Search results for: post-editing machine translation output
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5101

Search results for: post-editing machine translation output

4081 Application of Granular Computing Paradigm in Knowledge Induction

Authors: Iftikhar U. Sikder

Abstract:

This paper illustrates an application of granular computing approach, namely rough set theory in data mining. The paper outlines the formalism of granular computing and elucidates the mathematical underpinning of rough set theory, which has been widely used by the data mining and the machine learning community. A real-world application is illustrated, and the classification performance is compared with other contending machine learning algorithms. The predictive performance of the rough set rule induction model shows comparative success with respect to other contending algorithms.

Keywords: concept approximation, granular computing, reducts, rough set theory, rule induction

Procedia PDF Downloads 512
4080 End-to-End Performance of MPPM in Multihop MIMO-FSO System Over Dependent GG Atmospheric Turbulence Channels

Authors: Hechmi Saidi, Noureddine Hamdi

Abstract:

The performance of decode and forward (DF) multihop free space optical (FSO) scheme deploying multiple input multiple output (MIMO) configuration under gamma-gamma (GG) statistical distribution, that adopts M-ary pulse position modulation (MPPM) coding, is investigated. We have extracted exact and estimated values of symbol-error rates (SERs) respectively. The probability density function (PDF)’s closed-form formula is expressed for our designed system. Thanks to the use of DF multihop MIMO FSO configuration and MPPM signaling, atmospheric turbulence is combatted; hence the transmitted signal quality is improved.

Keywords: free space optical, gamma gamma channel, radio frequency, decode and forward, multiple-input multiple-output, M-ary pulse position modulation, symbol error rate

Procedia PDF Downloads 233
4079 Heuristic Classification of Hydrophone Recordings

Authors: Daniel M. Wolff, Patricia Gray, Rafael de la Parra Venegas

Abstract:

An unsupervised machine listening system is constructed and applied to a dataset of 17,195 30-second marine hydrophone recordings. The system is then heuristically supplemented with anecdotal listening, contextual recording information, and supervised learning techniques to reduce the number of false positives. Features for classification are assembled by extracting the following data from each of the audio files: the spectral centroid, root-mean-squared values for each frequency band of a 10-octave filter bank, and mel-frequency cepstral coefficients in 5-second frames. In this way both time- and frequency-domain information are contained in the features to be passed to a clustering algorithm. Classification is performed using the k-means algorithm and then a k-nearest neighbors search. Different values of k are experimented with, in addition to different combinations of the available feature sets. Hypothesized class labels are 'primarily anthrophony' and 'primarily biophony', where the best class result conforming to the former label has 104 members after heuristic pruning. This demonstrates how a large audio dataset has been made more tractable with machine learning techniques, forming the foundation of a framework designed to acoustically monitor and gauge biological and anthropogenic activity in a marine environment.

Keywords: anthrophony, hydrophone, k-means, machine learning

Procedia PDF Downloads 150
4078 Experimental and Numerical Evaluation of a Shaft Failure Behaviour Using Three-Point Bending Test

Authors: Bernd Engel, Sara Salman Hassan Al-Maeeni

Abstract:

A substantial amount of natural resources are nowadays consumed at a growing rate, as humans all over the world used materials obtained from the Earth. Machinery manufacturing industry is one of the major resource consumers on a global scale. Even though the incessant finding out of the new material, metals, and resources, it is urgent for the industry to develop methods to use the Earth's resources intelligently and more sustainable than before. Re-engineering of machine tools regarding design and failure analysis is an approach whereby out-of-date machines are upgraded and returned to useful life. To ensure the reliable future performance of the used machine components, it is essential to investigate the machine component failure through the material, design, and surface examinations. This paper presents an experimental approach aimed at inspecting the shaft of the rotary draw bending machine as a case to study. The testing methodology, which is based on the principle of the three-point bending test, allows assessing the shaft elastic behavior under loading. Furthermore, the shaft elastic characteristics include the maximum linear deflection, and maximum bending stress was determined by using an analytical approach and finite element (FE) analysis approach. In the end, the results were compared with the ones obtained by the experimental approach. In conclusion, it is seen that the measured bending deflection and bending stress were well close to the permissible design value. Therefore, the shaft can work in the second life cycle. However, based on previous surface tests conducted, the shaft needs surface treatments include re-carburizing and refining processes to ensure the reliable surface performance.

