Search results for: solar water pumping system
24084 Socio-Economic Analysis of Water Saving Technologies in Agricultural Sector
Authors: Saeed Yazdani, F. Nekoofar
Abstract:
Considering the importance and scarcity of water resources, the efficient management of water resources is of great importance. In the agriculture sector, farmers are facilitated with various practices and technologies to encounter water insufficiency. This study aims to assess socio-economic factors affecting the application of water-saving technologies. A Logit method was employed to examine the impact of different variables on the use of water-saving technology. The required data was gathered from a sample of 204 farmers in 2021 in Alborz Province in Iran. The results indicate that different variables such as crop price variability, water sources, farm size, income, education, experience, membership in cooperatives have positive effects, and variables such as age and number of plots have negative effects on the probability of applying modern water-saving technologies.Keywords: socio-economics, water, irrigation, water saving technologies, scarcity
Procedia PDF Downloads 2424083 Overcoming the Problems Affecting Drip Irrigation System through the Design of an Efficient Filtration and Flushing System
Authors: Stephen A. Akinlabi, Esther T. Akinlabi
Abstract:
The drip irrigation system is one of the important areas that affect the livelihood of farmers directly. The use of drip irrigation system has been the most efficient system compared to the other types of irrigations systems because the drip irrigation helps to save water and increase the productivity of crops. But like any other system, it can be considered inefficient when the filters and the emitters get clogged while in operation. The efficiency of the entire system is reduced when the emitters are clogged and blocked. This consequently impact and affect the farm operations which may result in scarcity of farm products and increase the demand. This design work focuses on how to overcome some of the challenges affecting drip irrigation system through the design of an efficient filtration and flushing system.Keywords: drip irrigation system, filters, soil texture, mechanical engineering design, analysis
Procedia PDF Downloads 38624082 Economical Transformer Selection Implementing Service Lifetime Cost
Authors: Bonginkosi A. Thango, Jacobus A. Jordaan, Agha F. Nnachi
Abstract:
In this day and age, there is a proliferate concern from all governments across the globe to barricade the environment from greenhouse gases, which absorb infrared radiation. As a result, solar photovoltaic (PV) electricity has been an expeditiously growing renewable energy source and will eventually undertake a prominent role in the global energy generation. The selection and purchasing of energy-efficient transformers that meet the operational requirements of the solar photovoltaic energy generation plants then become a part of the Independent Power Producers (IPP’s) investment plan of action. Taking these into account, this paper proposes a procedure that put into effect the intricate financial analysis necessitated to precisely evaluate the transformer service lifetime no-load and load loss factors. This procedure correctly set forth the transformer service lifetime loss factors as a result of a solar PV plant’s sporadic generation profile and related levelized costs of electricity into the computation of the transformer’s total ownership cost. The results are then critically compared with the conventional transformer total ownership cost unaccompanied by the emission costs, and demonstrate the significance of the sporadic energy generation nature of the solar PV plant on the total ownership cost. The findings indicate that the latter play a crucial role for developers and Independent Power Producers (IPP’s) in making the purchase decision during a tender bid where competing offers from different transformer manufactures are evaluated. Additionally, the susceptibility analysis of different factors engrossed in the transformer service lifetime cost is carried out; factors including the levelized cost of electricity, solar PV plant’s generation modes, and the loading profile are examined.Keywords: solar photovoltaic plant, transformer, total ownership cost, loss factors
Procedia PDF Downloads 13024081 Iraq Water Resources Planning: Perspectives and Prognoses
Authors: Nadhir Al-Ansari, Ammar A. Ali, Sven Knutsson
Abstract:
Iraq is located in the Middle East. It covers an area of 433,970 square kilometres populated by about 32 million inhabitants. Iraq greatly relies in its water resources on the Tigris and Euphrates Rivers. Recently, Iraq is suffering from water shortage problems. This is due to external and internal factors. The former includes global warming and water resources policies of neighbouring countries while the latter includes mismanagement of its water resources. The supply and demand are predicted to be 43 and 66.8 Billion Cubic Meters (BCM) respectively in 2015, while in 2025 it will be 17.61 and 77 BCM respectively. In addition, future prediction suggests that Tigris and Euphrates Rivers will be completely dry in 2040. To overcome this problem, prudent water management policies are to be adopted. This includes Strategic Water Management Vision, development of irrigation techniques, reduction of water losses, use of non-conventional water resources and research and development planning.Keywords: Iraq, Tigris River, Euphrates River, water scarcity, water resources management
Procedia PDF Downloads 45024080 The Effect of Using Water Wireless Aqua Com System on the Development of Dolphin Kick Movements on the Female Swimming Team at the Faculty of Physical Education
Authors: Wisal Alrabadi
Abstract:
The study's goal was to see how the use of water wireless Aqua Com System and its accompanying music affected the Female Swimming Team at the Faculty of Physical Education's development of dolphin kick movements. To that end, a training program consisting of (12) training units spread out over four weeks, three units per week, was created and applied to a study sample of (10) students from the swimming pool enrolled in the first semester of the academic year 2022. Pre-measuring and timing the movements of dolphins kicking with and without fins above and below, measuring the water's surface over a distance of 25 meters. The results showed that there are statistically significant differences in favor of telemetry from the start within the limits of the area specified for a distance of 15 m after the comparison between the pre and post-measurement using the test (T) of the double samples, and this indicates the impact of the training program using the Aqua Com System in the swimming team(Female) at Faculty of Physical Education, and in light of this a set of recommendations was developed.Keywords: aqua com system training program, accompanying music, dolphin kick movements, swimming team female
Procedia PDF Downloads 15624079 Proposed Location of Grid Connected Wind-Pv Hybrid System Based on Load Flow and Voltage Stability Indices Study
Authors: Bazilah Ismail, Muhammad Mat Naain, Ibrahim Alhamrouni, Lilik Jamilatul Awalin, Fadi Albatsh, Mohd Fairuz Abdul Hamid
Abstract:
Rapid depletion and prices of the conventional energy sources have stimulated the development of the renewable energy source (RES). Due to the unpredicted and intermittent nature of RES, the hybrid renewable energy system (HRES) is the best solution to complement the nature of the respective sources, and the combination of the wind and solar energy is rapidly gaining popularity. The significant challenges on the operation and planning of the grid system with a high HRES penetration has become an important subject since the location of HRES plant give impact towards the existing system. This paper aims to propose the location of the grid connected Wind-PV hybrid plant (WPHP) based on load flow and voltage stability indices study. Several case studies are carried out using IEEE 14 bus system, and the system is modeled and tested in DigSILENT PowerFactory.Keywords: hybrid renewable energy system, wind farm, photovoltaic system, voltage stability and load flow
Procedia PDF Downloads 31624078 Highway Lighting of the 21st Century is Smart, but is it Cost Efficient?
Authors: Saurabh Gupta, Vanshdeep Parmar, Sri Harsha Reddy Yelly, Michele Baker, Elizabeth Bigler, Kunhee Choi
Abstract:
It is known that the adoption of solar powered LED highway lighting systems or sensory LED highway lighting systems can dramatically reduce energy consumption by 55 percent when compared to conventional on-grid High Pressure Sodium (HPS) lamps that are widely applied to most highways. However, an initial high installation cost for building the infrastructure of solar photovoltaic devices hampers a wider adoption of such technologies. This research aims to examine currently available state-of-the-art solar photovoltaic and sensory technologies, identify major obstacles, and analyze each technology to create a benchmarking metrics from the benefit-cost analysis perspective. The on-grid HPS lighting systems will serve as the baseline for this study to compare it with other lighting alternatives such as solar and sensory LED lighting systems. This research will test the validity of the research hypothesis that alternative LED lighting systems produce more favorable benefit-cost ratios and the added initial investment costs are recouped by the savings in the operation and maintenance cost. The payback period of the excess investment and projected savings over the life-cycle of the selected lighting systems will be analyzed by utilizing the concept of Net Present Value (NPV). Researchers believe that if this study validates the research hypothesis, it can promote a wider adoption of alternative lighting systems that will eventually save millions of taxpayer dollars in the long-run.Keywords: lighting systems, sensory and solar PV, benefit cost analysis, net present value
Procedia PDF Downloads 35224077 Primary and Secondary Big Bangs Theory of Creation of Universe
Authors: Shyam Sunder Gupta
Abstract:
The current theory for the creation of the universe, the Big Bang theory, is widely accepted but leaves some unanswered questions. It does not explain the origin of the singularity or what causes the Big Bang. The theory of the Big Bang also does not explain why there is such a huge amount of dark energy and dark matter in our universe. Also, there is a question related to one universe or multiple universes which needs to be answered. This research addresses these questions using the Bhagvat Puran and other Vedic scriptures as the basis. There is a Unique Pure Energy Field that is eternal, infinite, and finest of all and never transforms when in its original form. The Carrier Particles of Unique Pure Energy are Param-anus- Fundamental Energy Particles. Param-anus and a combination of these particles create bigger particles from which the Universe gets created. For creation to initiate, Unique Pure Energy is represented in three phases: positive phase energy, neutral phase eternal time energy and negative phase energy. Positive phase energy further expands in three forms of creative energies (CE1, CE2andCE3). From CE1 energy, three energy modes, mode of activation, mode of action, and mode of darkness, were created. From these three modes, 16 Principles, subtlest forms of energies, namely Pradhan, Mahat-tattva, Time, Ego, Intellect, Mind, Sound, Space, Touch, Air, Form, Fire, Taste, Water, Smell, and Earth, get created. In the Mahat-tattva, dominant in the Mode of Darkness, CE1 energy creates innumerable primary singularities from seven principles: Pradhan, Mahat-tattva, Ego, Sky, Air, Fire, and