Search results for: sustainable tourism area
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12903

Search results for: sustainable tourism area

2403 Microstructural Mechanical Properties of Human Trabecular Bone Based on Nanoindentation Test

Authors: K. Jankowski, M. Pawlikowski, A. Makuch, K. Skalski

Abstract:

Depth-sensing indentation (DSI) or nanoindentation is becoming a more and more popular method of measuring mechanical properties of various materials and tissues at a micro-scale. This technique allows measurements without complicated sample preparation procedures which makes this method very useful. As a result of measurement force and displacement of the intender are obtained. It is also possible to determine three measures of hardness i.e. Martens hardness (HM), nanohardness (HIT), Vickers hardness (HV) and Young modulus EIT. In this work trabecular bone mechanical properties were investigated. The bone samples were harvested from human femoral heads during hip replacement surgery. Patients were of different age, sexes and stages of tissue degeneration caused by osteoarthritis. The specimens were divided into three groups. Each group contained samples harvested from patients of different range of age. All samples were investigated with the same measurement conditions. The maximum load was Pmax=500 mN and the loading rate was 500 mN/min. The tests were held without hold at the peak force. The tests were conducted with indenter Vickers tip and spherical tip of the diameter 0.2 mm. Each trabecular bone sample was tested 7 times in a close area of the same trabecula. The measured loading P as a function of indentation depth allowed to obtain hysteresis loop and HM, HIT, HV, EIT. Results for arbitrarily chosen sample are HM=289.95 ± 42.31 MPa, HIT=430.75 ± 45.37 MPa, HV=40.66 ± 4.28 Vickers, EIT=7.37 ± 1.84 GPa for Vickers tip and HM=115.19 ± 15.03 MPa, HIT=165.80 ± 19.30 MPa, HV=16.90 ± 1.97 Vickers, EIT=5.30 ± 1.31 GPa for spherical tip. Results of nanoindentation tests show that this method is very useful and is perfect for obtaining mechanical properties of trabecular bone. Estimated values of elastic modulus are similar. The differences between hardness are significant but it is a result of using two different types of tips. However, it has to be emphasised that the differences in the values of elastic modulus and hardness result from different testing protocols, anisotropy and asymmetry of the micro-samples and the hydration of bone.

Keywords: human bone, mechanical properties, nano hardness nanoindentation, trabecular bone

Procedia PDF Downloads 256
2402 Technological Development of a Biostimulant Bioproduct for Fruit Seedlings: An Engineering Overview

Authors: Andres Diaz Garcia

Abstract:

The successful technological development of any bioproduct, including those of the biostimulant type, requires to adequately completion of a series of stages allied to different disciplines that are related to microbiological, engineering, pharmaceutical chemistry, legal and market components, among others. Engineering as a discipline has a key contribution in different aspects of fermentation processes such as the design and optimization of culture media, the standardization of operating conditions within the bioreactor and the scaling of the production process of the active ingredient that it will be used in unit operations downstream. However, all aspects mentioned must take into account many biological factors of the microorganism such as the growth rate, the level of assimilation to various organic and inorganic sources and the mechanisms of action associated with its biological activity. This paper focuses on the practical experience within the Colombian Corporation for Agricultural Research (Agrosavia), which led to the development of a biostimulant bioproduct based on native rhizobacteria Bacillus amyloliquefaciens, oriented mainly to plant growth promotion in cape gooseberry nurseries and fruit crops in Colombia, and the challenges that were overcome from the expertise in the area of engineering. Through the application of strategies and engineering tools, a culture medium was optimized to obtain concentrations higher than 1E09 CFU (colony form units)/ml in liquid fermentation, the process of biomass production was standardized and a scale-up strategy was generated based on geometric (H/D of bioreactor relationships), and operational criteria based on a minimum dissolved oxygen concentration and that took into account the differences in the capacity of control of the process in the laboratory and pilot scales. Currently, the bioproduct obtained through this technological process is in stages of registration in Colombia for cape gooseberry fruits for export.

Keywords: biochemical engineering, liquid fermentation, plant growth promoting, scale-up process

Procedia PDF Downloads 88
2401 Utilization of Activated Carbon for the Extraction and Separation of Methylene Blue in the Presence of Acid Yellow 61 Using an Inclusion Polymer Membrane

Authors: Saâd Oukkass, Abderrahim Bouftou, Rachid Ouchn, L. Lebrun, Miloudi Hlaibi

Abstract:

We invariably exist in a world steeped in colors, whether in our clothing, food, cosmetics, or even medications. However, most of the dyes we use pose significant problems, being both harmful to the environment and resistant to degradation. Among these dyes, methylene blue and acid yellow 61 stand out, commonly used to dye various materials such as cotton, wood, and silk. Fortunately, various methods have been developed to treat and remove these polluting dyes, among which membrane processes play a prominent role. These methods are praised for their low energy consumption, ease of operation, and their ability to achieve effective separation of components. Adsorption on activated carbon is also a widely employed technique, complementing the basic processes. It proves particularly effective in capturing and removing organic compounds from water due to its substantial specific surface area while retaining its properties unchanged. In the context of our study, we examined two crucial aspects. Firstly, we explored the possibility of selectively extracting methylene blue from a mixture containing another dye, acid yellow 61, using a polymer inclusion membrane (PIM) made of PVA. After characterizing the morphology and porosity of the membrane, we applied kinetic and thermodynamic models to determine the values of permeability (P), initial flux (J0), association constant (Kass), and apparent diffusion coefficient (D*). Subsequently, we measured activation parameters (activation energy (Ea), enthalpy (ΔH#ass), entropy (ΔS#)). Finally, we studied the effect of activated carbon on the processes carried out through the membrane, demonstrating a clear improvement. These results make the membrane developed in this study a potentially pivotal player in the field of membrane separation.

Keywords: dyes, methylene blue, membrane, activated carbon

Procedia PDF Downloads 42
2400 Metal Binding Phage Clones in a Quest for Heavy Metal Recovery from Water

Authors: Tomasz Łęga, Marta Sosnowska, Mirosława Panasiuk, Lilit Hovhannisyan, Beata Gromadzka, Marcin Olszewski, Sabina Zoledowska, Dawid Nidzworski

Abstract:

Toxic heavy metal ion contamination of industrial wastewater has recently become a significant environmental concern in many regions of the world. Although the majority of heavy metals are naturally occurring elements found on the earth's surface, anthropogenic activities such as mining and smelting, industrial production, and agricultural use of metals and metal-containing compounds are responsible for the majority of environmental contamination and human exposure. The permissible limits (ppm) for heavy metals in food, water and soil are frequently exceeded and considered hazardous to humans, other organisms, and the environment as a whole. Human exposure to highly nickel-polluted environments causes a variety of pathologic effects. In 2008, nickel received the shameful name of “Allergen of the Year” (GILLETTE 2008). According to the dermatologist, the frequency of nickel allergy is still growing, and it can’t be explained only by fashionable piercing and nickel devices used in medicine (like coronary stents and endoprostheses). Effective remediation methods for removing heavy metal ions from soil and water are becoming increasingly important. Among others, methods such as chemical precipitation, micro- and nanofiltration, membrane separation, conventional coagulation, electrodialysis, ion exchange, reverse and forward osmosis, photocatalysis and polymer or carbon nanocomposite absorbents have all been investigated so far. The importance of environmentally sustainable industrial production processes and the conservation of dwindling natural resources has highlighted the need for affordable, innovative biosorptive materials capable of recovering specific chemical elements from dilute aqueous solutions. The use of combinatorial phage display techniques for selecting and recognizing material-binding peptides with a selective affinity for any target, particularly inorganic materials, has gained considerable interest in the development of advanced bio- or nano-materials. However, due to the limitations of phage display libraries and the biopanning process, the accuracy of molecular recognition for inorganic materials remains a challenge. This study presents the isolation, identification and characterisation of metal binding phage clones that preferentially recover nickel.