Keywords: deflection, FE analysis, shaft, stress, three-point bending

Procedia PDF Downloads 140
4077 Fine-Grained Sentiment Analysis: Recent Progress

Authors: Jie Liu, Xudong Luo, Pingping Lin, Yifan Fan

Abstract:

Facebook, Twitter, Weibo, and other social media and significant e-commerce sites generate a massive amount of online texts, which can be used to analyse people’s opinions or sentiments for better decision-making. So, sentiment analysis, especially fine-grained sentiment analysis, is a very active research topic. In this paper, we survey various methods for fine-grained sentiment analysis, including traditional sentiment lexicon-based methods, machine learning-based methods, and deep learning-based methods in aspect/target/attribute-based sentiment analysis tasks. Besides, we discuss their advantages and problems worthy of careful studies in the future.

Keywords: sentiment analysis, fine-grained, machine learning, deep learning

Procedia PDF Downloads 233
4076 Design and Radio Frequency Characterization of Radial Reentrant Narrow Gap Cavity for the Inductive Output Tube

Authors: Meenu Kaushik, Ayon K. Bandhoyadhayay, Lalit M. Joshi

Abstract:

Inductive output tubes (IOTs) are widely used as microwave power amplifiers for broadcast and scientific applications. It is capable of amplifying radio frequency (RF) power with very good efficiency. Its compactness, reliability, high efficiency, high linearity and low operating cost make this device suitable for various applications. The device consists of an integrated structure of electron gun and RF cavity, collector and focusing structure. The working principle of IOT is a combination of triode and klystron. The cathode lies in the electron gun produces a stream of electrons. A control grid is placed in close proximity to the cathode. Basically, the input part of IOT is the integrated structure of gridded electron gun which acts as an input cavity thereby providing the interaction gap where the input RF signal is applied to make it interact with the produced electron beam for supporting the amplification phenomena. The paper presents the design, fabrication and testing of a radial re-entrant cavity for implementing in the input structure of IOT at 350 MHz operating frequency. The model’s suitability has been discussed and a generalized mathematical relation has been introduced for getting the proper transverse magnetic (TM) resonating mode in the radial narrow gap RF cavities. The structural modeling has been carried out in CST and SUPERFISH codes. The cavity is fabricated with the Aluminum material and the RF characterization is done using vector network analyzer (VNA) and the results are presented for the resonant frequency peaks obtained in VNA.

Keywords: inductive output tubes, IOT, radial cavity, coaxial cavity, particle accelerators

Procedia PDF Downloads 105
4075 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation

Authors: Fidelia A. Orji, Julita Vassileva

Abstract:

This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.

Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning

Procedia PDF Downloads 105
4074 A Continuous Switching Technique for a Single Phase Bridgeless and Transformer-Less Active Rectifier with High Power Factor and Voltage Stabilization

Authors: Rahul Ganpat Mapari, D. G. Wakde

Abstract:

In this paper, a proposed approach to improve the power factor of single-phase rectifiers and to regulate the output voltage against the change in grid voltage and load is presented. This converter topology is evaluated on the basis of performance and its salient features like simplicity, low cost and high performance are discussed to analyze its applicability. The proposed control strategy is bridgeless, transformer-less and output current sensor-less and consists of only two Bi-directional IGBTs and two diodes. The voltage regulation is achieved by a simple voltage divider to communicate to a controller to control the duty cycles of PWM. A control technique and operational procedure are also developed, both theoretically and experimentally. The experimental results clearly verify the theoretical analysis from the prototype connected to grid unity.

Keywords: Active Rectifier (AC-DC), power factor, single phase, voltage regulation

Procedia PDF Downloads 564
4073 Principal Component Analysis Combined Machine Learning Techniques on Pharmaceutical Samples by Laser Induced Breakdown Spectroscopy

Authors: Kemal Efe Eseller, Göktuğ Yazici

Abstract:

Laser-induced breakdown spectroscopy (LIBS) is a rapid optical atomic emission spectroscopy which is used for material identification and analysis with the advantages of in-situ analysis, elimination of intensive sample preparation, and micro-destructive properties for the material to be tested. LIBS delivers short pulses of laser beams onto the material in order to create plasma by excitation of the material to a certain threshold. The plasma characteristics, which consist of wavelength value and intensity amplitude, depends on the material and the experiment’s environment. In the present work, medicine samples’ spectrum profiles were obtained via LIBS. Medicine samples’ datasets include two different concentrations for both paracetamol based medicines, namely Aferin and Parafon. The spectrum data of the samples were preprocessed via filling outliers based on quartiles, smoothing spectra to eliminate noise and normalizing both wavelength and intensity axis. Statistical information was obtained and principal component analysis (PCA) was incorporated to both the preprocessed and raw datasets. The machine learning models were set based on two different train-test splits, which were 70% training – 30% test and 80% training – 20% test. Cross-validation was preferred to protect the models against overfitting; thus the sample amount is small. The machine learning results of preprocessed and raw datasets were subjected to comparison for both splits. This is the first time that all supervised machine learning classification algorithms; consisting of Decision Trees, Discriminant, naïve Bayes, Support Vector Machines (SVM), k-NN(k-Nearest Neighbor) Ensemble Learning and Neural Network algorithms; were incorporated to LIBS data of paracetamol based pharmaceutical samples, and their different concentrations on preprocessed and raw dataset in order to observe the effect of preprocessing.

