Search results for: outlet unequal pressure distribution
8003 Experimental Investigation on the Optimal Operating Frequency of a Thermoacoustic Refrigerator
Authors: Kriengkrai Assawamartbunlue, Channarong Wantha
Abstract:
This paper presents the effects of the mean operating pressure on the optimal operating frequency based on temperature differences across stack ends in a thermoacoustic refrigerator. In addition to the length of the resonance tube, components of the thermoacoustic refrigerator have an influence on the operating frequency due to their acoustic properties, i.e. absorptivity, reflectivity and transmissivity. The interference of waves incurs and distorts the original frequency generated by the driver so that the optimal operating frequency differs from the designs. These acoustic properties are not parameters in the designs and it is very complicated to infer their responses. A prototype thermoacoustic refrigerator is constructed and used to investigate its optimal operating frequency compared to the design at various operating pressures. Helium and air are used as working fluids during the experiments. The results indicate that the optimal operating frequency of the prototype thermoacoustic refrigerator using helium is at 6 bar and 490Hz or approximately 20% away from the design frequency. The optimal operating frequency at other mean pressures differs from the design in an unpredictable manner, however, the optimal operating frequency and pressure can be identified by testing.Keywords: acoustic properties, Carnot’s efficiency, interference of waves, operating pressure, optimal operating frequency, stack performance, standing wave, thermoacoustic refrigerator
Procedia PDF Downloads 4868002 Current and Future Global Distribution of Drosophila suzukii
Authors: Yousef Naserzadeh, Niloufar Mahmoudi
Abstract:
The spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), a vinegar fly native to South East Asia, has recently invaded Europe, North- and South America and is spreading rapidly. Species distribution modeling has been widely employed to indicate probable areas of invasion and to guide management strategies. Drosophila sp. is native to Asia, but since 2015, it has invaded almost every country in the world, including Africa, Australia, India, and most recently, the Americas. The growth of this species of Drosophila suzukii has been rapidly multiplying and spreading in the last decade. In fact, we examine and model the potential geographical distribution of D. suzukii for both present and future scenarios. Finally, we determine the environmental variables that affect its distribution, as well as assess the risk of encroachment on protected areas. D.suzukii has the potential to expand its occurrence, especially on continents that have already been invaded. The predictive models obtained in this study indicate potential regions that could be at risk of invasion by D. suzukii, including protected areas. These results are important and can assist in the establishment of management plans to avoid the possible harm caused by biological invasions.Keywords: climate change, Drosophila suzukii, environmental variables, host preference, host plant, nutrition
Procedia PDF Downloads 858001 Literature Review and Biomechanical Findings in Patients with Bipartite Medial Cuneiforms
Authors: Aliza Lee, Mark Wilt, John Bonk, Scott Floyd, Bradley Hoffman, Karen Uchmanowicz
Abstract:
Bipartite medial cuneiforms are relatively rare but may play a significant role in biomechanical and gait abnormalities. It is believed that a bipartite medial cuneiform may alter the available range of motion due to its larger morphological variant, thus limiting the metatarsal plantarflexion needed to achieve adequate hallux dorsiflexion for normal gait. Radiographic and clinical assessments were performed on 2 patients who reported foot pain along the first ray. Both patients had visible bipartite medial cuneiforms on MRI. Using gait plate and Metascan™ analysis, both were noted to have four measurements far beyond the expected range. Medial and lateral heel peak pressure, hallux peak pressure, and 1st metatarsal peak pressure were all noted to be increased. These measurements are believed to be increased due to the hindrance placed on the available ROM of the 1st ray by the increased size of the medial cuneiform. A larger patient population would be needed to fully understand this developmental anomaly.Keywords: bipartite medial cuneiforms, cuneiform, developmental anomaly, gait abnormality
Procedia PDF Downloads 1568000 Investigating Informal Vending Practices and Social Encounters along Commercial Streets in Cairo, Egypt
Authors: Dalya M. Hassan
Abstract:
Marketplaces and commercial streets represent some of the most used and lively urban public spaces. Not only do they provide an outlet for commercial exchange, but they also facilitate social and recreational encounters. Such encounters can be influenced by both formal as well as informal vending activities. This paper explores and documents forms of informal vending practices and how they relate to social patterns that occur along the sidewalks of Commercial Streets in Cairo. A qualitative single case study approach of ‘Midan El Gami’ marketplace in Heliopolis, Cairo is adopted. The methodology applied includes direct and walk-by observations for two main commercial streets in the marketplace. Four zoomed-in activity maps are also done for three sidewalk segments that displayed varying vending and social features. Main findings include a documentation and classification of types of informal vending practices as well as a documentation of vendors’ distribution patterns in the urban space. Informal vending activities mainly included informal street vendors and shop spillovers, either as product or seating spillovers. Results indicated that staying and lingering activities were more prevalent in sidewalks that had certain physical features, such as diversity of shops, shaded areas, open frontages, and product or seating spillovers. Moreover, differences in social activity patterns were noted between sidewalks with street vendors and sidewalks with spillovers. While the first displayed more buying, selling, and people watching activities, the latter displayed more social relations and bonds amongst traders’ communities and café patrons. Ultimately, this paper provides a documentation, which suggests that informal vending can have a positive influence on creating a lively commercial street and on resulting patterns of use on the sidewalk space. The results can provide a basis for further investigations and analysis concerning this topic. This could aid in better accommodating informal vending activities within the design of future commercial streets.Keywords: commercial streets, informal vending practices, sidewalks, social encounters
Procedia PDF Downloads 1637999 Relocating Migration for Higher Education: Analytical Account of Students' Perspective
Authors: Sumit Kumar
Abstract:
The present study aims to identify the factors responsible for the internal migration of students other than push & pull factors; associated with the source region and destination region, respectively, as classified in classical geography. But in this classification of factors responsible for the migration of students, an agency of individual and the family he/she belongs to, have not been recognized which has later become the centre of the argument for describing and analyzing migration in New Economic theory of migration and New Economics of labour migration respectively. In this backdrop, the present study aims to understand the agency of an individual and the family members regarding one’s migration for higher education. Therefore, this study draws upon New Economic theory of migration and New Economics of labour migration for identifying the agency of individual or family in the context of migration. Further, migration for higher education consists not only the decision to migrate but also where to migrate (location), which university, which college and which course to pursue, also. In order to understand the role of various individuals at various stage of student migration, present study seeks help from the social networking approach for migration which identifies the individuals who facilitate the process of migration by reducing negative externalities of migration through sharing information and various other sorts of help to the migrant. Furthermore, this study also aims to rank those individuals who have helped migrants at various stages of migration for higher education in taking a decision, along with the factors responsible for their migration on the basis of their perception. In order to fulfill the above mentioned objectives of this study, quantification of qualitative data (perception of respondents) has been done employing through frequency distribution analysis. Qualitative data has been collected at two levels but questionnaire survey was the tool for data collection at both the occasions. Twenty five students who have migrated to other state for the purpose of higher education have been approached for pre-questionnaire survey consisting open-ended questions while one hundred students belonging to the same clientele have been approached for questionnaire survey consisting close-ended questions. This study has identified social pressure, peer group pressure and parental pressure; variables not constituting push & pull factors, very important for students’ migration. They have been even assigned better ranked by the respondents than push factors. Further, self (migrant themselves) have been ranked followed by parents by the respondents when it comes to take various decisions attached with the process of migration. Therefore, it can be said without sounding cynical that there are other factors other than push & pull factors which do facilitate the process of migration for higher education not only at the level to migrate but also at other levels intrinsic to the process of migration for higher education.Keywords: agency, migration for higher education, perception, push and pull factors
Procedia PDF Downloads 2447998 Numerical and Experimental Studies on the Characteristic of the Air Distribution in the Wind-Box of a Circulating Fluidized Bed Boiler
Authors: Xiaozhou Liu, Guangyu Zhu, Yu Zhang, Hongwei Wu
Abstract:
The wind-box is one of the important components of a Circulating Fluidized Bed (CFB) boiler. The uniformity of air flow in the wind-box of is very important for highly efficient operation of the CFB boiler. Non-uniform air flow distribution within the wind-box can reduce the boiler's thermal efficiency, leading to higher energy consumptions. An effective measure to solve this problem is to install an air flow distributing device in the wind-box. In order to validate the effectiveness of the air flow distributing device, visual and velocity distribution uniformity experiments have been carried out under five different test conditions by using a 1:64 scale model of a 220t/hr CFB boiler. It has been shown that the z component of flow velocity remains almost the same at control cross-sections of the wind-box, with a maximum variation of less than 10%. Moreover, the same methodology has been carried out to a full-scale 220t/hr CFB boiler. The hot test results depict that the thermal efficiency of the boiler has increased from 85.71% to 88.34% when tested with an air flow distributing device in place, which is equivalent to a saving of 5,000 tons of coal per year. The economic benefits of this energy-saving technology have been shown to be very significant, which clearly demonstrates that the technology is worth applying and popularizing.Keywords: circulating fluidized bed, CFB, wind-box, air flow distributing device, visual experiment, velocity distribution uniformity experiment, hot test
Procedia PDF Downloads 1767997 Pressure Gradient Prediction of Oil-Water Two Phase Flow through Horizontal Pipe
Authors: Ahmed I. Raheem
Abstract:
In this thesis, stratified and stratified wavy flow regimes have been investigated numerically for the oil (1.57 mPa s viscosity and 780 kg/m3 density) and water twophase flow in small and large horizontal steel pipes with a diameter between 0.0254 to 0.508 m by ANSYS Fluent software. Volume of fluid (VOF) with two phases flows using two equations family models (Realizable k-Keywords: CFD, two-phase flow, pressure gradient, volume of fluid, large diameter, horizontal pipe, oil-water stratified and stratified wavy flow
Procedia PDF Downloads 4337996 The Effect of Electric Field Distributions on Grains and Insect for Dielectric Heating Applications
Authors: S. Santalunai, T. Thosdeekoraphat, C. Thongsopa
Abstract:
This paper presents the effect of electric field distribution which is an electric field intensity analysis. Consideration of the dielectric heating of grains and insects, the rice and rice weevils are utilized for dielectric heating analysis. Furthermore, this analysis compares the effect of electric field distribution in rice and rice weevil. In this simulation, two copper plates are used to generate the electric field for dielectric heating system and put the rice materials between the copper plates. The simulation is classified in two cases, which are case I one rice weevil is placed in the rice and case II two rice weevils are placed at different position in the rice. Moreover, the probes are located in various different positions on plate. The power feeding on this plate is optimized by using CST EM studio program of 1000 watt electrical power at 39 MHz resonance frequency. The results of two cases are indicated that the most electric field distribution and intensity are occurred on the rice and rice weevils at the near point of the probes. Moreover, the heat is directed to the rice weevils more than the rice. When the temperature of rice and rice weevils are calculated and compared, the rice weevils has the temperature more than rice is about 41.62 Celsius degrees. These results can be applied for the dielectric heating applications to eliminate insect.Keywords: capacitor copper plates, electric field distribution, dielectric heating, grains
Procedia PDF Downloads 4087995 Investigation of Droplet Size Produced in Two-Phase Gravity Separators
Authors: Kul Pun, F. A. Hamad, T. Ahmed, J. O. Ugwu, J. Eyers, G. Lawson, P. A. Russell
Abstract:
Determining droplet size and distribution is essential when determining the separation efficiency of a two/three-phase separator. This paper investigates the effect of liquid flow and oil pad thickness on the droplet size at the lab scale. The findings show that increasing the inlet flow rates of the oil and water results in size reduction of the droplets and increasing the thickness of the oil pad increases the size of the droplets. The data were fitted with a simple Gaussian model, and the parameters of mean, standard deviation, and amplitude were determined. Trends have been obtained for the fitted parameters as a function of the Reynolds number, which suggest a way forward to better predict the starting parameters for population models when simulating separation using CFD packages. The key parameter to predict to fix the position of the Gaussian distribution was found to be the mean droplet size.Keywords: two-phase separator, average bubble droplet, bubble size distribution, liquid-liquid phase
Procedia PDF Downloads 2007994 The Effect of Glass Thickness on Stress in Vacuum Glazing
Authors: Farid Arya, Trevor Hyde, Andrea Trevisi, Paolo Basso, Danilo Bardaro
Abstract:
Heat transfer through multiple pane windows can be reduced by creating a vacuum pressure less than 0.1 Pa between the glass panes, with low emittance coatings on one or more of the internal surfaces. Fabrication of vacuum glazing (VG) requires the formation of a hermetic seal around the periphery of the glass panes together with an array of support pillars between the panes to prevent them from touching under atmospheric pressure. Atmospheric pressure and temperature differentials induce stress which can affect the integrity of the glazing. Several parameters define the stresses in VG including the glass thickness, pillar specifications, glazing dimensions and edge seal configuration. Inherent stresses in VG can result in fractures in the glass panes and failure of the edge seal. In this study, stress in VG with different glass thicknesses is theoretically studied using Finite Element Modelling (FEM). Based on the finding in this study, suggestions are made to address problems resulting from the use of thinner glass panes in the fabrication of VG. This can lead to the development of high performance, light and thin VG.Keywords: vacuum glazing, stress, vacuum insulation, support pillars
Procedia PDF Downloads 1907993 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset
Procedia PDF Downloads 3537992 Reliability and Probability Weighted Moment Estimation for Three Parameter Mukherjee-Islam Failure Model
Authors: Ariful Islam, Showkat Ahmad Lone
Abstract:
The Mukherjee-Islam Model is commonly used as a simple life time distribution to assess system reliability. The model exhibits a better fit for failure information and provides more appropriate information about hazard rate and other reliability measures as shown by various authors. It is possible to introduce a location parameter at a time (i.e., a time before which failure cannot occur) which makes it a more useful failure distribution than the existing ones. Even after shifting the location of the distribution, it represents a decreasing, constant and increasing failure rate. It has been shown to represent the appropriate lower tail of the distribution of random variables having fixed lower bound. This study presents the reliability computations and probability weighted moment estimation of three parameter model. A comparative analysis is carried out between three parameters finite range model and some existing bathtub shaped curve fitting models. Since probability weighted moment method is used, the results obtained can also be applied on small sample cases. Maximum likelihood estimation method is also applied in this study.Keywords: comparative analysis, maximum likelihood estimation, Mukherjee-Islam failure model, probability weighted moment estimation, reliability
Procedia PDF Downloads 2747991 Grain Size Characteristics and Sediments Distribution in the Eastern Part of Lekki Lagoon
Authors: Mayowa Philips Ibitola, Abe Oluwaseun Banji, Olorunfemi Akinade-Solomon
Abstract:
A total of 20 bottom sediment samples were collected from the Lekki Lagoon during the wet and dry season. The study was carried out to determine the textural characteristics, sediment distribution pattern and energy of transportation within the lagoon system. The sediment grain sizes and depth profiling was analyzed using dry sieving method and MATLAB algorithm for processing. The granulometric reveals fine grained sand both for the wet and dry season with an average mean value of 2.03 ϕ and -2.88 ϕ, respectively. Sediments were moderately sorted with an average inclusive standard deviation of 0.77 ϕ and -0.82 ϕ. Skewness varied from strongly coarse and near symmetrical 0.34- ϕ and 0.09 ϕ. The kurtosis average value was 0.87 ϕ and -1.4 ϕ (platykurtic and leptokurtic). Entirely, the bathymetry shows an average depth of 4.0 m. The deepest and shallowest area has a depth of 11.2 m and 0.5 m, respectively. High concentration of fine sand was observed at deep areas compared to the shallow areas during wet and dry season. Statistical parameter results show that the overall sediments are sorted, and deposited under low energy condition over a long distance. However, sediment distribution and sediment transport pattern of Lekki Lagoon is controlled by a low energy current and the down slope configuration of the bathymetry enhances the sorting and the deposition rate in the Lekki Lagoon.Keywords: Lekki Lagoon, Marine sediment, bathymetry, grain size distribution
Procedia PDF Downloads 2317990 Factors Affecting Students' Attitude to Adapt E-Learning: A Case from Iran How to Develop Virtual Universities in Iran: Using Technology Acceptance Model
Authors: Fatemeh Keivanifard
Abstract:
E-learning is becoming increasingly prominent in higher education, with universities increasing provision and more students signing up. This paper examines factors that predict students' attitudes to adapt e-learning at the Khuzestan province Iran. Understanding the nature of these factors may assist these universities in promoting the use of information and communication technology in teaching and learning. The main focus of the paper is on the university students, whose decision supports effective implementation of e-learning. Data was collected through a survey of 300 post graduate students at the University of dezful, shooshtar and chamran in Khuzestan. The technology adoption model put forward by Davis is utilized in this study. Two more independent variables are added to the original model, namely, the pressure to act and resources availability. The results show that there are five factors that can be used in modeling students' attitudes to adapt e-learning. These factors are intention toward e-learning, perceived usefulness of e-learning, perceived ease of e-learning use, pressure to use e-learning, and the availability of resources needed to use e-learning.Keywords: e-learning, intention, ease of use, pressure to use, usefulness