Keywords: Heavy metal recovery, cleaning water, phage display, nickel

Procedia PDF Downloads 73
2399 Non-Linear Velocity Fields in Turbulent Wave Boundary Layer

Authors: Shamsul Chowdhury

Abstract:

The objective of this paper is to present the detailed analysis of the turbulent wave boundary layer produced by progressive finite-amplitude waves theory. Most of the works have done for the mass transport in the turbulent boundary layer assuming the eddy viscosity is not time varying, where the sediment movement is induced by the mean velocity. Near the ocean bottom, the waves produce a thin turbulent boundary layer, where the flow is highly rotational, and shear stress associated with the fluid motion cannot be neglected. The magnitude and the predominant direction of the sediment transport near the bottom are known to be closely related to the flow in the wave induced boundary layer. The magnitude of water particle velocity at the Crest phase differs from the one of the Trough phases due to the non-linearity of the waves, which plays an important role to determine the sediment movement. The non-linearity of the waves become predominant in the surf zone area, where the sediment movement occurs vigorously. Therefore, in order to describe the flow near the bottom and relationship between the flow and the movement of the sediment, the analysis was done using the non-linear boundary layer equation and the finite amplitude wave theory was applied to represent the velocity fields in the turbulent wave boundary layer. At first, the calculation was done for turbulent wave boundary layer by two-dimensional model where throughout the calculation is non-linear. But Stokes second order wave profile is adopted at the upper boundary. The calculated profile was compared with the experimental data. Finally, the calculation is done based on various modes of the velocity and turbulent energy. The mean velocity is found to differ from condition of the relative depth and the roughness. It is also found that due to non-linearity, the absolute value for velocity and turbulent energy as well as Reynolds stress are asymmetric. The mean velocity of the laminar boundary layer is always positive but in the turbulent boundary layer plays a very complicated role.

Keywords: wave boundary, mass transport, mean velocity, shear stress

Procedia PDF Downloads 239
2398 Exploration of Building Information Modelling Software to Develop Modular Coordination Design Tool for Architects

Authors: Muhammad Khairi bin Sulaiman

Abstract:

The utilization of Building Information Modelling (BIM) in the construction industry has provided an opportunity for designers in the Architecture, Engineering and Construction (AEC) industry to proceed from the conventional method of using manual drafting to a way that creates alternative designs quickly, produces more accurate, reliable and consistent outputs. By using BIM Software, designers can create digital content that manipulates the use of data using the parametric model of BIM. With BIM software, more alternative designs can be created quickly and design problems can be explored further to produce a better design faster than conventional design methods. Generally, BIM is used as a documentation mechanism and has not been fully explored and utilised its capabilities as a design tool. Relative to the current issue, Modular Coordination (MC) design as a sustainable design practice is encouraged since MC design will reduce material wastage through standard dimensioning, pre-fabrication, repetitive, modular construction and components. However, MC design involves a complex process of rules and dimensions. Therefore, a tool is needed to make this process easier. Since the parameters in BIM can easily be manipulated to follow MC rules and dimensioning, thus, the integration of BIM software with MC design is proposed for architects during the design stage. With this tool, there will be an improvement in acceptance and practice in the application of MC design effectively. Consequently, this study will analyse and explore the function and customization of BIM objects and the capability of BIM software to expedite the application of MC design during the design stage for architects. With this application, architects will be able to create building models and locate objects within reference modular grids that adhere to MC rules and dimensions. The parametric modeling capabilities of BIM will also act as a visual tool that will further enhance the automation of the 3-Dimensional space planning modeling process. (Method) The study will first analyze and explore the parametric modeling capabilities of rule-based BIM objects, which eventually customize a reference grid within the rules and dimensioning of MC. Eventually, the approach will further enhance the architect's overall design process and enable architects to automate complex modeling, which was nearly impossible before. A prototype using a residential quarter will be modeled. A set of reference grids guided by specific MC rules and dimensions will be used to develop a variety of space planning and configuration. With the use of the design, the tool will expedite the design process and encourage the use of MC Design in the construction industry.

Keywords: building information modeling, modular coordination, space planning, customization, BIM application, MC space planning

Procedia PDF Downloads 61
2397 Uterine Cervical Cancer; Early Treatment Assessment with T2- And Diffusion-Weighted MRI

Authors: Susanne Fridsten, Kristina Hellman, Anders Sundin, Lennart Blomqvist

Abstract:

Background: Patients diagnosed with locally advanced cervical carcinoma are treated with definitive concomitant chemo-radiotherapy. Treatment failure occurs in 30-50% of patients with very poor prognoses. The treatment is standardized with risk for both over-and undertreatment. Consequently, there is a great need for biomarkers able to predict therapy outcomes to allow for individualized treatment. Aim: To explore the role of T2- and diffusion-weighted magnetic resonance imaging (MRI) for early prediction of therapy outcome and the optimal time point for assessment. Methods: A pilot study including 15 patients with cervical carcinoma stage IIB-IIIB (FIGO 2009) undergoing definitive chemoradiotherapy. All patients underwent MRI four times, at baseline, 3 weeks, 5 weeks, and 12 weeks after treatment started. Tumour size, size change (∆size), visibility on diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) and change of ADC (∆ADC) at the different time points were recorded. Results: 7/15 patients relapsed during the study period, referred to as "poor prognosis", PP, and the remaining eight patients are referred to "good prognosis", GP. The tumor size was larger at all time points for PP than for GP. The ∆size between any of the four-time points was the same for PP and GP patients. The sensitivity and specificity to predict prognostic group depending on a remaining tumor on DWI were highest at 5 weeks and 83% (5/6) and 63% (5/8), respectively. The combination of tumor size at baseline and remaining tumor on DWI at 5 weeks in ROC analysis reached an area under the curve (AUC) of 0.83. After 12 weeks, no remaining tumor was seen on DWI among patients with GP, as opposed to 2/7 PP patients. Adding ADC to the tumor size measurements did not improve the predictive value at any time point. Conclusion: A large tumor at baseline MRI combined with a remaining tumor on DWI at 5 weeks predicted a poor prognosis.

