economy, energy atlas, energy management, energy planning, low-carbon society

Procedia PDF Downloads 309
1020 Climate Change and Poverty Nexus

Authors: O. Babalola Oladapo, A. Igbatayo Samuel

Abstract:

Climate change and poverty are global issues which cannot be waved aside in welfare of the ever increasing population. The causes / consequences are far more elaborate in developing countries, including Nigeria, which poses threats to the existence of man and his environment. The dominant role of agriculture makes it obvious that even minor climate deteriorations can cause devastating socio-economic consequences. Policies to curb the climate change by reducing the consumption of fossil fuels like oil, gas or carbon compounds have significant economical impacts on the producers/suppliers of these fuels. Thus a unified political narrative that advances both agendas is needed, because their components of an environmental coin that needs to be addressed. The developed world should maintain a low-carbon growth & real commitment of 0.7% of gross national income, as aid to developing countries & renewable energy approach should be emphasized, hence global poverty combated.

Keywords: climate change, greenhouse gases, Nigeria, poverty

Procedia PDF Downloads 379
1019 Risks of Climate Change on Buildings

Authors: Yahya N. Alfraidi, Abdel Halim Boussabaine

Abstract:

Climate change risk impacts are one of the most challenging aspects that faces the built environment now and the near future. The impacts of climate change on buildings are considered in four different dimensions: physical, economic, social, and management. For each of these, the risks are discussed as they arise from various effects linked to climate change, including windstorms, precipitation, temperature change, flooding, and sea-level rise. For example, building assets in cities will be exposed to extreme hot summer days and nights due to the urban heat island effect and pollution. Buildings also could be vulnerable to water, electricity, gas, etc., scarcity. Building materials, fabric and systems could also be stressed by the emerging climate risks. More impotently the building users might experience extreme internal and extern comfort conditions leading to lower productivity, wellbeing and health problems. Thus, the main aim of this paper to document the emerging risks from climate change on building assets. An in-depth discussion on the consequences of these climate change risk is provided. It is expected that the outcome of this research will be a set of risk design indicators for developing and procuring resilient building assets.

Keywords: climate change, risks of climate change, risks on building from climate change, buildings

Procedia PDF Downloads 629
1018 The Influence of Disturbances Generated by Arc Furnaces on the Power Quality

Authors: Z. Olczykowski

Abstract:

The paper presents the impact of work on the electric arc furnace. Arc equipment is one of the largest receivers powered by the power system. Electric arc disturbances arising during melting process occurring in these furnaces are the cause of an abrupt change of the passive power of furnaces. Currents drawn by these devices undergo an abrupt change, which in turn cause voltage fluctuations and light flicker. The quantitative evaluation of the voltage fluctuations is now the basic criterion of assessment of an influence of unquiet receiver on the supplying net. The paper presents the method of determination of range of voltage fluctuations and light flicker at parallel operation of arc devices. The results of measurements of voltage fluctuations and light flicker indicators recorded in power supply networks of steelworks were presented, with different number of parallel arc devices. Measurements of energy quality parameters were aimed at verifying the proposed method in practice. It was also analyzed changes in other parameters of electricity: the content of higher harmonics, asymmetry, voltage dips.

Keywords: power quality, arc furnaces, propagation of voltage fluctuations, disturbances

Procedia PDF Downloads 141
1017 Stability Analysis of a Low Power Wind Turbine for the Simultaneous Generation of Energy through Two Electric Generators

Authors: Daniel Icaza, Federico Córdova, Chiristian Castro, Fernando Icaza, Juan Portoviejo

Abstract:

In this article, the mathematical model is presented, and simulations were carried out using specialized software such as MATLAB before the construction of a 900-W wind turbine. The present study was conducted with the intention of taking advantage of the rotation of the blades of the wind generator after going through a process of amplification of speed by means of a system of gears to finally mechanically couple two electric generators of similar characteristics. This coupling allows generating a maximum voltage of 6 V in DC for each generator and putting in series the 12 V DC is achieved, which is later stored in batteries and used when the user requires it. Laboratory tests were made to verify the level of power generation produced based on the wind speed at the entrance of the blades.