Procedia PDF Downloads 3687989 Numerical Analysis of Supersonic Impinging Jets onto Resonance Tube
Authors: Shinji Sato, M. M. A. Alam, Manabu Takao
Abstract:
In recent, investigation of an unsteady flow inside the resonance tube have become a strongly motivated research field for their potential application as high-frequency actuators. By generating a shock wave inside the resonance tube, a high temperature and pressure can be achieved inside the tube, and this high temperature can also be used to ignite a jet engine. In the present research, a computational fluid dynamics (CFD) analysis was carried out to investigate the flow inside the resonance tube. The density-based solver of rhoCentralFoam in OpenFOAM was used to numerically simulate the flow. The supersonic jet that was driven by a cylindrical nozzle with a nominal exit diameter of φd = 20.3 mm impinged onto the resonance tube. The jet pressure ratio was varied between 2.6 and 7.8. The gap s between the nozzle exit and tube entrance was changed between 1.5d and 3.0d. The diameter and length of the tube were taken as D = 1.25d and L=3.0D, respectively. As a result, when a supersonic jet has impinged onto the resonance tube, a compression wave was found generating inside the tube and propagating towards the tube end wall. This wave train resulted in a rise in the end wall gas temperature and pressure. While, in an outflow phase, the gas near tube enwall was found cooling back isentropically to its initial temperature. Thus, the compression waves repeated a reciprocating motion in the tube like a piston, and a fluctuation in the end wall pressures and temperatures were observed. A significant change was found in the end wall pressures and temperatures with a change of jet flow conditions. In this study, the highest temperature was confirmed at a jet pressure ratio of 4.2 and a gap of s=2.0dKeywords: compressible flow, OpenFOAM, oscillations, a resonance tube, shockwave
Procedia PDF Downloads 1497988 Mixtures of Length-Biased Weibull Distributions for Loss Severity Modelling
Authors: Taehan Bae
Abstract:
In this paper, a class of length-biased Weibull mixtures is presented to model loss severity data. The proposed model generalizes the Erlang mixtures with the common scale parameter, and it shares many important modelling features, such as flexibility to fit various data distribution shapes and weak-denseness in the class of positive continuous distributions, with the Erlang mixtures. We show that the asymptotic tail estimate of the length-biased Weibull mixture is Weibull-type, which makes the model effective to fit loss severity data with heavy-tailed observations. A method of statistical estimation is discussed with applications on real catastrophic loss data sets.Keywords: Erlang mixture, length-biased distribution, transformed gamma distribution, asymptotic tail estimate, EM algorithm, expectation-maximization algorithm
Procedia PDF Downloads 2247987 Performance Analysis of Solar Assisted Air Condition Using Carbon Dioxide as Refrigerant
Authors: Olusola Bamisile, Ferdinard Dika, Mustafa Dagbasi, Serkan Abbasoglu
Abstract:
The aim of this study was to model an air conditioning system that brings about effective cooling and reduce fossil fuel consumption with solar energy as an alternative source of energy. The objective of the study is to design a system with high COP, low usage of electricity and to integrate solar energy into AC systems. A hybrid solar assisted air conditioning system is designed to produce 30kW cooling capacity and R744 (CO₂) is used as a refrigerant. The effect of discharge pressure on the performance of the system is studied. The subcool temperature, evaporating temperature (5°C) and suction gas return temperature (12°C) are kept constant for the four different discharge pressures considered. The cooling gas temperature is set at 25°C, and the discharge pressure includes 80, 85, 90 and 95 bars. Copeland Scroll software is used for the simulation. A pressure-enthalpy graph is also used to deduce each enthalpy point while numerical methods were used in making other calculations. From the result of the study, it is observed that a higher COP is achieved with the use of solar assisted systems. As much as 46% of electricity requirements will be save using solar input at compressor stage.Keywords: air conditioning, solar energy, performance, energy saving
Procedia PDF Downloads 1467986 Biological Treatment of Bacterial Biofilms from Drinking Water Distribution System in Lebanon
Authors: A. Hamieh, Z. Olama, H. Holail
Abstract:
Drinking Water Distribution Systems provide opportunities for microorganisms that enter the drinking water to develop into biofilms. Antimicrobial agents, mainly chlorine, are used to disinfect drinking water, however, there are not yet standardized disinfection strategies with reliable efficacy and development of novel anti-biofilm strategies is still of major concern. In the present study the ability of Lactobacillus acidophilus and Streptomyces sp. cell free supernatants to inhibit the bacterial biofilm formation in Drinking Water Distribution System in Lebanon was investigated. Treatment with cell free supernatants of Lactobacillus acidophilus and Streptomyces sp. at 20% concentration resulted in average biofilm inhibition (52.89 and 39.66% respectively). A preliminary investigation about the mode of action of biofilm inhibition revealed that cell free supernatants showed no bacteriostatic or bactericidal activity against all the tested isolates. Pre-coating wells with supernatants revealed that Lactobacillus acidophilus cell free supernatant inhibited average biofilm formation (62.53%) by altering the adhesion of bacterial isolates to the surface, preventing the initial attachment step, which is important for biofilm production.Keywords: biofilm, cell free supernatant, distribution system, drinking water, lactobacillus acidophilus, streptomyces sp, adhesion
Procedia PDF Downloads 4347985 Laboratory and Numerical Hydraulic Modelling of Annular Pipe Electrocoagulation Reactors
Authors: Alejandra Martin-Dominguez, Javier Canto-Rios, Velitchko Tzatchkov
Abstract:
Electrocoagulation is a water treatment technology that consists of generating coagulant species in situ by electrolytic oxidation of sacrificial anode materials triggered by electric current. It removes suspended solids, heavy metals, emulsified oils, bacteria, colloidal solids and particles, soluble inorganic pollutants and other contaminants from water, offering an alternative to the use of metal salts or polymers and polyelectrolyte addition for breaking stable emulsions and suspensions. The method essentially consists of passing the water being treated through pairs of consumable conductive metal plates in parallel, which act as monopolar electrodes, commonly known as ‘sacrificial electrodes’. Physicochemical, electrochemical and hydraulic processes are involved in the efficiency of this type of treatment. While the physicochemical and electrochemical aspects of the technology have been extensively studied, little is known about the influence of the hydraulics. However, the hydraulic process is fundamental for the reactions that take place at the electrode boundary layers and for the coagulant mixing. Electrocoagulation reactors can be open (with free water surface) and closed (pressurized). Independently of the type of rector, hydraulic head loss is an important factor for its design. The present work focuses on the study of the total hydraulic head loss and flow velocity and pressure distribution in electrocoagulation reactors with single or multiple concentric annular cross sections. An analysis of the head loss produced by hydraulic wall shear friction and accessories (minor head losses) is presented, and compared to the head loss measured on a semi-pilot scale laboratory model for different flow rates through the reactor. The tests included laminar, transitional and turbulent flow. The observed head loss was compared also to the head loss predicted by several known conceptual theoretical and empirical equations, specific for flow in concentric annular pipes. Four single concentric annular cross section and one multiple concentric annular cross section reactor configuration were studied. The theoretical head loss resulted higher than the observed in the laboratory model in some of the tests, and lower in others of them, depending also on the assumed value for the wall roughness. Most of the theoretical models assume that the fluid elements in all annular sections have the same velocity, and that flow is steady, uniform and one-dimensional, with the same pressure and velocity profiles in all reactor sections. To check the validity of such assumptions, a computational fluid dynamics (CFD) model of the concentric annular pipe reactor was implemented using the ANSYS Fluent software, demonstrating that pressure and flow velocity distribution inside the reactor actually is not uniform. Based on the analysis, the equations that predict better the head loss in single and multiple annular sections were obtained. Other factors that may impact the head loss, such as the generation of coagulants and gases during the electrochemical reaction, the accumulation of hydroxides inside the reactor, and the change of the electrode material with time, are also discussed. The results can be used as tools for design and scale-up of electrocoagulation reactors, to be integrated into new or existing water treatment plants.Keywords: electrocoagulation reactors, hydraulic head loss, concentric annular pipes, computational fluid dynamics model
Procedia PDF Downloads 2187984 Reliability-Simulation of Composite Tubular Structure under Pressure by Finite Elements Methods
Authors: Abdelkader Hocine, Abdelhakim Maizia
Abstract:
The exponential growth of reinforced fibers composite materials use has prompted researchers to step up their work on the prediction of their reliability. Owing to differences between the properties of the materials used for the composite, the manufacturing processes, the load combinations and types of environment, the prediction of the reliability of composite materials has become a primary task. Through failure criteria, TSAI-WU and the maximum stress, the reliability of multilayer tubular structures under pressure is the subject of this paper, where the failure probability of is estimated by the method of Monte Carlo.Keywords: composite, design, monte carlo, tubular structure, reliability