Keywords: chemoradiotherapy, diffusion-weighted imaging, magnetic resonance imaging, uterine cervical carcinoma

Procedia PDF Downloads 121
2396 Permeable Bio-Reactive Barriers to Tackle Petroleum Hydrocarbon Contamination in the Sub-Antarctic

Authors: Benjamin L. Freidman, Sally L. Gras, Ian Snape, Geoff W. Stevens, Kathryn A. Mumford

Abstract:

Increasing transportation and storage of petroleum hydrocarbons in Antarctic and sub-Antarctic regions have resulted in frequent accidental spills. Migrating petroleum hydrocarbon spills can have a significant impact on terrestrial and marine ecosystems in cold regions, as harsh environmental conditions result in heightened sensitivity to pollution. This migration of contaminants has led to the development of Permeable Reactive Barriers (PRB) for application in cold regions. PRB’s are one of the most practical technologies for on-site or in-situ groundwater remediation in cold regions due to their minimal energy, monitoring and maintenance requirements. The Main Power House site has been used as a fuel storage and power generation area for the Macquarie Island research station since at least 1960. Soil analysis at the site has revealed Total Petroleum Hydrocarbon (TPH) (C9-C28) concentrations as high as 19,000 mg/kg soil. Groundwater TPH concentrations at this site can exceed 350 mg/L TPH. Ongoing migration of petroleum hydrocarbons into the neighbouring marine ecosystem resulted in the installation of a ‘funnel and gate’ PRB in November 2014. The ‘funnel and gate’ design successfully intercepted contaminated groundwater and analysis of TPH retention and biodegradation on PRB media are currently underway. Installation of the PRB facilitates research aimed at better understanding the contribution of particle attached biofilms to the remediation of groundwater systems. Bench-scale PRB system analysis at The University of Melbourne is currently examining the role biofilms play in petroleum hydrocarbon degradation, and how controlled release nutrient media can heighten the metabolic activity of biofilms in cold regions in the presence of low temperatures and low nutrient groundwater.

Keywords: groundwater, petroleum, Macquarie island, funnel and gate

Procedia PDF Downloads 330
2395 Farmers Willingness to Pay for Irrigated Maize Production in Rural Kenya

Authors: Dennis Otieno, Lilian Kirimi Nicholas Odhiambo, Hillary Bii

Abstract:

Kenya is considered to be a middle level income country and usuaaly does not meet household food security needs especially in North and South eastern parts. Approximately half of the population is living under the poverty line (www, CIA 1, 2012). Agriculture is the largest sector in the country, employing 80% of the population. These are thereby directly dependent on the sufficiency of outputs received. This makes efficient, easy-accessible and cheap agricultural practices an important matter in order to improve food security. Maize is the prime staple food commodity in Kenya and represents a substantial share of people’s nutritional intake. This study is the result of questionnaire based interviews, Key informant and focus group discussion involving 220 small scale maize farmers Kenyan. The study was located to two separated areas; Lower Kuja, Bunyala, Nandi, Lower Nzoia, Perkerra, Mwea Bura, Hola and Galana Kulalu in Kenya. The questionnaire captured the farmers’ use and perceived importance of the use irrigation services and irrigated maize production. Viability was evaluated using the four indices which were all positive with NPV giving positive cash flows in less than 21 years at most for one season output. The mean willingness to pay was found to be KES 3082 and willingness to pay increased with increase in irrigation premiums. The economic value of water was found to be greater than the willingness to pay implying that irrigated maize production is sustainable. Farmers stated that viability was influenced by high output levels, good produce quality, crop of choice, availability of sufficient water and enforcement the last two factors had a positive influence while the other had negative effect on the viability of irrigated maize. A regression was made over the correlation between the willingness to pay for irrigated maize production using scheme and plot level factors. Farmers that already use other inputs such as animal manure, hired labor and chemical fertilizer should also have a demand for improved seeds according to Liebig's law of minimum and expansion path theory. The regression showed that premiums, and high yields have a positive effect on willingness to pay while produce quality, efficient fertilizer use, and crop season have a negative effect.

Keywords: maize, food security, profits, sustainability, willingness to pay

Procedia PDF Downloads 196
2394 Synthesis of Low-Cost Porous Silicon Carbide Foams from Renewable Sources

Authors: M. A. Bayona, E. M. Cordoba, V. R. Guiza

Abstract:

Highly porous carbon-based foams are used in a wide range of industrial applications, which include absorption, catalyst supports, thermal insulation, and biomaterials, among others. Particularly, silicon carbide (SiC) based foams have shown exceptional potential for catalyst support applications, due to their chemical inertness, large frontal area, low resistance to flow, low-pressure drop, as well as high resistance to temperature and corrosion. These properties allow the use of SiC foams in harsh environments with high durability. Commonly, SiC foams are fabricated from polysiloxane, SiC powders and phenolic resins, which can be costly or highly toxic to the environment. In this work, we propose a low-cost method for the fabrication of highly porous, three-dimensional SiC foams via template replica, using recycled polymeric sponges as sacrificial templates. A sucrose-based resin combined with a Si-containing pre-ceramic polymer was used as the precursor. Polymeric templates were impregnated with the precursor solution, followed by thermal treatment at 1500 °C under an inert atmosphere. Several synthesis parameters, such as viscosity and composition of the precursor solution (Si: Sucrose molar ratio), and the porosity of the template, were evaluated in terms of their effect on the morphology, composition and mechanical resistance of the resulting SiC foams. The synthesized composite foams exhibited a highly porous (50-90%) and interconnected structure, containing 30-90% SiC with a mechanical compressive strength between 0.01-0.1 MPa. The methodology employed here allowed the fabrication of foams with a varied concentration of SiC and with morphological and mechanical properties that contribute to the development of materials of high relevance in the industry, while using low-cost, renewable sources such as table sugar, and providing a recycling alternative for polymeric sponges.

Keywords: catalyst support, polymer replica technique, reticulated porous ceramics, silicon carbide

Procedia PDF Downloads 101
2393 Destination Decision Model for Cruising Taxis Based on Embedding Model

Authors: Kazuki Kamada, Haruka Yamashita

Abstract:

In Japan, taxi is one of the popular transportations and taxi industry is one of the big businesses. However, in recent years, there has been a difficult problem of reducing the number of taxi drivers. In the taxi business, mainly three passenger catching methods are applied. One style is "cruising" that drivers catches passengers while driving on a road. Second is "waiting" that waits passengers near by the places with many requirements for taxies such as entrances of hospitals, train stations. The third one is "dispatching" that is allocated based on the contact from the taxi company. Above all, the cruising taxi drivers need the experience and intuition for finding passengers, and it is difficult to decide "the destination for cruising". The strong recommendation system for the cruising taxies supports the new drivers to find passengers, and it can be the solution for the decreasing the number of drivers in the taxi industry. In this research, we propose a method of recommending a destination for cruising taxi drivers. On the other hand, as a machine learning technique, the embedding models that embed the high dimensional data to a low dimensional space is widely used for the data analysis, in order to represent the relationship of the meaning between the data clearly. Taxi drivers have their favorite courses based on their experiences, and the courses are different for each driver. We assume that the course of cruising taxies has meaning such as the course for finding business man passengers (go around the business area of the city of go to main stations) and course for finding traveler passengers (go around the sightseeing places or big hotels), and extract the meaning of their destinations. We analyze the cruising history data of taxis based on the embedding model and propose the recommendation system for passengers. Finally, we demonstrate the recommendation of destinations for cruising taxi drivers based on the real-world data analysis using proposing method.