Keywords: smart grids, wind turbine, modeling, renewable energy, robust control

Procedia PDF Downloads 236
1016 Pre-Treatment of Anodic Inoculum with Nitroethane to Improve Performance of a Microbial Fuel Cell

Authors: Rajesh P.P., Md. Tabish Noori, Makarand M. Ghangrekar

Abstract:

Methanogenic substrate loss is reported to be a major bottleneck in microbial fuel cell which significantly reduces the power production capacity and coulombic efficiency (CE) of microbial fuel cell (MFC). Nitroethane is found to be a potent inhibitor of hydrogenotrophic methanogens in rumen fermentation process. Influence of nitroethane pre-treated sewage sludge inoculum on suppressing the methanogenic activity and enhancing the electrogenesis in MFC was evaluated. MFC inoculated with nitroethane pre-treated anodic inoculum demonstrated a maximum operating voltage of 541 mV, with coulombic efficiency and sustainable volumetric power density of 39.85 % and 14.63 W/m3 respectively. Linear sweep voltammetry indicated a higher electron discharge on the anode surface due to enhancement of electrogenic activity while suppressing methanogenic activity. A 63 % reduction in specific methanogenic activity was observed in anaerobic sludge pre-treated with nitroethane; emphasizing significance of this pretreatment for suppressing methanogenesis and its utility for enhancing electricity generation in MFC.

Keywords: coulombic efficiency, methanogenesis inhibition, microbial fuel cell, nitroethane

Procedia PDF Downloads 319
1015 Methodology of Geometry Simplification for Conjugate Heat Transfer of Electrical Rotating Machines Using Computational Fluid Dynamics

Authors: Sachin Aggarwal, Sarah Kassinger, Nicholas Hoffman

Abstract:

Geometry simplification is a key step in performing conjugate heat transfer analysis using CFD. This paper proposes a standard methodology for the geometry simplification of rotating machines, such as electrical generators and electrical motors (both air and liquid-cooled). These machines are extensively deployed throughout the aerospace and automotive industries, where optimization of weight, volume, and performance is paramount -especially given the current global transition to renewable energy sources and vehicle hybridization and electrification. Conjugate heat transfer analysis is an essential step in optimizing their complex design. This methodology will help in reducing convergence issues due to poor mesh quality, thus decreasing computational cost and overall analysis time.

Keywords: CFD, electrical machines, Geometry simplification, heat transfer

Procedia PDF Downloads 136
1014 Renewable Energy Interfaced Shunt Active Filter Using a Virtual Flux Direct Power Control

Authors: M. R. Bengourina, M. Rahli, L. Hassaine, S. Saadi

Abstract:

In this study, we present a control method entitled virtual flux direct power control of a grid connected photovoltaic system associated with an active power filter. The virtual flux direct control of power (VF-DPC) is employed for the calculation of reference current generation. In this technique, the switches states of inverter are selected from a table of switching based on the immediate errors between the active and reactive powers and their reference values. The objectives of this paper are the reduction of Total Harmonic Distortion (THD) of source current, compensating reactive power and injecting the maximum active power available from the PV array into the load and/or grid. MATLAB/SIMULINK simulations are provided to demonstrate the performance of the proposed approach.

Keywords: shunt active power filter, VF-DPC, photovoltaic, MPPT

Procedia PDF Downloads 325
1013 High Performance Nanomaterials for Sustainable and Modern Façade Application

Authors: Farrin Ghorbanalavi, Nihal Arıoğlu

Abstract:

The concept of enhancing mechanical /thermal/physical properties of architectural materials is being practiced for over five decades. In comparison with other approaches, the current nanotechnology era equally attracted the structural scientists, engineers, and industries. It simply promises that using building blocks with dimensions in the nano size range makes it possible to design and develop new multi-functional materials. This research focuses on understanding the effects of nanotechnology on the building facade and new facade concepts based on the new possibilities of nanotechnology. Mentioned factors are very prosperous for the comfort as well as sustainability of the building itself. Furthermore, the study suggests that the potential for energy conservation and reduced waste, toxicity, non-renewable resource consumption, and carbon emissions through the architectural applications of nanotechnologies significant. More clearly, it provides us the information about what does the future hold for surface structures.