Water. CE1 energy gets divided as CE2 and enters, along with three modes and time, in each singularity, and primary Big Bang takes place, and innumerable Invisible Universes get created. Each Universe has seven coverings of 7 principles, and each layer is 10 times thicker than the previous layer. By energy CE2, space in Invisible Universe under the coverings is divided into two halves. In the lower half, the process of evolution gets initiated, and seeds of 24 elements get created, out of which 5 fundamental elements, building blocks of matter, Sky, Air, Fire, Water and Earth, create seeds of stars, planets, galaxies and all other matter. Since 5 fundamental elements get created out of the mode of darkness, it explains why there is so much dark energy and dark matter in our Universe. This process of creation, in the lower half of Invisible universe continues for 2.16 billion years. Further, in the lower part of the energy field, exactly at the Centre of Invisible Universe, Secondary Singularity is created, through which, by force of Mode of Action, Secondary Big Bang takes place and Visible Universe gets created in the shape of Lotus Flower, expanding into upper part. Visible matter starts appearing after a gap of 360,000 years. Within the Visible Universe, a small part gets created known as the Phenomenal Material World, which is our Solar System, the sun being in the Centre. Diameter of Solar planetary system is 6.4 billion km.Keywords: invisible universe, phenomenal material world, primary Big Bang, secondary Big Bang, singularities, visible universe
Procedia PDF Downloads 9124076 Shallow Water Lidar System in Measuring Erosion Rate of Coarse-Grained Materials
Authors: Ghada S. Ellithy, John. W. Murphy, Maureen K. Corcoran
Abstract:
Erosion rate of soils during a levee or dam overtopping event is a major component in risk assessment evaluation of breach time and downstream consequences. The mechanism and evolution of dam or levee breach caused by overtopping erosion is a complicated process and difficult to measure during overflow due to accessibility and quickly changing conditions. In this paper, the results of a flume erosion tests are presented and discussed. The tests are conducted on a coarse-grained material with a median grain size D50 of 5 mm in a 1-m (3-ft) wide flume under varying flow rates. Each test is performed by compacting the soil mix r to its near optimum moisture and dry density as determined from standard Proctor test in a box embedded in the flume floor. The box measures 0.45 m wide x 1.2 m long x 0.25 m deep. The material is tested several times at varying hydraulic loading to determine the erosion rate after equal time intervals. The water depth, velocity are measured at each hydraulic loading, and the acting bed shear is calculated. A shallow water lidar (SWL) system was utilized to record the progress of soil erodibility and water depth along the scanned profiles of the tested box. SWL is a non-contact system that transmits laser pulses from above the water and records the time-delay between top and bottom reflections. Results from the SWL scans are compared with before and after manual measurements to determine the erosion rate of the soil mix and other erosion parameters.Keywords: coarse-grained materials, erosion rate, LIDAR system, soil erosion
Procedia PDF Downloads 11424075 Innovative Technologies for Aeration and Feeding of Fish in Aquaculture with Minimal Impact on the Environment
Authors: Vasile Caunii, Andreea D. Serban, Mihaela Ivancia
Abstract:
The paper presents a new approach in terms of the circular economy of technologies for feeding and aeration of accumulations and water basins for fish farming and aquaculture. Because fish is and will be one of the main foods on the planet, the use of bio-eco-technologies is a priority for all producers. The technologies proposed in the paper want to reduce by a substantial percentage the costs of operation of ponds and water accumulation, using non-polluting technologies with minimal impact on the environment. The paper proposes two innovative, intelligent systems, fully automated that use a common platform, completely eco-friendly. One system is intended to aerate the water of the fish pond, and the second is intended to feed the fish by dispersing an optimal amount of fodder, depending on population size, age and habits. Both systems use a floating platform, regenerative energy sources, are equipped with intelligent and innovative systems, and in addition to fully automated operation, significantly reduce the costs of aerating water accumulations (natural or artificial) and feeding fish. The intelligent system used for feeding, in addition, to reduce operating costs, optimizes the amount of food, thus preventing water pollution and the development of bacteria, microorganisms. The advantages of the systems are: increasing the yield of fish production, these are green installations, with zero pollutant emissions, can be arranged anywhere on the water surface, depending on the user's needs, can operate autonomously or remotely controlled, if there is a component failure, the system provides the operator with accurate data on the issue, significantly reducing maintenance costs, transmit data about the water physical and chemical parameters.Keywords: bio-eco-technologies, economy, environment, fish
Procedia PDF Downloads 15124074 Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System
Authors: Rohit Tripathi, Sumit Tiwari, G. N. Tiwari
Abstract:
In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, India. Energy and exergy performance of N - partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Water collector system has been compared for two cases: (i) 25% area of water collector covered by PV module, (ii) 75% area of water collector covered by PV module. It is observed that case (i) has been best suited for thermal performance and case (ii) for electrical energy as well as overall exergy.Keywords: compound parabolic concentrator, energy, photovoltaic thermal, temperature dependent electrical efficiency