Keywords: taxi industry, decision making, recommendation system, embedding model

Procedia PDF Downloads 117
2392 An Assessment of Floodplain Vegetation Response to Groundwater Changes Using the Soil & Water Assessment Tool Hydrological Model, Geographic Information System, and Machine Learning in the Southeast Australian River Basin

Authors: Newton Muhury, Armando A. Apan, Tek N. Marasani, Gebiaw T. Ayele

Abstract:

The changing climate has degraded freshwater availability in Australia that influencing vegetation growth to a great extent. This study assessed the vegetation responses to groundwater using Terra’s moderate resolution imaging spectroradiometer (MODIS), Normalised Difference Vegetation Index (NDVI), and soil water content (SWC). A hydrological model, SWAT, has been set up in a southeast Australian river catchment for groundwater analysis. The model was calibrated and validated against monthly streamflow from 2001 to 2006 and 2007 to 2010, respectively. The SWAT simulated soil water content for 43 sub-basins and monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) were applied in the machine learning tool, Waikato Environment for Knowledge Analysis (WEKA), using two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The assessment shows that different types of vegetation response and soil water content vary in the dry and wet seasons. The WEKA model generated high positive relationships (r = 0.76, 0.73, and 0.81) between NDVI values of all vegetation in the sub-basins against soil water content (SWC), the groundwater flow (GW), and the combination of these two variables, respectively, during the dry season. However, these responses were reduced by 36.8% (r = 0.48) and 13.6% (r = 0.63) against GW and SWC, respectively, in the wet season. Although the rainfall pattern is highly variable in the study area, the summer rainfall is very effective for the growth of the grass vegetation type. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.

Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater

Procedia PDF Downloads 70
2391 Proposed Organizational Development Interventions in Managing Occupational Stressors for Business Schools in Batangas City

Authors: Marlon P. Perez

Abstract:

The study intended to determine the level of occupational stress that was experienced by faculty members of private and public business schools in Batangas City with the end in view of proposing organizational development interventions in managing occupational stressors. Stressors such as factors intrinsic to the job, role in the organization, relationships at work, career development and organizational structure and climate were used as determinants of occupational stress level. Descriptive method of research was used as its research design. There were only 64 full-time faculty members coming from private and public business schools in Batangas City – University of Batangas, Lyceum of the Philippines University-Batangas, Golden Gate Colleges, Batangas State University and Colegio ng Lungsod ng Batangas. Survey questionnaire was used as data gathering instrument. It was found out that all occupational stressors were assessed stressful when grouped according to its classification of tertiary schools while response of subject respondents differs on their assessment of occupational stressors. Age variable has become significantly related to respondents’ assessments on factors intrinsic to the job and career development; however, it was not significantly related to role in the organization, relationships at work and organizational structure and climate. On the other hand, gender, marital status, highest educational attainment, employment status, length of service, area of specialization and classification of tertiary school were revealed to be not significantly related to all occupational stressors. Various organizational development interventions have been proposed to manage the occupational stressors that are experienced by business faculty members in the institution.

Keywords: occupational stress, business school, organizational development, intervention, stressors, faculty members, assessment, manage

Procedia PDF Downloads 406
2390 Effect of Doping on Band Gap of Zinc Oxide and Degradation of Methylene Blue and Industrial Effluent

Authors: V. P. Borker, K. S. Rane, A. J. Bhobe, R. S. Karmali

Abstract:

Effluent of dye industries contains chemicals and organic dyes. Sometimes they are thrown in the water bodies without any treatment. This leads to environmental pollution and is detrimental to flora and fauna. Semiconducting oxide zinc oxide with wide bandgap 3.37 eV is used as a photocatalyst in degrading organic dyes using UV radiations. It generates electron-hole pair on exposure to UV light. If degradation is aimed at solar radiations, bandgap of zinc oxide is to be reduced so as to utilize visible radiation. Thus, in present study, zinc oxide, ZnO is synthesized from zinc oxalate, N doped zinc oxide, ZnO₁₋ₓNₓ from hydrazinated zinc oxalate, cadmium doped zinc oxide Zn₀.₉Cd₀.₁₀ and magnesium-doped zinc oxide Zn₀.₉Mg₀.₁₀ from mixed metal oxalate and hydrazinated mixed metal oxalate. The precursors were characterized by FTIR. They were decomposed to form oxides and XRD were recorded. The compounds were monophasic. Bandgap was calculated using Diffuse Reflectance Spectrum. The bandgap of ZnO was reduced to 3.24 because of precursor method of synthesis leading large surface area. The bandgap of Zn₀.₉Cd₀.₁₀ was 3.11 eV and that of Zn₀.₉Mg₀.₁₀ 3.41 eV. The lowest value was of ZnO₁₋ₓNₓ 3.09 eV. These oxides were used to degrade methylene blue, a model dye in sunlight. ZnO₁₋ₓNₓ was also used to degrade effluent of industry manufacturing colours, crayons and markers. It was observed that ZnO₁₋ₓNₓ acts as a good photocatalyst for degradation of methylene blue. It can degrade the solution within 120 minutes. Similarly, diluted effluent was decolourised using this oxide. Some colours were degraded using ZnO. Thus, the use of these two oxides could mineralize effluent. Lesser bandgap leads to more electro hole pair thus helps in the formation of hydroxyl ion radicals. These radicals attack the dye molecule, fragmentation takes place and it is mineralised.

Keywords: cadmium doped zinc oxide, dye degradation, dye effluent degradation, N doped zinc oxide, zinc oxide

Procedia PDF Downloads 142
2389 Evaluation of the Heating Capability and in vitro Hemolysis of Nanosized MgxMn1-xFe2O4 (x = 0.3 and 0.4) Ferrites Prepared by Sol-gel Method

Authors: Laura Elena De León Prado, Dora Alicia Cortés Hernández, Javier Sánchez

Abstract:

Among the different cancer treatments that are currently used, hyperthermia has a promising potential due to the multiple benefits that are obtained by this technique. In general terms, hyperthermia is a method that takes advantage of the sensitivity of cancer cells to heat, in order to damage or destroy them. Within the different ways of supplying heat to cancer cells and achieve their destruction or damage, the use of magnetic nanoparticles has attracted attention due to the capability of these particles to generate heat under the influence of an external magnetic field. In addition, these nanoparticles have a high surface area and sizes similar or even lower than biological entities, which allow their approaching and interaction with a specific region of interest. The most used magnetic nanoparticles for hyperthermia treatment are those based on iron oxides, mainly magnetite and maghemite, due to their biocompatibility, good magnetic properties and chemical stability. However, in order to fulfill more efficiently the requirements that demand the treatment of magnetic hyperthermia, there have been investigations using ferrites that incorporate different metallic ions, such as Mg, Mn, Co, Ca, Ni, Cu, Li, Gd, etc., in their structure. This paper reports the synthesis of nanosized MgxMn1-xFe2O4 (x = 0.3 and 0.4) ferrites by sol-gel method and their evaluation in terms of heating capability and in vitro hemolysis to determine the potential use of these nanoparticles as thermoseeds for the treatment of cancer by magnetic hyperthermia. It was possible to obtain ferrites with nanometric sizes, a single crystalline phase with an inverse spinel structure and a behavior near to that of superparamagnetic materials. Additionally, at concentrations of 10 mg of magnetic material per mL of water, it was possible to reach a temperature of approximately 45°C, which is within the range of temperatures used for the treatment of hyperthermia. The results of the in vitro hemolysis assay showed that, at the concentrations tested, these nanoparticles are non-hemolytic, as their percentage of hemolysis is close to zero. Therefore, these materials can be used as thermoseeds for the treatment of cancer by magnetic hyperthermia.