Keywords: machine learning, laser-induced breakdown spectroscopy, medicines, principal component analysis, preprocessing

Procedia PDF Downloads 72
4072 Adaptive Dehazing Using Fusion Strategy

Authors: M. Ramesh Kanthan, S. Naga Nandini Sujatha

Abstract:

The goal of haze removal algorithms is to enhance and recover details of scene from foggy image. In enhancement the proposed method focus into two main categories: (i) image enhancement based on Adaptive contrast Histogram equalization, and (ii) image edge strengthened Gradient model. Many circumstances accurate haze removal algorithms are needed. The de-fog feature works through a complex algorithm which first determines the fog destiny of the scene, then analyses the obscured image before applying contrast and sharpness adjustments to the video in real-time to produce image the fusion strategy is driven by the intrinsic properties of the original image and is highly dependent on the choice of the inputs and the weights. Then the output haze free image has reconstructed using fusion methodology. In order to increase the accuracy, interpolation method has used in the output reconstruction. A promising retrieval performance is achieved especially in particular examples.

Keywords: single image, fusion, dehazing, multi-scale fusion, per-pixel, weight map

Procedia PDF Downloads 450
4071 Bibliometric Analysis of the Impact of Funding on Scientific Development of Researchers

Authors: Ashkan Ebadi, Andrea Schiffauerova

Abstract:

Every year, a considerable amount of money is being invested on research, mainly in the form of funding allocated to universities and research institutes. To better distribute the available funds and to set the most proper R&D investment strategies for the future, evaluation of the productivity of the funded researchers and the impact of such funding is crucial. In this paper, using the data on 15 years of journal publications of the NSERC (Natural Sciences and Engineering research Council of Canada) funded researchers and by means of bibliometric analysis, the scientific development of the funded researchers and their scientific collaboration patterns will be investigated in the period of 1996-2010. According to the results it seems that there is a positive relation between the average level of funding and quantity and quality of the scientific output. In addition, whenever funding allocated to the researchers has increased, the number of co-authors per paper has also augmented. Hence, the increase in the level of funding may enable researchers to get involved in larger projects and/or scientific teams and increase their scientific output respectively.

Keywords: bibliometrics, collaboration, funding, productivity

Procedia PDF Downloads 264
4070 A Multi-Criteria Model for Scheduling of Stochastic Single Machine Problem with Outsourcing and Solving It through Application of Chance Constrained

Authors: Homa Ghave, Parmis Shahmaleki

Abstract:

This paper presents a new multi-criteria stochastic mathematical model for a single machine scheduling with outsourcing allowed. There are multiple jobs processing in batch. For each batch, all of job or a quantity of it can be outsourced. The jobs have stochastic processing time and lead time and deterministic due dates arrive randomly. Because of the stochastic inherent of processing time and lead time, we use the chance constrained programming for modeling the problem. First, the problem is formulated in form of stochastic programming and then prepared in a form of deterministic mixed integer linear programming. The objectives are considered in the model to minimize the maximum tardiness and outsourcing cost simultaneously. Several procedures have been developed to deal with the multi-criteria problem. In this paper, we utilize the concept of satisfaction functions to increases the manager’s preference. The proposed approach is tested on instances where the random variables are normally distributed.

Keywords: single machine scheduling, multi-criteria mathematical model, outsourcing strategy, uncertain lead times and processing times, chance constrained programming, satisfaction function

Procedia PDF Downloads 249
4069 Sum Capacity with Regularized Channel Inversion in Multi-Antenna Downlink Systems under Equal Power Constraint

Authors: Attaullah Khawaja, Amna Shabbir

Abstract:

Channel inversion is one of the simplest techniques for multiuser downlink systems with single-antenna users. In this paper regularized channel inversion under equal power constraint in the multiuser multiple input multiple output (MU-MIMO) broadcast channels has been considered. Sum capacity with plain channel inversion also known as Zero Forcing Beam Forming (ZFBF) and optimum sum capacity using Dirty Paper Coding (DPC) has also been investigated. Analysis and simulations show that regularization enhances the system performance and empower linear growth in Sum Capacity and specially work well at low signal to noise ratio (SNRs) regime.