Procedia PDF Downloads 40624073 Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria
Authors: Laidi Maamar, Achwak Madani, Abdellah El Ahdj Abdellah
Abstract:
The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models.Keywords: support vector regression (SVR), optimization algorithms, global solar radiation prediction, hybrid forecasting models
Procedia PDF Downloads 3824072 Evaluating the Impact of Future Scenarios on Water Availability and Demand Based on Stakeholders Prioritized Water Management Options in the Upper Awash Basin, Ethiopia
Authors: Adey Nigatu Mersha, Ilyas Masih, Charlotte de Fraiture, Tena Alamirew
Abstract:
Conflicts over water are increasing mainly as a result of water scarcity in response to higher water demand and climatic variability. There is often not enough water to meet all demands for different uses. Thus, decisions have to be made as to how the available resources can be managed and utilized. Correspondingly water allocation goals, practically national water policy goals, need to be revised accordingly as the pressure on water increases from time to time. A case study is conducted in the Upper Awash Basin, Ethiopia, to assess and evaluate prioritized comprehensive water demand management options based on the framework of integrated water resources management in account of stakeholders’ knowledge and preferences as well as practical prominence within the Upper Awash Basin. Two categories of alternative management options based on policy analysis and stakeholders' consultation were evaluated against the business-as-usual scenario by using WEAP21 model as an analytical tool. Strong effects on future (unmet) demands are observed with major socio-economic assumptions and forthcoming water development plans. Water management within the basin will get more complex with further abstraction which may lead to an irreversible damage to the ecosystem. It is further confirmed through this particular study that efforts to maintain users’ preferences alone cannot insure economically viable and environmentally sound development and vice versa. There is always a tradeoff between these factors. Hence, all of these facets must be analyzed separately, related with each other in equal footing, and ultimately taken up in decision making in order for the whole system to function properly.Keywords: water demand, water availability, WEAP21, scenarios
Procedia PDF Downloads 28124071 Gas Flotation Unit in Kuwait Oil Company Operations
Authors: Homoud Bourisli, Haitham Safar
Abstract:
Oil is one of main resources of energy in the world. As conventional oil is drying out, oil recovery is crucial to maintain the same level of oil production. Since water injection is one of the commonly used methods to increase and maintain pressure in oil wells, oil-water separation processes of the water associated with oil production for water injection oil recovery is very essential. Therefore, Gas Flotation Units are used for oil-water separation to be able to re-inject the treated water back into the wells to increase pressure.Keywords: Kuwait oil company, dissolved gas flotation unit, induced gas flotation unit, oil-water separation
Procedia PDF Downloads 57524070 Estimating Future Solar Potential in Evolving High-Density Urban Areas for the Mid-Latitude City of Mendoza, Argentina
Authors: Mariela Edith Arboit
Abstract:
The main goal of the project is to explore the evolution possibilities of the morphological indicators of the built environment, including those resulting from progressive soil occupation, due to the relentless growth of the city’s population and subsequent increase in building density and solar access reduction per built unit. Two alternative normative proposals, Conventional Proposal (CP) and Alternative Proposal (AP), are compared. In addition, temporal scenarios of the city’s evolution process are analyzed, starting from the reference situation of existing, high-density built-up areas, and simulating their possible morphological outcomes on theoretical medium (30 yr.) and long (60 yr.) terms, as a result of the massive implementation of either regulation in the long run. The results obtained demonstrate that the Alternative Proposal (AP) presents higher mean values of predicted solar potential expressed by the Volumetric Insolation Factor total (VIFtot) for both time periods and services. Regarding environmental aspects, the different impacts of either alternative on the urban landscape quality seem to favor the AP proposal. Its deserved detailed assessment is also presently being developed through a quanti-qualitative methodology.Keywords: building morphology, environmental quality, solar energy, urban sustainability
Procedia PDF Downloads 15724069 Preparation and Characterization of BaMnO₃ Application to the Photocatalytic Oxidation of Paracetamol under Solar Light
Authors: Dahmane Mohamed, Tab Asma, Trari Mohamed
Abstract:
BaMnO₃ nanoparticles were synthesized by a nitrate route. Its structure and physical properties were characterized by means of X-ray powder diffraction, radio crystallographic analysis, ultraviolet-visible absorption spectroscopy in diffuse reflectance mode, infrared spectroscopy, and electrochemical measurements. The optical study showed that barium manganese oxide presents a direct transition with band energy 2.13 eV. The electrochemical study allowed us to identify the redox peaks and the corrosion parameters. Capacitance measurement clearly showed n-type conductivity. The photodegradation of paracetamol by BaMnO₃ was followed by UV-visible spectrophotometry; the results were then confirmed by HPLC. BaMnO₃ has shown its photocatalytic efficiency in the photodegradation of 10 mg/L paracetamol under solar irradiation, with a yield of ≈ 88%. The kinetic study has shown that paracetamol degrades with first-order kinetics.Keywords: BaMnO₃, photodegradation, paracetamol, electrochemical measurements, solar light