Keywords: ferrites, heating capability, hemolysis, nanoparticles, sol-gel

Procedia PDF Downloads 316
2388 Improved Regression Relations Between Different Magnitude Types and the Moment Magnitude in the Western Balkan Earthquake Catalogue

Authors: Anila Xhahysa, Migena Ceyhan, Neki Kuka, Klajdi Qoshi, Damiano Koxhaj

Abstract:

The seismic event catalog has been updated in the framework of a bilateral project supported by the Central European Investment Fund and with the extensive support of Global Earthquake Model Foundation to update Albania's national seismic hazard model. The earthquake catalogue prepared within this project covers the Western Balkan area limited by 38.0° - 48°N, 12.5° - 24.5°E and includes 41,806 earthquakes that occurred in the region between 510 BC and 2022. Since the moment magnitude characterizes the earthquake size accurately and the selected ground motion prediction equations for the seismic hazard assessment employ this scale, it was chosen as the uniform magnitude scale for the catalogue. Therefore, proxy values of moment magnitude had to be obtained by using new magnitude conversion equations between the local and other magnitude types to this unified scale. The Global Centroid Moment Tensor Catalogue was considered the most authoritative for moderate to large earthquakes for moment magnitude reports; hence it was used as a reference for calibrating other sources. The best fit was observed when compared to some regional agencies, whereas, with reports of moment magnitudes from Italy, Greece and Turkey, differences were observed in all magnitude ranges. For teleseismic magnitudes, to account for the non-linearity of the relationships, we used the exponential model for the derivation of the regression equations. The obtained regressions for the surface wave magnitude and short-period body-wave magnitude show considerable differences with Global Earthquake Model regression curves, especially for low magnitude ranges. Moreover, a conversion relation was obtained between the local magnitude of Albania and the corresponding moment magnitude as reported by the global and regional agencies. As errors were present in both variables, the Deming regression was used.

Keywords: regression, seismic catalogue, local magnitude, tele-seismic magnitude, moment magnitude

Procedia PDF Downloads 47
2387 Assessment of the Spatio-Temporal Distribution of Pteridium aquilinum (Bracken Fern) Invasion on the Grassland Plateau in Nyika National Park

Authors: Andrew Kanzunguze, Lusayo Mwabumba, Jason K. Gilbertson, Dominic B. Gondwe, George Z. Nxumayo

Abstract:

Knowledge about the spatio-temporal distribution of invasive plants in protected areas provides a base from which hypotheses explaining proliferation of plant invasions can be made alongside development of relevant invasive plant monitoring programs. The aim of this study was to investigate the spatio-temporal distribution of bracken fern on the grassland plateau of Nyika National Park over the past 30 years (1986-2016) as well as to determine the current extent of the invasion. Remote sensing, machine learning, and statistical modelling techniques (object-based image analysis, image classification and linear regression analysis) in geographical information systems were used to determine both the spatial and temporal distribution of bracken fern in the study area. Results have revealed that bracken fern has been increasing coverage on the Nyika plateau at an estimated annual rate of 87.3 hectares since 1986. This translates to an estimated net increase of 2,573.1 hectares, which was recorded from 1,788.1 hectares (1986) to 4,361.9 hectares (2016). As of 2017 bracken fern covered 20,940.7 hectares, approximately 14.3% of the entire grassland plateau. Additionally, it was observed that the fern was distributed most densely around Chelinda camp (on the central plateau) as well as in forest verges and roadsides across the plateau. Based on these results it is recommended that Ecological Niche Modelling approaches be employed to (i) isolate the most important factors influencing bracken fern proliferation as well as (ii) identify and prioritize areas requiring immediate control interventions so as to minimize bracken fern proliferation in Nyika National Park.

Keywords: bracken fern, image classification, Landsat-8, Nyika National Park, spatio-temporal distribution

Procedia PDF Downloads 157
2386 Proinflammatory Response of Agglomerated TiO2 Nanoparticles in Human-Immune Cells

Authors: Vaiyapuri Subbarayn Periasamy, Jegan Athinarayanan, Ali A. Alshatwi

Abstract:

The widespread use of Titanium oxide nanoparticles (TiO2-NPs), now are found with different physic-chemical properties (size, shape, chemical properties, agglomeration, etc.) in many processed foods, agricultural chemicals, biomedical products, food packaging and food contact materials, personal care products, and other consumer products used in daily life. Growing evidences have been highlighted that there are risks of physico-chemical properties dependent toxicity with special attention to “TiO2-NPs and human immune system”. Unfortunately, agglomeration and aggregation have frequently been ignored in immuno-toxicological studies, even though agglomeration and aggregation would be expected to affect nanotoxicity since it changes the size, shape, surface area, and other properties of the TiO2-NPs. In this present investigation, we assessed the immune toxic effect of TiO2-NPs on human immune cells Total WBC including Lymphocytes (T cells (CD3+), T helper cells (CD3+, CD4+), Suppressor/cytotoxic T cells (CD3+/CD8+) and NK cells (CD3-/CD16+ and CD56+), Monocytes (CD14+, CD3-) and B lymphocytes (CD19+, CD3-) in order to find the immunological response (IL1A, IL1B, IL2 IL-4, IL5 IL-6, IL-10, IL-12, IL-13, IFN-γ, TGF-β, and TNF-a) and redox gene regulation (TNF, p53, BCl-2, CAT, GSTA4, TNF, CYP1A, POR, SOD1, GSTM3, GPX1, and GSR1)-linking physicochemical properties with special reference to agglomeration of TiO2-NPs. Our findings suggest that TiO2-NPs altered cytokine production, enhanced phagocytic indexing, metabolic stress through specific immune regulatory- genes expression in different WBC subsets and may contribute to pro-inflammatory response. Although TiO2-NPs have great advantages in the personal care products, biomedical, food and agricultural products, its chronic and acute immune-toxicity still need to be assessed carefully with special reference to food and environmental safety.

Keywords: TiO2 nanoparticles, oxidative stress, cytokine, human immune cells

Procedia PDF Downloads 375
2385 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach

Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar

Abstract:

Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.

Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI

Procedia PDF Downloads 126
2384 Deconstructing the Niger-Delta Crises: In Esiaba Irobi's Cemetery Road and Hangmen Also Die

Authors: Chukwukelue Uzodinma Umenyilorah

Abstract:

The history of the crises in Niger-Delta is readily traceable to the post-colonial oil boom of the early 70s. Prior to this time, it was widely believed that the people of Niger-Delta; especially those in the present day Rivers, Delta and Bayelsa States enjoyed a peaceful coexistence pretty much as the rest of Nigerians. In the early 70s however, crude oil was discovered in commercial quantities in these areas and tranquility has become a far cry over the years ever since then. First, a number of multi-national oil explorers moved into the Niger-Delta for business, and then certain conditions resulted in sundry instances of oil spillage, which caused a lot of environmental damage, destroying nearly all of the people’s sources of livelihood. The result was a multiple chain reaction ranging from incessant agitations from the natives to institutionalized dialogue between the oil business owners, the natives and the government, and then to a proposition of compensation packages for the affected communities. The said compensation, which was meant to bring peace seem to have brought even more crises instead. Corruption and greed crept in, money changed hands, suffering increased and so was the agitation from the people. The whole turn of events gradually snowballed into the formation of various militant groups who are now fingered as responsible for the sundry cases of violence in the Niger-Delta. The oil boom can, therefore, be said to be the immediate cause of the Niger-Delta crises, but there are other remote causes as well; including poverty, neglect and illiteracy to mention but a few. This study is therefore aimed at examining the various reasons behind the seemingly unending crises in the Niger-Delta. It will also take a critical look at the roles played by the various parties in the Niger-Delta crises from the 70s to date; as well as the various human and environmental devastations done in the area with a view to making informed suggestions on how to stop further damage and start fixing that, which is already done. Esiaba Irobi’s Cemetery Road and Hangmen Also Die seem to vividly capture the realities of the Niger-Delta situation, and shall, therefore, be reviewed in this study.

Keywords: corruption, Niger-delta, oil boom, post-colonial

Procedia PDF Downloads 263
2383 Designing Online Professional Development Courses Using Video-Based Instruction to Teach Robotics and Computer Science

Authors: Alaina Caulkett, Audra Selkowitz, Lauren Harter, Aimee DeFoe

Abstract:

Educational robotics is an effective tool for teaching and learning STEM curricula. Yet, most traditional professional development programs do not cover engineering, coding, or robotics. This paper will give an overview of how and why the VEX Professional Development Plus Introductory Training courses were developed to provide guided, simple professional development in the area of robotics and computer science instruction. These training courses guide educators through learning the basics of VEX robotics platforms, including VEX 123, GO, IQ, and EXP. Because many educators do not have experience teaching robotics or computer science, this course is meant to simulate one on one training or tutoring through video-based instruction. These videos, led by education professionals, can be watched at any time, which allows educators to watch at their own pace and create their own personalized professional development timeline. This personalization expands beyond the course itself into an online community where educators at different points in the self-paced course can converse with one another or with instructors from the videos and learn from a growing community of practice. By the end of each course, educators are armed with the skills to introduce robotics or computer science in their classroom or educational setting. The design of the course was guided by a variation of the Understanding by Design (UbD) framework and included hands-on activities and challenges to keep educators engaged and excited about robotics. Some of the concepts covered include, but are not limited to, following build instructions, building a robot, updating firmware, coding the robot to drive and turn autonomously, coding a robot using multiple methods, and considerations for teaching robotics and computer science in the classroom, and more. A secondary goal of this research is to discuss how this professional development approach can serve as an example in the larger educational community and explore ways that it could be further researched or used in the future.

Keywords: computer science education, online professional development, professional development, robotics education, video-based instruction

Procedia PDF Downloads 68
2382 Qualitative and Quantitative Methods in Multidisciplinary Fields Collection Development

Authors: Hui Wang

Abstract:

Traditional collection building approaches are limited in breadth and scope and are not necessarily suitable for multidisciplinary fields development in the institutes of the Chinese Academy of Sciences. The increasing of multidisciplinary fields researches require a viable approach to collection development in these libraries. This study uses qualitative and quantitative analysis to assess collection. The quantitative analysis consists of three levels of evaluation, which including realistic demand, potential demand and trend demand analysis. For one institute, three samples were separately selected from the object institute, more than one international top institutes in highly relative research fields and future research hotspots. Each sample contains an appropriate number of papers published in recent five years. Several keywords and the organization names were reasonably combined to search in commercial databases and the institutional repositories. The publishing information and citations in the bibliographies of these papers were selected to build the dataset. One weighted evaluation model and citation analysis were used to calculate the demand intensity index of every journal and book. Principal Investigator selector and database traffic provide a qualitative evidence to describe the demand frequency. The demand intensity, demand frequency and academic committee recommendations were comprehensively considered to recommend collection development. The collection gaps or weaknesses were ascertained by comparing the current collection and the recommend collection. This approach was applied in more than 80 institutes’ libraries in Chinese Academy of Sciences in the past three years. The evaluation results provided an important evidence for collections building in the second year. The latest user survey results showed that the updated collection’s capacity to support research in a multidisciplinary subject area have increased significantly.

Keywords: citation analysis, collection assessment, collection development, quantitative analysis

Procedia PDF Downloads 181
2381 Apatite Flotation Using Fruits' Oil as Collector and Sorghum as Depressant

Authors: Elenice Maria Schons Silva, Andre Carlos Silva

Abstract:

The crescent demand for raw material has increased mining activities. Mineral industry faces the challenge of process more complexes ores, with very small particles and low grade, together with constant pressure to reduce production costs and environment impacts. Froth flotation deserves special attention among the concentration methods for mineral processing. Besides its great selectivity for different minerals, flotation is a high efficient method to process fine particles. The process is based on the minerals surficial physicochemical properties and the separation is only possible with the aid of chemicals such as collectors, frothers, modifiers, and depressants. In order to use sustainable and eco-friendly reagents, oils extracted from three different vegetable species (pequi’s pulp, macauba’s nut and pulp, and Jatropha curcas) were studied and tested as apatite collectors. Since the oils are not soluble in water, an alkaline hydrolysis (or saponification), was necessary before their contact with the minerals. The saponification was performed at room temperature. The tests with the new collectors were carried out at pH 9 and Flotigam 5806, a synthetic mix of fatty acids industrially adopted as apatite collector manufactured by Clariant, was used as benchmark. In order to find a feasible replacement for cornstarch the flour and starch of a graniferous variety of sorghum was tested as depressant. Apatite samples were used in the flotation tests. XRF (X-ray fluorescence), XRD (X-ray diffraction), and SEM/EDS (Scanning Electron Microscopy with Energy Dispersive Spectroscopy) were used to characterize the apatite samples. Zeta potential measurements were performed in the pH range from 3.5 to 12.5. A commercial cornstarch was used as depressant benchmark. Four depressants dosages and pH values were tested. A statistical test was used to verify the pH, dosage, and starch type influence on the minerals recoveries. For dosages equal or higher than 7.5 mg/L, pequi oil recovered almost all apatite particles. In one hand, macauba’s pulp oil showed excellent results for all dosages, with more than 90% of apatite recovery, but in the other hand, with the nut oil, the higher recovery found was around 84%. Jatropha curcas oil was the second best oil tested and more than 90% of the apatite particles were recovered for the dosage of 7.5 mg/L. Regarding the depressant, the lower apatite recovery with sorghum starch were found for a dosage of 1,200 g/t and pH 11, resulting in a recovery of 1.99%. The apatite recovery for the same conditions as 1.40% for sorghum flour (approximately 30% lower). When comparing with cornstarch at the same conditions sorghum flour produced an apatite recovery 91% lower.