Keywords: broadcast channel, channel inversion, multiple antenna multiple-user wireless, multiple-input multiple-output (MIMO), regularization, dirty paper coding (DPC), sum capacity

Procedia PDF Downloads 510
4068 Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset

Authors: Adrienne Kline, Jaydip Desai

Abstract:

Electroencephalogram (EEG) is a noninvasive technique that registers signals originating from the firing of neurons in the brain. The Emotiv EEG Neuroheadset is a consumer product comprised of 14 EEG channels and was used to record the reactions of the neurons within the brain to two forms of stimuli in 10 participants. These stimuli consisted of auditory and visual formats that provided directions of ‘right’ or ‘left.’ Participants were instructed to raise their right or left arm in accordance with the instruction given. A scenario in OpenViBE was generated to both stimulate the participants while recording their data. In OpenViBE, the Graz Motor BCI Stimulator algorithm was configured to govern the duration and number of visual stimuli. Utilizing EEGLAB under the cross platform MATLAB®, the electrodes most stimulated during the study were defined. Data outputs from EEGLAB were analyzed using IBM SPSS Statistics® Version 20. This aided in determining the electrodes to use in the development of a brain-machine interface (BMI) using real-time EEG signals from the Emotiv EEG Neuroheadset. Signal processing and feature extraction were accomplished via the Simulink® signal processing toolbox. An Arduino™ Duemilanove microcontroller was used to link the Emotiv EEG Neuroheadset and the right and left Mecha TE™ Hands.

Keywords: brain-machine interface, EEGLAB, emotiv EEG neuroheadset, OpenViBE, simulink

Procedia PDF Downloads 482
4067 Lean Production to Increase Reproducibility and Work Safety in the Laser Beam Melting Process Chain

Authors: C. Bay, A. Mahr, H. Groneberg, F. Döpper

Abstract:

Additive Manufacturing processes are becoming increasingly established in the industry for the economic production of complex prototypes and functional components. Laser beam melting (LBM), the most frequently used Additive Manufacturing technology for metal parts, has been gaining in industrial importance for several years. The LBM process chain – from material storage to machine set-up and component post-processing – requires many manual operations. These steps often depend on the manufactured component and are therefore not standardized. These operations are often not performed in a standardized manner, but depend on the experience of the machine operator, e.g., levelling of the build plate and adjusting the first powder layer in the LBM machine. This lack of standardization limits the reproducibility of the component quality. When processing metal powders with inhalable and alveolar particle fractions, the machine operator is at high risk due to the high reactivity and the toxic (e.g., carcinogenic) effect of the various metal powders. Faulty execution of the operation or unintentional omission of safety-relevant steps can impair the health of the machine operator. In this paper, all the steps of the LBM process chain are first analysed in terms of their influence on the two aforementioned challenges: reproducibility and work safety. Standardization to avoid errors increases the reproducibility of component quality as well as the adherence to and correct execution of safety-relevant operations. The corresponding lean method 5S will therefore be applied, in order to develop approaches in the form of recommended actions that standardize the work processes. These approaches will then be evaluated in terms of ease of implementation and their potential for improving reproducibility and work safety. The analysis and evaluation showed that sorting tools and spare parts as well as standardizing the workflow are likely to increase reproducibility. Organizing the operational steps and production environment decreases the hazards of material handling and consequently improves work safety.

Keywords: additive manufacturing, lean production, reproducibility, work safety

Procedia PDF Downloads 167
4066 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India

Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit

Abstract:

Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.

Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique

Procedia PDF Downloads 113
4065 Resonant Tunnelling Diode Output Characteristics Dependence on Structural Parameters: Simulations Based on Non-Equilibrium Green Functions

Authors: Saif Alomari

Abstract:

The paper aims at giving physical and mathematical descriptions of how the structural parameters of a resonant tunnelling diode (RTD) affect its output characteristics. Specifically, the value of the peak voltage, peak current, peak to valley current ratio (PVCR), and the difference between peak and valley voltages and currents ΔV and ΔI. A simulation-based approach using the Non-Equilibrium Green Function (NEGF) formalism based on the Silvaco ATLAS simulator is employed to conduct a series of designed experiments. These experiments show how the doping concentration in the emitter and collector layers, their thicknesses, and the width of the barriers and the quantum well influence the above-mentioned output characteristics. Each of these parameters was systematically changed while holding others fixed in each set of experiments. Factorial experiments are outside the scope of this work and will be investigated in future. The physics involved in the operation of the device is thoroughly explained and mathematical models based on curve fitting and underlaying physical principles are deduced. The models can be used to design devices with predictable output characteristics. These models were found absent in the literature that the author acanned. Results show that the doping concentration in each region has an effect on the value of the peak voltage. It is found that increasing the carrier concentration in the collector region shifts the peak to lower values, whereas increasing it in the emitter shifts the peak to higher values. In the collector’s case, the shift is either controlled by the built-in potential resulting from the concentration gradient or the conductivity enhancement in the collector. The shift to higher voltages is found to be also related to the location of the Fermi-level. The thicknesses of these layers play a role in the location of the peak as well. It was found that increasing the thickness of each region shifts the peak to higher values until a specific characteristic length, afterwards the peak becomes independent of the thickness. Finally, it is shown that the thickness of the barriers can be optimized for a particular well width to produce the highest PVCR or the highest ΔV and ΔI. The location of the peak voltage is important in optoelectronic applications of RTDs where the operating point of the device is usually the peak voltage point. Furthermore, the PVCR, ΔV, and ΔI are of great importance for building RTD-based oscillators as they affect the frequency response and output power of the oscillator.