Procedia PDF Downloads 10424068 Solar Panel Design Aspects and Challenges for a Lunar Mission
Authors: Mannika Garg, N. Srinivas Murthy, Sunish Nair
Abstract:
TeamIndus is only Indian team participated in the Google Lunar X Prize (GLXP). GLXP is an incentive prize space competition which is organized by the XPrize Foundation and sponsored by Google. The main objective of the mission is to soft land a rover on the moon surface, travel minimum displacement of 500 meters and transmit HD and NRT videos and images to the Earth. Team Indus is designing a Lunar Lander which carries Rover with it and deliver onto the surface of the moon with a soft landing. For lander to survive throughout the mission, energy is required to operate all attitude control sensors, actuators, heaters and other necessary components. Photovoltaic solar array systems are the most common and primary source of power generation for any spacecraft. The scope of this paper is to provide a system-level approach for designing the solar array systems of the lander to generate required power to accomplish the mission. For this mission, the direction of design effort is to higher efficiency, high reliability and high specific power. Towards this approach, highly efficient multi-junction cells have been considered. The design is influenced by other constraints also like; mission profile, chosen spacecraft attitude, overall lander configuration, cost effectiveness and sizing requirements. This paper also addresses the various solar array design challenges such as operating temperature, shadowing, radiation environment and mission life and strategy of supporting required power levels (peak and average). The challenge to generate sufficient power at the time of surface touchdown, due to low sun elevation (El) and azimuth (Az) angle which depends on Lunar landing site, has also been showcased in this paper. To achieve this goal, energy balance analysis has been carried out to study the impact of the above-mentioned factors and to meet the requirements and has been discussed in this paper.Keywords: energy balance analysis, multi junction solar cells, photovoltaic, reliability, spacecraft attitude
Procedia PDF Downloads 23024067 Urban Development from the Perspective of Lou Gang Polder System: Taihu Lake, Huzhou as an Example
Authors: Wei Bin Shen
Abstract:
Lou Gang world irrigation project heritage in Taihu Lake is a systematic irrigation project integrating water conservancy, ecology and culture. Through the methods of historical documents and field investigation, this paper deeply analyzes the formation history, connotation and value of Lou Gang polder system: Lou Gang heritage, describes in detail the relationship between Lou Gang polder system in Taihu Lake and the development and evolution of Huzhou City, and initially explores the protection and Utilization Strategies of Lou Gang water conservancy cultural heritage resources in Taihu Lake from the current situation.Keywords: Lou Gang, protection strategy, urban evolution, waterconservancyculturalheritage
Procedia PDF Downloads 17024066 Optimal Design of Storm Water Networks Using Simulation-Optimization Technique
Authors: Dibakar Chakrabarty, Mebada Suiting
Abstract:
Rapid urbanization coupled with changes in land use pattern results in increasing peak discharge and shortening of catchment time of concentration. The consequence is floods, which often inundate roads and inhabited areas of cities and towns. Management of storm water resulting from rainfall has, therefore, become an important issue for the municipal bodies. Proper management of storm water obviously includes adequate design of storm water drainage networks. The design of storm water network is a costly exercise. Least cost design of storm water networks assumes significance, particularly when the fund available is limited. Optimal design of a storm water system is a difficult task as it involves the design of various components, like, open or closed conduits, storage units, pumps etc. In this paper, a methodology for least cost design of storm water drainage systems is proposed. The methodology proposed in this study consists of coupling a storm water simulator with an optimization method. The simulator used in this study is EPA’s storm water management model (SWMM), which is linked with Genetic Algorithm (GA) optimization method. The model proposed here is a mixed integer nonlinear optimization formulation, which takes care of minimizing the sectional areas of the open conduits of storm water networks, while satisfactorily conveying the runoff resulting from rainfall to the network outlet. Performance evaluations of the developed model show that the proposed method can be used for cost effective design of open conduit based storm water networks.Keywords: genetic algorithm (GA), optimal design, simulation-optimization, storm water network, SWMM
Procedia PDF Downloads 25024065 Potassium Fertilization Improves Rice Yield in Aerobic Production System by Decreasing Panicle Sterility
Authors: Abdul Wakeel, Hafeez Ur Rehman, Muhammad Umair Mubarak
Abstract:
Rice is the second most important staple food in Pakistan after wheat. It is not only a healthy food for the people of all age groups but also a source of foreign exchange for Pakistan. Instead of bright history for Basmati rice production, we are suffering from multiple problems reducing yield and quality as well. Rice lodging and water shortage for an-aerobic rice production system is among major glitches of it. Due to water shortage an-aerobic rice production system has to be supplemented or replaced by aerobic rice system. Aerobic rice system has been adopted for production of non-basmati rice in many parts of the world. Also for basmati rice, significant efforts have been made for aerobic rice production, however still has to be improved for effective recommendations. Among two major issues for aerobic rice, weed elimination has been solved to great extent by introducing suitable herbicides, however, low yield production due weak grains and panicle sterility is still elusive. It has been reported that potassium (K) has significant role to decrease panicle sterility in cereals. Potassium deficiency is obvious for rice under aerobic rice production system due to lack of K gradient coming with irrigation water and lowered indigenous K release from soils. Therefore it was hypothesized that K application under aerobic rice production system may improve the rice yield by decreasing panicle sterility. Results from pot and field experiments confirm that application of K fertilizer significantly increased the rice grain yield due to decreased panicle sterility and improving grain health. The quality of rice was also improved by K fertilization.Keywords: DSR, Basmati rice, aerobic, potassium
Procedia PDF Downloads 39324064 Design and Development of an Autonomous Underwater Vehicle for Irrigation Canal Monitoring
Authors: Mamoon Masud, Suleman Mazhar
Abstract:
Indus river basin’s irrigation system in Pakistan is extremely complex, spanning over 50,000 km. Maintenance and monitoring of this demands enormous resources. This paper describes the development of a streamlined and low-cost autonomous underwater vehicle (AUV) for the monitoring of irrigation canals including water quality monitoring and water theft detection. The vehicle is a hovering-type AUV, designed mainly for monitoring irrigation canals, with fully documented design and open source code. It has a length of 17 inches, and a radius of 3.5 inches with a depth rating of 5m. Multiple sensors are present onboard the AUV for monitoring water quality parameters including pH, turbidity, total dissolved solids (TDS) and dissolved oxygen. A 9-DOF Inertial Measurement Unit (IMU), GY-85, is used, which incorporates an Accelerometer (ADXL345), a Gyroscope (ITG-3200) and a Magnetometer (HMC5883L). The readings from these sensors are fused together using directional cosine matrix (DCM) algorithm, providing the AUV with the heading angle, while a pressure sensor gives the depth of the AUV. 2 sonar-based range sensors are used for obstacle detection, enabling the vehicle to align itself with the irrigation canals edges. 4 thrusters control the vehicle’s surge, heading and heave, providing 3 DOF. The thrusters are controlled using a proportional-integral-derivative (PID) feedback control system, with heading angle and depth being the controller’s input and the thruster motor speed as the output. A flow sensor has been incorporated to monitor canal water level to detect water-theft event in the irrigation system. In addition to water theft detection, the vehicle also provides information on water quality, providing us with the ability to identify the source(s) of water contamination. Detection of such events can provide useful policy inputs for improving irrigation efficiency and reducing water contamination. The AUV being low cost, small sized and suitable for autonomous maneuvering, water level and quality monitoring in the irrigation canals, can be used for irrigation network monitoring at a large scale.Keywords: the autonomous underwater vehicle, irrigation canal monitoring, water quality monitoring, underwater line tracking
Procedia PDF Downloads 14824063 A Photovoltaic Micro-Storage System for Residential Applications
Authors: Alia Al Nuaimi, Ayesha Al Aberi, Faiza Al Marzouqi, Shaikha Salem Ali Al Yahyaee, Ala Hussein
Abstract:
In this paper, a PV micro-storage system for residential applications is proposed. The term micro refers to the size of the PV storage system, which is in the range of few kilo-watts, compared to the grid size (~GWs). Usually, in a typical load profile of a residential unit, two peak demand periods exist: one at morning and the other at evening time. The morning peak can be partly covered by the PV energy directly, while the evening peak cannot be covered by the PV alone. Therefore, an energy storage system that stores solar energy during daytime and use this stored energy when the sun is absent is a must. A complete design procedure including theoretical analysis followed by simulation verification and economic feasibility evaluation is addressed in this paper.Keywords: battery, energy storage, photovoltaic, peak shaving, smart grid
Procedia PDF Downloads 32124062 Biocompatible Ionic Liquids in Liquid-Liquid Extraction of Lactic Acid: A Comparative Study
Authors: Konstantza Tonova, Ivan Svinyarov, Milen G. Bogdanov
Abstract:
Ionic liquids consisting of pairs of imidazolium or phosphonium cation and chloride or saccharinate anion were synthesized and compared with respect to their extraction efficiency towards the fermentative L-lactic acid. The acid partitioning in the equilibrated biphasic systems of ionic liquid and water was quantified through the extraction degree and the partition coefficient. The water transfer from the aqueous into the ionic liquid-rich phase was also always followed. The effect of pH, which determines the state of lactic acid in the aqueous source was studied. The effect of other salting-out substances that modify the ionic liquid/water equilibrium was also investigated in view to reveal the best liquid-liquid system with respect to low toxicity, high extraction and back extraction efficiencies and performance simplicity.Keywords: ionic liquids, biphasic system, extraction, lactic acid
Procedia PDF Downloads 48224061 Applying Systems Thinking and a System of Systems Approach to Facilitate Sustainable Grid Integration of Variable Renewable Energy
Authors: Edward B. Ssekulima, Amir Etemadi