Keywords: collectors, depressants, flotation, mineral processing

Procedia PDF Downloads 127
2380 Risk-taking and Avoidance Decisions in Pandemic Agriculture in Georgia

Authors: Nino Damenia

Abstract:

The paper discusses the risks arising in agriculture in Georgia, the possibilities of their acceptance and prevention, the threat created by the pandemic crisis, and the state programs for overcoming them. The share of agriculture in the country's GDP is 8.3%. Over the past five years, Georgia has imported $ 5.9 billion worth of agri-food products. Despite these figures, agriculture has become an important sector for the Georgian government since 2012, as evidenced by the more than 1.5 billion GEL spent from the 2012-2020 budget for agricultural development. Any field of agriculture, be it poultry, livestock, cereals, fruits, or vegetables, is very sensitive to various climatic and viral risks. Avoiding these risks requires additional investment. It is noteworthy that small farms are mainly affected by the risks, while relatively large farms face fewer problems because they are relatively prepared to face the problems and can avoid them more easily. An example of viral risk in the article is the export of hazelnuts, which has quite a lot of potential. Due to the spoilage of the crop caused by Brown Marmorated Stink Bug (BMSB), hazelnut exports have declined considerably over the years. If the volume of hazelnuts exported in 2016 was 179 378 thousand USD, due to the deficit caused by Brown Marmorated Stink Bug (BMSB) in 2018, it became 57 124 thousand USD. And after the situation was relatively settled, hazelnut seedlings were poisoned. By 2020, this figure improved to 91,088 thousand US dollars. The development of the agricultural sector and the reduction of risks require technological development, investor interest, and even more state support to enable more small farms to have the potential for greater production and sustainable development. The aim of the study is to identify the risks arising in the agricultural sector of Georgia before and after the pandemic, to evaluate them, compare them with the agriculture of some European countries, and to develop the necessary recommendations to avoid the emerging risks. The research uses methods of analysis and synthesis, observation, induction, deduction, and analysis of statistics. The paper is based on both Georgian and foreign scientific research, as well as state-published documentation on agricultural assistance programs. The research is based on the analysis of data published by the European Statistics Office, the National Statistics Office of Georgia, and many other organizations. The results of the study and the recommendations will help reduce the risks in agriculture in Georgia and, in general, to identify the existing potential and the development of the sector as a whole.

Keywords: risk, agriculture, pandemi, brown marmorated stink bug (BMSB)

Procedia PDF Downloads 100
2379 Evaluation of SCS-Curve Numbers and Runoff across Varied Tillage Methods

Authors: Umar Javed, Kristen Blann, Philip Adalikwu, Maryam Sahraei, John McMaine

Abstract:

The soil conservation service curve number (SCS-CN) is a widely used method to assess direct runoff depth based on specific rainfall events. “Actual” estimated runoff depth was estimated by subtracting the change in soil moisture from the depth of precipitation for each discrete rain event during the growing seasons from 2021 to 2023. Fields under investigation were situated in a HUC-12 watershed in southeastern South Dakota selected for a common soil series (Nora-Crofton complex and Moody-Nora complex) to minimize the influence of soil texture on soil moisture. Two soil moisture probes were installed from May 2021 to October 2023, with exceptions during planting and harvest periods. For each field, “Textbook” CN estimates were derived from the TR-55 table based on corresponding mapped land use land cover LULC class and hydrologic soil groups from web soil survey maps. The TR-55 method incorporated HSG and crop rotation within the study area fields. These textbook values were then compared to actual CN values to determine the impact of tillage practices on CN and runoff. Most fields were mapped as having a textbook C or D HSG, but the HSG of actual CNs was that of a B or C hydrologic group. Actual CNs were consistently lower than textbook CNs for all management practices, but actual CNs in conventionally tilled fields were the highest (and closest to textbook CNs), while actual CNs in no-till fields were the lowest. Preliminary results suggest that no-till practice reduces runoff compared to conventional till. This research highlights the need to use CNs that incorporate agricultural management to more accurately estimate runoff at the field and watershed scale.

Keywords: curve number hydrology, hydrologic soil groups, runoff, tillage practices

Procedia PDF Downloads 21
2378 The Design of an Afghan Refugee Camp in Kerman City through Ecotech Architecture

Authors: Kourosh Ghaffari, Baghaei Azhang

Abstract:

This study aims to address two main questions whether a camp designed for refugees will affect their quality of life and how to effectively incorporate ecotech architecture into the architectural design of a refugee camp. The current study planned to ensure that the final design reflects the principles of ecotech architecture in most refugee camps. The design process has taken into account various factors, including flexibility, diversity in the camp space according to the ecotech approach, expandability in the building, spatial hierarchy in the design of camp spaces, and the assignment of territories and space sanctuaries to refugees. It should be noted that this study is not a research-oriented type of study and is only limited to collecting information and making hypotheses and questions related to the plan. The researchers attempted to provide a general summary of similar domestic and foreign examples and examine them in similar conditions using the ecotech architecture. The research method utilized in this study was qualitative. Afterwards, the climate studies of the target area, citing and paying attention to the criteria and points extracted from the theoretical framework, reaching the desired conclusion and examining similar examples were followed. Additionally, placement on the site, compliance with relevant standards and regulations, attention to the content and physical program, and addressing the idea and its evolution in all the details of the plan were presented. The data collection procedure included observation and library studies, and the design method was to determine and recognize the subject and examine similar samples. In conclusion, the principles of theoretical foundations, the design protocols in ecotech architecture and the scope of the study are dealt. Furthermore, the site analysis, the design process and the final plan are presented.

Keywords: ecotech architecture, livable city, shelter, refugee camp

Procedia PDF Downloads 55
2377 Molecular Engineering of Intrinsically Microporous Polybenzimidazole for Energy-efficient Gas Separation

Authors: Mahmoud Abdulhamid, Rifan Hardian, Prashant Bhatt, Shuvo Datta, Adrian Ramirez, Jorge Gascon, Mohamed Eddaoudi, Gyorgy Szekely

Abstract:

Polybenzimidazole (PBI) is a high-performance polymer that exhibits high thermal and chemical stability. However, it suffers from low porosity and low fractional free volume, which hinder its application as separation material. Herein, we demonstrate the molecular engineering of gas separation materials by manipulating a PBI backbone possessing kinked moieties. PBI was selected as it contains NH groups which increase the affinity towards CO₂, increase sorption capacity, and favors CO₂ over other gasses. We have designed and synthesized an intrinsically microporous polybenzimidazole (iPBI) featuring a spirobisindane structure. Introducing a kinked moiety in conjunction with crosslinking enhanced the polymer properties, markedly increasing the gas separation performance. In particular, the BET surface area of PBI increased 30-fold by replacing a flat benzene ring with a kinked structure. iPBI displayed a good CO₂ uptake of 1.4 mmol g⁻¹ at 1 bar and 3.6 mmol g⁻¹ at 10 bar. Gas sorption uptake and breakthrough experiments were conducted using mixtures of CO₂/CH₄ (50%/50%) and CO₂/N₂ (50%/50%), which revealed the high selectivity of CO₂ over both CH₄ and N₂. The obtained CO₂/N₂ selectivity is attractive for power plant flue gas application requiring CO₂ capturing materials. Energy and process simulations of biogas CO₂ removal demonstrated that up to 70% of the capture energy could be saved when iPBI was used rather than the current amine technology (methyl diethanolamine [MDEA]). Similarly, the combination of iPBI and MDEA in a hybrid system exhibited the highest CO₂ capture yield (99%), resulting in nearly 50% energy saving. The concept of enhancing the porosity of PBI using kinked moieties provides new scope for designing highly porous polybenzimidazoles for various separation processes.