Keywords: peak to valley ratio, peak voltage shift, resonant tunneling diodes, structural parameters

Procedia PDF Downloads 126
4064 Development of Geo-computational Model for Analysis of Lassa Fever Dynamics and Lassa Fever Outbreak Prediction

Authors: Adekunle Taiwo Adenike, I. K. Ogundoyin

Abstract:

Lassa fever is a neglected tropical virus that has become a significant public health issue in Nigeria, with the country having the greatest burden in Africa. This paper presents a Geo-Computational Model for Analysis and Prediction of Lassa Fever Dynamics and Outbreaks in Nigeria. The model investigates the dynamics of the virus with respect to environmental factors and human populations. It confirms the role of the rodent host in virus transmission and identifies how climate and human population are affected. The proposed methodology is carried out on a Linux operating system using the OSGeoLive virtual machine for geographical computing, which serves as a base for spatial ecology computing. The model design uses Unified Modeling Language (UML), and the performance evaluation uses machine learning algorithms such as random forest, fuzzy logic, and neural networks. The study aims to contribute to the control of Lassa fever, which is achievable through the combined efforts of public health professionals and geocomputational and machine learning tools. The research findings will potentially be more readily accepted and utilized by decision-makers for the attainment of Lassa fever elimination.

Keywords: geo-computational model, lassa fever dynamics, lassa fever, outbreak prediction, nigeria

Procedia PDF Downloads 76
4063 Wind Generator Control in Isolated Site

Authors: Glaoui Hachemi

Abstract:

Wind has been proven as a cost effective and reliable energy source. Technological advancements over the last years have placed wind energy in a firm position to compete with conventional power generation technologies. Algeria has a vast uninhabited land area where the south (desert) represents the greatest part with considerable wind regime. In this paper, an analysis of wind energy utilization as a viable energy substitute in six selected sites widely distributed all over the south of Algeria is presented. In this presentation, wind speed frequency distributions data obtained from the Algerian Meteorological Office are used to calculate the average wind speed and the available wind power. The annual energy produced by the Fuhrlander FL 30 wind machine is obtained using two methods. The analysis shows that in the southern Algeria, at 10 m height, the available wind power was found to vary between 160 and 280 W/m2, except for Tamanrasset. The highest potential wind power was found at Adrar, with 88 % of the time the wind speed is above 3 m/s. Besides, it is found that the annual wind energy generated by that machine lie between 33 and 61 MWh, except for Tamanrasset, with only 17 MWh. Since the wind turbines are usually installed at a height greater than 10 m, an increased output of wind energy can be expected. However, the wind resource appears to be suitable for power production on the south and it could provide a viable substitute to diesel oil for irrigation pumps and electricity generation. In this paper, a model of the wind turbine (WT) with permanent magnet generator (PMSG) and its associated controllers is presented. The increase of wind power penetration in power systems has meant that conventional power plants are gradually being replaced by wind farms. In fact, today wind farms are required to actively participate in power system operation in the same way as conventional power plants. In fact, power system operators have revised the grid connection requirements for wind turbines and wind farms, and now demand that these installations be able to carry out more or less the same control tasks as conventional power plants. For dynamic power system simulations, the PMSG wind turbine model includes an aerodynamic rotor model, a lumped mass representation of the drive train system and generator model. In this paper, we propose a model with an implementation in MATLAB / Simulink, each of the system components off-grid small wind turbines.