Abstract:
This paper presents a Systems Thinking and System of Systems (SoS) viewpoint for managing requirements complexity in the grid integration of Variable Renewable Energy (VRE). To achieve a SoS approach, it is often necessary to inculcate a Systems Thinking (ST) perspective in the planning and design of the attendant system. We show how this approach can support the enhanced integration of VRE (wind, solar small hydro) for which intermittency is a key inhibiting factor to their sustainable grid integration. The results indicate that a ST and SoS approach are a critical tool for decision makers in the planning, design and deployment of VRE Sources for their sustainable grid-integration in accordance with relevant techno-economic, social and environmental requirements.Keywords: sustainable grid-integration, system of systems, systems thinking, variable energy resources
Procedia PDF Downloads 13124060 Impact of Saline Water and Water Restriction in Laying Hens
Authors: Reza Vakili
Abstract:
This experiment was conducted to investigate the effect of duration water restriction of drinking water and salinity level on production performance, egg quality and biochemical and hematological blood indices of laying hens. A total of 240 Hy-Line laying hens were used in a completely randomized design with a 2 × 2 factorial arrangement of treatments. Experimental treatments were: 1) free access to drinking water and a low level of salinity (TDS below 500 mg/L) (FAW+LS), 2) free access to water and a high level of salinity (TDS above 1500 mg/L), (FAW+HS), 3) 12 h nightly water restriction and a low level of salinity (LAW+LS), and 4) 12 h water restriction and a high level of salinity (LAW+HS). Intake of feed, percentage of egg production and egg weight and mass were not affected by water restriction or salinity level (P > 0.05), however, a trend (P < 0.01) for lower water consumption was detected in water-restricted hens, regardless of salinity level (213 vs 187). A tendency for lower eggshell and yolk weights was observed in hens that had limited access to water with high salinity compared to those had free access to high saline water (P = 0.08). Serum total protein and glucose concentrations significantly reduced (P < 0.05) in hens drank high salinity water, regardless of water restriction. Moreover, saline water increased the concentration of uric acid, creatinine, and cholesterol when compared to low salinity drank-hens (P < 0.05). The concentrations of ALT and AST increased with salinity level (P < 0.05) and water restriction caused an increment in AST content (P < 0.05). In conclusion, Hy-Line laying hens could withstand water restriction, whilst could not tolerate water salinity of about 1500 mg/L.Keywords: chemical pollutants, eggs, laying hens, salinity, water quality
Procedia PDF Downloads 2724059 Vulnerability Assessment of Groundwater Quality Deterioration Using PMWIN Model
Authors: A. Shakoor, M. Arshad
Abstract:
The utilization of groundwater resources in irrigation has significantly increased during the last two decades due to constrained canal water supplies. More than 70% of the farmers in the Punjab, Pakistan, depend directly or indirectly on groundwater to meet their crop water demands and hence, an unchecked paradigm shift has resulted in aquifer depletion and deterioration. Therefore, a comprehensive research was carried at central Punjab-Pakistan, regarding spatiotemporal variation in groundwater level and quality. Processing MODFLOW for window (PMWIN) and MT3D (solute transport model) models were used for existing and future prediction of groundwater level and quality till 2030. The comprehensive data set of aquifer lithology, canal network, groundwater level, groundwater salinity, evapotranspiration, groundwater abstraction, recharge etc. were used in PMWIN model development. The model was thus, successfully calibrated and validated with respect to groundwater level for the periods of 2003 to 2007 and 2008 to 2012, respectively. The coefficient of determination (R2) and model efficiency (MEF) for calibration and validation period were calculated as 0.89 and 0.98, respectively, which argued a high level of correlation between the calculated and measured data. For solute transport model (MT3D), the values of advection and dispersion parameters were used. The model used for future scenario up to 2030, by assuming that there would be no uncertain change in climate and groundwater abstraction rate would increase gradually. The model predicted results revealed that the groundwater would decline from 0.0131 to 1.68m/year during 2013 to 2030 and the maximum decline would be on the lower side of the study area, where infrastructure of canal system is very less. This lowering of groundwater level might cause an increase in the tubewell installation and pumping cost. Similarly, the predicted total dissolved solids (TDS) of the groundwater would increase from 6.88 to 69.88mg/L/year during 2013 to 2030 and the maximum increase would be on lower side. It was found that in 2030, the good quality would reduce by 21.4%, while marginal and hazardous quality water increased by 19.28 and 2%, respectively. It was found from the simulated results that the salinity of the study area had increased due to the intrusion of salts. The deterioration of groundwater quality would cause soil salinity and ultimately the reduction in crop productivity. It was concluded from the predicted results of groundwater model that the groundwater deteriorated with the depth of water table i.e. TDS increased with declining groundwater level. It is recommended that agronomic and engineering practices i.e. land leveling, rainwater harvesting, skimming well, ASR (Aquifer Storage and Recovery Wells) etc. should be integrated to meliorate management of groundwater for higher crop production in salt affected soils.Keywords: groundwater quality, groundwater management, PMWIN, MT3D model