Keywords: polybenzimidazole (PBI), intrinsically microporous polybenzimidazole (iPBI), gas separation, pnergy and process simulations

Procedia PDF Downloads 62
2376 Investigating Elements That Influence Higher Education Institutions’ Digital Maturity

Authors: Zarah M. Bello, Nathan Baddoo, Mariana Lilley, Paul Wernick

Abstract:

In this paper, we present findings from a multi-part study to evaluate candidate elements reflecting the level of digital capability maturity (DCM) in higher education and the relationship between these elements. We will use these findings to propose a model of DCM for educational institutions. We suggest that the success of learning in higher education is dependent in part on the level of maturity of digital capabilities of institutions as well as the abilities of learners and those who support the learning process. It is therefore important to have a good understanding of the elements that underpin this maturity as well as their impact and interactions in order to better exploit the benefits that technology presents to the modern learning environment and support its continued improvement. Having identified ten candidate elements of digital capability that we believe support the level of a University’s maturity in this area as well as a number of relevant stakeholder roles, we conducted two studies utilizing both quantitative and qualitative research methods. In the first of these studies, 85 electronic questionnaires were completed by various stakeholders in a UK university, with a 100% response rate. We also undertook five in-depth interviews with management stakeholders in the same university. We then utilized statistical analysis to process the survey data and conducted a textual analysis of the interview transcripts. Our findings support our initial identification of candidate elements and support our contention that these elements interact in a multidimensional manner. This multidimensional dynamic suggests that any proposal for improvement in digital capability must reflect the interdependency and cross-sectional relationship of the elements that contribute to DCM. Our results also indicate that the notion of DCM is strongly data-centric and that any proposed maturity model must reflect the role of data in driving maturity and improvement. We present these findings as a key step towards the design of an operationalisable DCM maturity model for universities.

Keywords: digital capability, elements, maturity, maturity framework, university

Procedia PDF Downloads 123
2375 CO₂ Conversion by Low-Temperature Fischer-Tropsch

Authors: Pauline Bredy, Yves Schuurman, David Farrusseng

Abstract:

To fulfill climate objectives, the production of synthetic e-fuels using CO₂ as a raw material appears as part of the solution. In particular, Power-to-Liquid (PtL) concept combines CO₂ with hydrogen supplied from water electrolysis, powered by renewable sources, which is currently gaining interest as it allows the production of sustainable fossil-free liquid fuels. The proposed process discussed here is an upgrading of the well-known Fischer-Tropsch synthesis. The concept deals with two cascade reactions in one pot, with first the conversion of CO₂ into CO via the reverse water gas shift (RWGS) reaction, which is then followed by the Fischer-Tropsch Synthesis (FTS). Instead of using a Fe-based catalyst, which can carry out both reactions, we have chosen the strategy to decouple the two functions (RWGS and FT) on two different catalysts within the same reactor. The FTS shall shift the equilibrium of the RWGS reaction (which alone would be limited to 15-20% of conversion at 250°C) by converting the CO into hydrocarbons. This strategy shall enable optimization of the catalyst pair and thus lower the temperature of the reaction thanks to the equilibrium shift to gain selectivity in the liquid fraction. The challenge lies in maximizing the activity of the RWGS catalyst but also in the ability of the FT catalyst to be highly selective. Methane production is the main concern as the energetic barrier of CH₄ formation is generally lower than that of the RWGS reaction, so the goal will be to minimize methane selectivity. Here we report the study of different combinations of copper-based RWGS catalysts with different cobalt-based FTS catalysts. We investigated their behaviors under mild process conditions by the use of high-throughput experimentation. Our results show that at 250°C and 20 bars, Cobalt catalysts mainly act as methanation catalysts. Indeed, CH₄ selectivity never drops under 80% despite the addition of various protomers (Nb, K, Pt, Cu) on the catalyst and its coupling with active RWGS catalysts. However, we show that the activity of the RWGS catalyst has an impact and can lead to longer hydrocarbons chains selectivities (C₂⁺) of about 10%. We studied the influence of the reduction temperature on the activity and selectivity of the tandem catalyst system. Similar selectivity and conversion were obtained at reduction temperatures between 250-400°C. This leads to the question of the active phase of the cobalt catalysts, which is currently investigated by magnetic measurements and DRIFTS. Thus, in coupling it with a more selective FT catalyst, better results are expected. This was achieved using a cobalt/iron FTS catalyst. The CH₄ selectivity dropped to 62% at 265°C, 20 bars, and a GHSV of 2500ml/h/gcat. We propose that the conditions used for the cobalt catalysts could have generated this methanation because these catalysts are known to have their best performance around 210°C in classical FTS, whereas the iron catalysts are more flexible but are also known to have an RWGS activity.

Keywords: cobalt-copper catalytic systems, CO₂-hydrogenation, Fischer-Tropsch synthesis, hydrocarbons, low-temperature process

Procedia PDF Downloads 35
2374 Cadmium and Lead Extraction from Environmental Samples with Complexes Matrix by Nanomagnetite Solid-Phase and Determine Their Trace Amounts

Authors: Hossein Tavallali, Mohammad Ali Karimi, Gohar Deilamy-Rad

Abstract:

In this study, a new type of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) with sodium dodecyl sulfate- 1-(2-pyridylazo)-2-naphthol (SDS-PAN) as a new sorbent solid phase extraction (SPE) has been successfully synthesized and applied for preconcentration and separation of Cd and Pb in environmental samples. Compared with conventional SPE methods, the advantages of this new magnetic Mixed Hemimicelles Solid-Phase Extraction Procedure (MMHSPE) still include easy preparation and regeneration of sorbents, short times of sample pretreatment, high extraction yields, and high breakthrough volumes. It shows great analytical potential in preconcentration of Cd and Pb compounds from large volume water samples. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS-PAN, satisfactory concentration factor and extraction recoveries can be produced with only 0.05 g Fe3O4/Al2O3 NPs. The metals were eluted with 3mL HNO3 2 mol L-1 directly and detected with the detection system Flame Atomic Absorption Spectrometry (FAAS). Various influencing parameters on the separation and preconcentration of trace metals, such as the amount of PAN, pH value, sample volume, standing time, desorption solvent and maximal extraction volume, amount of sorbent and concentration of eluent, were studied. The detection limits of this method for Cd and Pb were 0.3 and 0.7 ng mL−1 and the R.S.D.s were 3.4 and 2.8% (C = 28.00 ng mL-1, n = 6), respectively. The preconcentration factor of the modified nanoparticles was 166.6. The proposed method has been applied to the determination of these metal ions at trace levels in soil, river, tap, mineral, spring and wastewater samples with satisfactory results.

Keywords: Alumina-coated magnetite nanoparticles, Magnetic Mixed Hemimicell Solid-Phase Extraction, Cd and Pb, soil sample

Procedia PDF Downloads 296