Keywords: windgenerator systems, permanent magnet synchronous generator (PMSG), wind turbine (WT) modeling, MATLAB simulink environment

Procedia PDF Downloads 320
4062 Analysis and Comparison of Asymmetric H-Bridge Multilevel Inverter Topologies

Authors: Manel Hammami, Gabriele Grandi

Abstract:

In recent years, multilevel inverters have become more attractive for single-phase photovoltaic (PV) systems, due to their known advantages over conventional H-bridge pulse width-modulated (PWM) inverters. They offer improved output waveforms, smaller filter size, lower total harmonic distortion (THD), higher output voltages and others. The most common multilevel converter topologies, presented in literature, are the neutral-point-clamped (NPC), flying capacitor (FC) and Cascaded H-Bridge (CHB) converters. In both NPC and FC configurations, the number of components drastically increases with the number of levels what leads to complexity of the control strategy, high volume, and cost. Whereas, increasing the number of levels in case of the cascaded H-bridge configuration is a flexible solution. However, it needs isolated power sources for each stage, and it can be applied to PV systems only in case of PV sub-fields. In order to improve the ratio between the number of output voltage levels and the number of components, several hybrids and asymmetric topologies of multilevel inverters have been proposed in the literature such as the FC asymmetric H-bridge (FCAH) and the NPC asymmetric H-bridge (NPCAH) topologies. Another asymmetric multilevel inverter configuration that could have interesting applications is the cascaded asymmetric H-bridge (CAH), which is based on a modular half-bridge (two switches and one capacitor, also called level doubling network, LDN) cascaded to a full H-bridge in order to double the output voltage level. This solution has the same number of switches as the above mentioned AH configurations (i.e., six), and just one capacitor (as the FCAH). CAH is becoming popular, due to its simple, modular and reliable structure, and it can be considered as a retrofit which can be added in series to an existing H-Bridge configuration in order to double the output voltage levels. In this paper, an original and effective method for the analysis of the DC-link voltage ripple is given for single-phase asymmetric H-bridge multilevel inverters based on level doubling network (LDN). Different possible configurations of the asymmetric H-Bridge multilevel inverters have been considered and the analysis of input voltage and current are analytically determined and numerically verified by Matlab/Simulink for the case of cascaded asymmetric H-bridge multilevel inverters. A comparison between FCAH and the CAH configurations is done on the basis of the analysis of the DC and voltage ripple for the DC source (i.e., the PV system). The peak-to-peak DC and voltage ripple amplitudes are analytically calculated over the fundamental period as a function of the modulation index. On the basis of the maximum peak-to-peak values of low frequency and switching ripple voltage components, the DC capacitors can be designed. Reference is made to unity output power factor, as in case of most of the grid-connected PV generation systems. Simulation results will be presented in the full paper in order to prove the effectiveness of the proposed developments in all the operating conditions.

Keywords: asymmetric inverters, dc-link voltage, level doubling network, single-phase multilevel inverter

Procedia PDF Downloads 190
4061 Enhancing Project Performance Forecasting using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

Accurate forecasting of project performance metrics is crucial for successfully managing and delivering urban road reconstruction projects. Traditional methods often rely on static baseline plans and fail to consider the dynamic nature of project progress and external factors. This research proposes a machine learning-based approach to forecast project performance metrics, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category in an urban road reconstruction project. The proposed model utilizes time series forecasting techniques, including Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance based on historical data and project progress. The model also incorporates external factors, such as weather patterns and resource availability, as features to enhance the accuracy of forecasts. By applying the predictive power of machine learning, the performance forecasting model enables proactive identification of potential deviations from the baseline plan, which allows project managers to take timely corrective actions. The research aims to validate the effectiveness of the proposed approach using a case study of an urban road reconstruction project, comparing the model's forecasts with actual project performance data. The findings of this research contribute to the advancement of project management practices in the construction industry, offering a data-driven solution for improving project performance monitoring and control.

Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, earned value management

Procedia PDF Downloads 22
4060 Identification of Potential Small Molecule Regulators of PERK Kinase

Authors: Ireneusz Majsterek, Dariusz Pytel, J. Alan Diehl

Abstract:

PKR-like ER kinase (PERK) is serine/threonie endoplasmic reticulum (ER) transmembrane kinase activated during ER-stress. PERK can activate signaling pathways known as unfolded protein response (UPR). Attenuation of translation is mediated by PERK via phosphorylation of eukaryotic initiation factor 2α (eIF2α), which is necessary for translation initiation. PERK activation also directly contributes to activation of Nrf2 which regulates expression of anti-oxidant enzymes. An increased phosphorylation of eIF2α has been reported in Alzheimer disease (AD) patient hippocampus, indicating that PERK is activated in this disease. Recent data have revealed activation of PERK signaling in non-Hodgkins lymphomas. Results also revealed that loss of PERK limits mammary tumor cell growth in vitro and in vivo. Consistent with these observations, activation of UPR in vitro increases levels of the amyloid precursor protein (APP), the peptide from which beta-amyloid plaques (AB) fragments are derived. Finally, proteolytic processing of APP, including the cleavages that produce AB, largely occurs in the ER, and localization coincident with PERK activity. Thus, we expect that PERK-dependent signaling is critical for progression of many types of diseases (human cancer, neurodegenerative disease and other). Therefore, modulation of PERK activity may be a useful therapeutic target in the treatment of different diseases that fail to respond to traditional chemotherapeutic strategies, including Alzheimer’s disease. Our goal will be to developed therapeutic modalities targeting PERK activity.