Procedia PDF Downloads 37824058 Design and Implementation of 3kVA Grid-Tied Transformerless Power Inverter for Solar Photovoltaic Application
Authors: Daniel O. Johnson, Abiodun A. Ogunseye, Aaron Aransiola, Majors Samuel
Abstract:
Power Inverter is a very important device in renewable energy use particularly for solar photovoltaic power application because it is the effective interface between the DC power generator and the load or the grid. Transformerless inverter is getting more and more preferred to the power converter with galvanic isolation transformer and may eventually supplant it. Transformerless inverter offers advantages of improved DC to AC conversion and power delivery efficiency; and reduced system cost, weight and complexity. This work presents thorough analysis of the design and prototyping of 3KVA grid-tie transformerless inverter. The inverter employs electronic switching method with minimised heat generation in the system and operates based on the principle of pulse-width modulation (PWM). The design is such that it can take two inputs, one from PV arrays and the other from Battery Energy Storage BES and addresses the safety challenge of leakage current. The inverter system was designed around microcontroller system, modeled with Proteus® software for simulation and testing of the viability of the designed inverter circuit. The firmware governing the operation of the grid-tied inverter is written in C language and was developed using MicroC software by Mikroelectronica® for writing sine wave signal code for synchronization to the grid. The simulation results show that the designed inverter circuit performs excellently with very high efficiency, good quality sinusoidal output waveform, negligible harmonics and gives very stable performance under voltage variation from 36VDC to 60VDC input. The prototype confirmed the simulated results and was successfully synchronized with the utility supply. The comprehensive analyses of the circuit design, the prototype and explanation on overall performance will be presented.Keywords: grid-tied inverter, leakage current, photovoltaic system, power electronic, transformerless inverter
Procedia PDF Downloads 29224057 Computational Fluid Dynamics Study on Water Soot Blower Direction in Tangentially Fired Pulverized-Coal Boiler
Authors: Teewin Plangsrinont, Wasawat Nakkiew
Abstract:
In this study, computational fluid dynamics (CFD) was utilized to simulate and predict the path of water from water soot blower through an ambient flow field in 300-megawatt tangentially burned pulverized coal boiler that utilizes a water soot blower as a cleaning device. To predict the position of the impact of water on the opposite side of the water soot blower under identical conditions, the nozzle size and water flow rate were fixed in this investigation. The simulation findings demonstrated a high degree of accuracy in predicting the direction of water flow to the boiler's water wall tube, which was validated by comparison to experimental data. Results show maximum deviation value of the water jet trajectory is 10.2 percent.Keywords: computational fluid dynamics, tangentially fired boiler, thermal power plant, water soot blower
Procedia PDF Downloads 21124056 Water Supply and Utility Management to Address Urban Sanitation Issues
Authors: Akshaya P., Priyanjali Prabhkaran
Abstract:
The paper examines the formulation of strategies to develop a comprehensive model of city level water utility management to addressing urban sanitation issues. The water is prime life sustaining natural resources and nature’s gifts to all living beings on the earth multiple urban sanitation issues are addressed in the supply of water in a city. Many of these urban sanitation issues are linked to population expansion and economic inequity. Increased usage of water and the development caused water scarcity. The lack of water supply results increases the chance of unhygienic situations in the cities. In this study, the urban sanitation issues are identified with respect to water supply and utility management. The study compared based on their best practices and initiatives. From this, best practices and initiatives identify suitable sustainable measures to address water supply issues in the city level. The paper concludes with the listed provision that should be considered suitable measures for water supply and utility management in city level to address the urban sanitation issues.Keywords: water, benchmarking water supply, water supply networks, water supply management
Procedia PDF Downloads 11024055 Evaluation of Water Quality on the Strength of Simple Concrete: Case Study of Wells in Jipijapa, Manabí, Ecuador
Authors: Julio Cesar Pino Tarragó, Dunia Lisbet Domínguez Gálvez, Luis Alfonso Moreno Ponce, Jhony Julio Regalado Jalca
Abstract:
This study examines the impact of three distinct types of water on the compressive strength of plain concrete, focusing on samples from wells in Jipijapa, Manabí, Ecuador: Joa water, characterized by high sulfur content; Chade 1 water, with low sulfur content; and Chade 2 water, which is highly brackish. Compressive strength tests were conducted at 7, 14, and 28 days to assess the influence of these water types on the structural integrity of the concrete. The results indicate that both brackish and sulfur-rich water significantly reduces concrete strength, while Chade 1 water, though initially enhancing strength, displays variability in long-term performance. These outcomes underscore the importance of optimizing construction practices in regions like Jipijapa, where potable water is scarce, by exploring sustainable alternatives for using non-potable water, thereby conserving limited water resources.Keywords: compressive strength, plain concrete, sulfur water, brackish water, water quality
Procedia PDF Downloads 38