Keywords: sustainable, nano materials, façade, energy efficiency

Procedia PDF Downloads 561
1012 Harvesting Value-added Products Through Anodic Electrocatalytic Upgrading Intermediate Compounds Utilizing Biomass to Accelerating Hydrogen Evolution

Authors: Mehran Nozari-Asbemarz, Italo Pisano, Simin Arshi, Edmond Magner, James J. Leahy

Abstract:

Integrating electrolytic synthesis with renewable energy makes it feasible to address urgent environmental and energy challenges. Conventional water electrolyzers concurrently produce H₂ and O₂, demanding additional procedures in gas separation to prevent contamination of H₂ with O₂. Moreover, the oxygen evolution reaction (OER), which is sluggish and has a low overall energy conversion efficiency, does not deliver a significant value product on the electrode surface. Compared to conventional water electrolysis, integrating electrolytic hydrogen generation from water with thermodynamically more advantageous aqueous organic oxidation processes can increase energy conversion efficiency and create value-added compounds instead of oxygen at the anode. One strategy is to use renewable and sustainable carbon sources from biomass, which has a large annual production capacity and presents a significant opportunity to supplement carbon sourced from fossil fuels. Numerous catalytic techniques have been researched in order to utilize biomass economically. Because of its safe operating conditions, excellent energy efficiency, and reasonable control over production rate and selectivity using electrochemical parameters, electrocatalytic upgrading stands out as an appealing choice among the numerous biomass refinery technologies. Therefore, we propose a broad framework for coupling H2 generation from water splitting with oxidative biomass upgrading processes. Four representative biomass targets were considered for oxidative upgrading that used a hierarchically porous CoFe-MOF/LDH @ Graphite Paper bifunctional electrocatalyst, including glucose, ethanol, benzyl, furfural, and 5-hydroxymethylfurfural (HMF). The potential required to support 50 mA cm-2 is considerably lower than (~ 380 mV) the potential for OER. All four compounds can be oxidized to yield liquid byproducts with economic benefit. The electrocatalytic oxidation of glucose to the value-added products, gluconic acid, glucuronic acid, and glucaric acid, was examined in detail. The cell potential for combined H₂ production and glucose oxidation was substantially lower than for water splitting (1.44 V(RHE) vs. 1.82 V(RHE) for 50 mA cm-2). In contrast, the oxidation byproduct at the anode was significantly more valuable than O₂, taking advantage of the more favorable glucose oxidation in comparison to the OER. Overall, such a combination of HER and oxidative biomass valorization using electrocatalysts prevents the production of potentially explosive H₂/O₂mixtures and produces high-value products at both electrodes with lower voltage input, thereby increasing the efficiency and activity of electrocatalytic conversion.

Keywords: biomass, electrocatalytic, glucose oxidation, hydrogen evolution

Procedia PDF Downloads 101
1011 Investigation of the Usability of Biochars Obtained from Olive Pomace and Smashed Olive Seeds as Additives for Bituminous Binders

Authors: Muhammed Ertugrul Celoglu, Beyza Furtana, Mehmet Yilmaz, Baha Vural Kok

Abstract:

Biomass, which is considered to be one of the largest renewable energy sources in the world, has a potential to be utilized as a bitumen additive after it is processed by a wide variety of thermochemical methods. Furthermore, biomasses are renewable in short amounts of time, and they possess a hydrocarbon structure. These characteristics of biomass promote their usability as additives. One of the most common ways to create materials with significant economic values from biomasses is the processes of pyrolysis. Pyrolysis is defined as the process of an organic matter’s thermochemical degradation (carbonization) at a high temperature and in an anaerobic environment. The resultant liquid substance at the end of the pyrolysis is defined as bio-oil, whereas the resultant solid substance is defined as biochar. Olive pomace is the resultant mildly oily pulp with seeds after olive is pressed and its oil is extracted. It is a significant source of biomass as the waste of olive oil factories. Because olive pomace is waste material, it could create problems just as other waste unless there are appropriate and acceptable areas of utilization. The waste material, which is generated in large amounts, is generally used as fuel and fertilizer. Generally, additive materials are used in order to improve the properties of bituminous binders, and these are usually expensive materials, which are produced chemically. The aim of this study is to investigate the usability of biochars obtained after subjecting olive pomace and smashed olive seeds, which are considered as waste materials, to pyrolysis as additives in bitumen modification. In this way, various ways of use will be provided for waste material, providing both economic and environmental benefits. In this study, olive pomace and smashed olive seeds were used as sources of biomass. Initially, both materials were ground and processed through a No.50 sieve. Both of the sieved materials were subjected to pyrolysis (carbonization) at 400 ℃. Following the process of pyrolysis, bio-oil and biochar were obtained. The obtained biochars were added to B160/220 grade pure bitumen at 10% and 15% rates and modified bitumens were obtained by mixing them in high shear mixtures at 180 ℃ for 1 hour at 2000 rpm. Pure bitumen and four different types of bitumen obtained as a result of the modifications were tested with penetration, softening point, rotational viscometer, and dynamic shear rheometer, evaluating the effects of additives and the ratios of additives. According to the test results obtained, both biochar modifications at both ratios provided improvements in the performance of pure bitumen. In the comparison of the test results of the binders modified with the biochars of olive pomace and smashed olive seed, it was revealed that there was no notable difference in their performances.

Keywords: bituminous binders, biochar, biomass, olive pomace, pomace, pyrolysis

Procedia PDF Downloads 135
1010 The Application of Maintenance Strategy in Energy Power Plant: A Case Study

Authors: Steven Vusmuzi Mashego, Opeyeolu Timothy Laseinde

Abstract:

This paper presents a case study on applying maintenance strategies observed in a turbo-generator at a coal power plant. Turbo generators are one of the primary and critical components in energy generation. It is essential to apply correct maintenance strategies and apply operational procedures accordingly. The maintenance strategies are implemented to ensure the high reliability of the equipment. The study was carried out at a coal power station which will transit to a cleaner energy source in the nearest future. The study is relevant as lessons learned in this system will support plans and operational models implemented when cleaner energy sources replace coal-powered turbines. This paper first outlines different maintenance strategies executed on the turbo-generator modules. Secondly, the impacts of human factors on a coal power station are discussed, and the findings prompted recommendations for future actions.

Keywords: maintenance strategies, turbo generator, operational error, human factor, electricity generation

Procedia PDF Downloads 118
1009 Re-Analyzing Energy-Conscious Design

Authors: Svetlana Pushkar, Oleg Verbitsky

Abstract:

An energy-conscious design for a classroom in a hot-humid climate is reanalyzed. The hypothesis of this study is that use of photovoltaic (PV) electricity generation in building operation energy consumption will lead to re-analysis of the energy-conscious design. Therefore, the objective of this study is to reanalyze the energy-conscious design by evaluating the environmental impact of operational energy with PV electrical generation. Using the hierarchical design structure of Eco-indicator 99, the alternatives for energy-conscious variables are statistically evaluated by applying a two-stage nested (hierarchical) ANOVA. The recommendations for the preferred solutions for application of glazing types, wall insulation, roof insulation, window size, roof mass, and window shading design alternatives were changed (for example, glazing type recommendations were changed from low-emissivity glazing, green, and double- glazed windows to low-emissivity glazing only), whereas the applications for the lighting control system and infiltration are not changed. Such analysis of operational energy can be defined as environment-conscious analysis.

Keywords: ANOVA, Eco-Indicator 99, energy-conscious design, hot–humid climate, photovoltaic

Procedia PDF Downloads 193