Keywords: PERK kinase, small molecule inhibitor, neurodegenerative disease, Alzheimer’s disease

Procedia PDF Downloads 469
4059 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning

Authors: Nicholas V. Scott, Jack McCarthy

Abstract:

Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.

Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization

Procedia PDF Downloads 124
4058 The Fibonacci Network: A Simple Alternative for Positional Encoding

Authors: Yair Bleiberg, Michael Werman

Abstract:

Coordinate-based Multi-Layer Perceptrons (MLPs) are known to have difficulty reconstructing high frequencies of the training data. A common solution to this problem is Positional Encoding (PE), which has become quite popular. However, PE has drawbacks. It has high-frequency artifacts and adds another hyper hyperparameter, just like batch normalization and dropout do. We believe that under certain circumstances, PE is not necessary, and a smarter construction of the network architecture together with a smart training method is sufficient to achieve similar results. In this paper, we show that very simple MLPs can quite easily output a frequency when given input of the half-frequency and quarter-frequency. Using this, we design a network architecture in blocks, where the input to each block is the output of the two previous blocks along with the original input. We call this a Fibonacci Network. By training each block on the corresponding frequencies of the signal, we show that Fibonacci Networks can reconstruct arbitrarily high frequencies.

Keywords: neural networks, positional encoding, high frequency intepolation, fully connected

Procedia PDF Downloads 74
4057 Economic Efficiency of Cassava Production in Nimba County, Liberia: An Output-Oriented Approach

Authors: Kollie B. Dogba, Willis Oluoch-Kosura, Chepchumba Chumo

Abstract:

In Liberia, many of the agricultural households cultivate cassava for either sustenance purposes, or to generate farm income. Many of the concentrated cassava farmers reside in Nimba, a north-eastern County that borders two other economies: the Republics of Cote D’Ivoire and Guinea. With a high demand for cassava output and products in emerging Asian markets coupled with an objective of the Liberia agriculture policies to increase the competitiveness of valued agriculture crops; there is a need to examine the level of resource-use efficiency for many agriculture crops. However, there is a scarcity of information on the efficiency of many agriculture crops, including cassava. Hence the study applying an output-oriented method seeks to assess the economic efficiency of cassava farmers in Nimba County, Liberia. A multi-stage sampling technique was employed to generate a sample for the study. From 216 cassava farmers, data related to on-farm attributes, socio-economic and institutional factors were collected. The stochastic frontier models, using the Translog functional forms, of production and revenue, were used to determine the level of revenue efficiency and its determinants. The result showed that most of the cassava farmers are male (60%). Many of the farmers are either married, engaged or living together with a spouse (83%), with a mean household size of nine persons. Farmland is prevalently obtained by inheritance (95%), average farm size is 1.34 hectares, and most cassava farmers did not access agriculture credits (76%) and extension services (91%). The mean cassava output per hectare is 1,506.02 kg, which estimates average revenue of L$23,551.16 (Liberian dollars). Empirical results showed that the revenue efficiency of cassava farmers varies from 0.1% to 73.5%; with the mean revenue efficiency of 12.9%. This indicates that on average, there is a vast potential of 87.1% to increase the economic efficiency of cassava farmers in Nimba by improving technical and allocative efficiencies. For the significant determinants of revenue efficiency, age and group membership had negative effects on revenue efficiency of cassava production; while farming experience, access to extension, formal education, and average wage rate have positive effects. The study recommends the setting-up and incentivizing of farmer field schools for cassava farmers to primarily share their farming experiences with others and to learn robust cultivation techniques of sustainable agriculture. Also, farm managers and farmers should consider a fix wage rate in labor contracts for all stages of cassava farming.

Keywords: economic efficiency, frontier production and revenue functions, Nimba County, Liberia, output-oriented approach, revenue efficiency, sustainable agriculture

Procedia PDF Downloads 112
4056 Optical Multicast over OBS Networks: An Approach Based on Code-Words and Tunable Decoders

Authors: Maha Sliti, Walid Abdallah, Noureddine Boudriga

Abstract:

In the frame of this work, we present an optical multicasting approach based on optical code-words. Our approach associates, in the edge node, an optical code-word to a group multicast address. In the core node, a set of tunable decoders are used to send a traffic data to multiple destinations based on the received code-word. The use of code-words, which correspond to the combination of an input port and a set of output ports, allows the implementation of an optical switching matrix. At the reception of a burst, it will be delayed in an optical memory. And, the received optical code-word is split to a set of tunable optical decoders. When it matches a configured code-word, the delayed burst is switched to a set of output ports.

Keywords: optical multicast, optical burst switching networks, optical code-words, tunable decoder, virtual optical memory

Procedia PDF Downloads 588
4055 Dual-Polarized Multi-Antenna System for Massive MIMO Cellular Communications

Authors: Naser Ojaroudi Parchin, Haleh Jahanbakhsh Basherlou, Raed A. Abd-Alhameed, Peter S. Excell

Abstract:

In this paper, a multiple-input/multiple-output (MIMO) antenna design with polarization and radiation pattern diversity is presented for future smartphones. The configuration of the design consists of four double-fed circular-ring antenna elements located at different edges of the printed circuit board (PCB) with an FR-4 substrate and overall dimension of 75×150 mm2. The antenna elements are fed by 50-Ohm microstrip-lines and provide polarization and radiation pattern diversity function due to the orthogonal placement of their feed lines. A good impedance bandwidth (S11 ≤ -10 dB) of 3.4-3.8 GHz has been obtained for the smartphone antenna array. However, for S11 ≤ -6 dB, this value is 3.25-3.95 GHz. More than 3 dB realized gain and 80% total efficiency are achieved for the single-element radiator. The presented design not only provides the required radiation coverage but also generates the polarization diversity characteristic.

Keywords: cellular communications, multiple-input/multiple-output systems, mobile-phone antenna, polarization diversity

Procedia PDF Downloads 122
4054 The Application on Interactivity of Light in New Media Art

Authors: Yansong Chen

Abstract:

In the age of media convergence, new media technology is constantly impacting, changing, and even reshaping the limits of Art. From the technological ontology of the new media art, the concept of interaction design has always been dominated by I/O (Input/Output) systems through the ages, which ignores the content of systems and kills the aura of art. Light, as a fusion media, basically comes from the extension of some human feelings and can be the content of the input or the effect of output. In this paper, firstly, on the basis of literature review, the interaction characteristics research was conducted on light. Secondly, starting from discourse patterns of people and machines, people and people, people, and imagining things, we propose three light modes: object-oriented interaction, Immersion interaction, Tele-Presence interaction. Finally, this paper explains how to regain the aura of art through light elements in new media art and understand multiple levels of 'Interaction design'. In addition, the new media art, especially the light-based interaction art, enriches the language patterns and motivates emerging art forms to be more widespread and popular, which achieves its aesthetics growth.

Keywords: new media art, interaction design, light art, immersion

Procedia PDF Downloads 210
4053 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features

Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova

Abstract:

The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.

Keywords: emotion recognition, facial recognition, signal processing, machine learning

Procedia PDF Downloads 301
4052 An Experimental Investigation on Productivity and Performance of an Improved Design of Basin Type Solar Still

Authors: Mahmoud S. El-Sebaey, Asko Ellman, Ahmed Hegazy, Tarek Ghonim

Abstract:

Due to population growth, the need for drinkable healthy water is highly increased. Consequently, and since the conventional sources of water are limited, researchers devoted their efforts to oceans and seas for obtaining fresh drinkable water by thermal distillation. The current work is dedicated to the design and fabrication of modified solar still model, as well as conventional solar still for the sake of comparison. The modified still is single slope double basin solar still. The still consists of a lower basin with a dimension of 1000 mm x 1000 mm which contains the sea water, as well as the top basin that made with 4 mm acrylic, was temporarily kept on the supporting strips permanently fixed with the side walls. Equally ten spaced vertical glass strips of 50 mm height and 3 mm thickness were provided at the upper basin for the stagnancy of the water. Window glass of 3 mm was used as the transparent cover with 23° inclination at the top of the still. Furthermore, the performance evaluation and comparison of these two models in converting salty seawater into drinkable freshwater are introduced, analyzed and discussed. The experiments were performed during the period from June to July 2018 at seawater depths of 2, 3, 4 and 5 cm. Additionally, the solar still models were operated simultaneously in the same climatic conditions to analyze the influence of the modifications on the freshwater output. It can be concluded that the modified design of double basin single slope solar still shows the maximum freshwater output at all water depths tested. The results showed that the daily productivity for modified and conventional solar still was 2.9 and 1.8 dm³/m² day, indicating an increase of 60% in fresh water production.

Keywords: freshwater output, solar still, solar energy, thermal desalination

Procedia PDF Downloads 123