Procedia PDF Downloads 4647983 Implementation of a Lattice Boltzmann Method for Multiphase Flows with High Density Ratios
Authors: Norjan Jumaa, David Graham
Abstract:
We present a Lattice Boltzmann Method (LBM) for multiphase flows with high viscosity and density ratios. The motion of the interface between fluids is modelled by solving the Cahn-Hilliard (CH) equation with LBM. Incompressibility of the velocity fields in each phase is imposed by using a pressure correction scheme. We use a unified LBM approach with separate formulations for the phase field, the pressure less Naiver-Stokes (NS) equations and the pressure Poisson equation required for correction of the velocity field. The implementation has been verified for various test case. Here, we present results for some complex flow problems including two dimensional single and multiple mode Rayleigh-Taylor instability and we obtain good results when comparing with those in the literature. The main focus of our work is related to interactions between aerated or non-aerated waves and structures so we also present results for both high viscosity and low viscosity waves.Keywords: lattice Boltzmann method, multiphase flows, Rayleigh-Taylor instability, waves
Procedia PDF Downloads 2347982 Temperature Dependent Interaction Energies among X (=Ru, Rh) Impurities in Pd-Rich PdX Alloys
Authors: M. Asato, C. Liu, N. Fujima, T. Hoshino, Y. Chen, T. Mohri
Abstract:
We study the temperature dependence of the interaction energies (IEs) of X (=Ru, Rh) impurities in Pd, due to the Fermi-Dirac (FD) distribution and the thermal vibration effect by the Debye-Grüneisen model. The n-body (n=2~4) IEs among X impurities in Pd, being used to calculate the internal energies in the free energies of the Pd-rich PdX alloys, are determined uniquely and successively from the lower-order to higher-order, by the full-potential Korringa-Kohn-Rostoker Green’s function method (FPKKR), combined with the generalized gradient approximation in the density functional theory. We found that the temperature dependence of IEs due to the FD distribution, being usually neglected, is very important to reproduce the X-concentration dependence of the observed solvus temperatures of the Pd-rich PdX (X=Ru, Rh) alloys.Keywords: full-potential KKR-green’s function method, Fermi-Dirac distribution, GGA, phase diagram of Pd-rich PdX (X=Ru, Rh) alloys, thermal vibration effect
Procedia PDF Downloads 2757981 Wetting-Drying Cycles Effect on Piles Embedded in a Very High Expansive Soil
Authors: Bushra Suhail, Laith Kadim
Abstract:
The behavior of model piles embedded in a very high expansive soil was investigated, a specially manufactured saturation-drying tank was used to apply three cycles of wetting and drying to the expansive soil surrounding the model straight shaft and under reamed piles, the relative movement of the piles with respect to the soil surface was recorded with time, also the exerted uplift pressure of the piles due to soil swelling was recorded. The behavior of unloaded straight shaft and under reamed piles was investigated. Two design charts were presented for straight shaft and under reamed piles one for the required pile depth for zero upward movement due to soil swelling, the other for the required pile depth to exert zero uplift pressure when the soil swells. Under reamed piles showed a decrease in upward movement of 20% to 40%, and an uplift pressure decrease of 10% to 30%.Keywords: expansive soil, piles, under reamed, structural and geotechnical engineering
Procedia PDF Downloads 3217980 Numerical Modeling to Validate Theoretical Models of Toppling Failure in Rock Slopes
Authors: Hooman Dabirmanesh, Attila M. Zsaki
Abstract:
Traditionally, rock slope stability is carried out using limit equilibrium analysis when investigating toppling failure. In these equilibrium methods, internal forces exerted between columns are not clearly defined, and to the authors’ best knowledge, there is no consensus in literature with respect to the results of analysis. A discrete element method-based numerical model was developed and applied to simulate the behavior of rock layers subjected to toppling failure. Based on this calibrated numerical model, a study of the location and distribution of internal forces that result in equilibrium was carried out. The sum of side forces was applied at a point on a block which properly represents the force to determine the inter-column force distribution. In terms of the side force distribution coefficient, the result was compared to those obtained from laboratory centrifuge tests. The results of the simulation show the suitable criteria to select the correct position for the internal exerted force between rock layers. In addition, the numerical method demonstrates how a theoretical method could be reliable by considering the interaction between the rock layers.Keywords: contact bond, discrete element, force distribution, limit equilibrium, tensile stress
Procedia PDF Downloads 1437979 Efficient Use of Energy through Incorporation of a Gas Turbine in Methanol Plant
Authors: M. Azadi, N. Tahouni, M. H. Panjeshahi
Abstract:
A techno-economic evaluation for efficient use of energy in a large scale industrial plant of methanol is carried out. This assessment is based on integration of a gas turbine with an existing plant of methanol in which the outlet gas products of exothermic reactor is expanded to power generation. Also, it is decided that methanol production rate is constant through addition of power generation system to the existing methanol plant. Having incorporated a gas turbine with the existing plant, the economic results showed total investment of MUSD 16.9, energy saving of 3.6 MUSD/yr with payback period of approximately 4.7 years.Keywords: energy saving, methanol, gas turbine, power generation
Procedia PDF Downloads 4697978 Geometry of the Bandaging Procedure and Its Application while Wrapping Bandages for Treatment of Leg Ulcers
Authors: Monica Puri Sikka, Subrato Ghosh Arunangshu Mukhopadhyay
Abstract:
Appropriate compression bandaging is important for compression therapeutic medical diseases. The high compression approach employed for treating venous leg ulcers should be used correctly so that sufficient (but not excessive) pressure is applied. Bandages used to treat venous disease by compression should achieve and sustain effective levels and gradients of pressure and minimise the risk of pressure trauma. To maintain graduated compression on the limb the bandage needs to be applied at same tension for each layer from ankle to the knee. In this paper the geometry for various bandaging procedures is used to wrap each layer of bandage by marking the relaxed length of the bandage. The relaxed length is calculated depending on the stretch, average circumference of the limb on which it is to be applied and the bandaging technique to be used. This paper aims at developing a scientific approach while applying the bandage to reduce the inter operator variability in applying same tension on each successive layer of bandage.Keywords: bandaging, compression, inter operator variability, graduated, relaxed length, stretch
Procedia PDF Downloads 4967977 Pattern of Stress Distribution in Different Ligature-Wire-Brackets Systems: A FE and Experimental Analysis
Authors: Afef Dridi, Salah Mezlini
Abstract:
Since experimental devices cannot calculate stress and deformation of complex structures. The Finite Element Method FEM has been widely used in several fields of research. One of these fields is orthodontics. The advantage of using such a method is the use of an accurate and non invasive method that allows us to have a sufficient data about the physiological reactions can happening in soft tissues. Most of researches done in this field were interested in the study of stresses and deformations induced by orthodontic apparatus in soft tissues (alveolar tissues). Only few studies were interested in the distribution of stress and strain in the orthodontic brackets. These studies, although they tried to be as close as possible to real conditions, their models did not reproduce the clinical cases. For this reason, the model generated by our research is the closest one to reality. In this study, a numerical model was developed to explore the stress and strain distribution under the application of real conditions. A comparison between different material properties was also done.Keywords: visco-hyperelasticity, FEM, orthodontic treatment, inverse method
Procedia PDF Downloads 2597976 Design and Analysis of Adaptive Type-I Progressive Hybrid Censoring Plan under Step Stress Partially Accelerated Life Testing Using Competing Risk
Authors: Ariful Islam, Showkat Ahmad Lone
Abstract:
Statistical distributions have long been employed in the assessment of semiconductor devices and product reliability. The power function-distribution is one of the most important distributions in the modern reliability practice and can be frequently preferred over mathematically more complex distributions, such as the Weibull and the lognormal, because of its simplicity. Moreover, it may exhibit a better fit for failure data and provide more appropriate information about reliability and hazard rates in some circumstances. This study deals with estimating information about failure times of items under step-stress partially accelerated life tests for competing risk based on adoptive type-I progressive hybrid censoring criteria. The life data of the units under test is assumed to follow Mukherjee-Islam distribution. The point and interval maximum-likelihood estimations are obtained for distribution parameters and tampering coefficient. The performances of the resulting estimators of the developed model parameters are evaluated and investigated by using a simulation algorithm.Keywords: adoptive progressive hybrid censoring, competing risk, mukherjee-islam distribution, partially accelerated life testing, simulation study
Procedia PDF Downloads 3477975 Extreme Rainfall Frequency Analysis For Meteorological Sub-Division 4 Of India Using L-Moments.
Authors: Arti Devi, Parthasarthi Choudhury
Abstract:
Extreme rainfall frequency analysis for Meteorological Sub-Division 4 of India was analysed using L-moments approach. Serial Correlation and Mann Kendall tests were conducted for checking serially independent and stationarity of the observations. The discordancy measure for the sites was conducted to detect the discordant sites. The regional homogeneity was tested by comparing with 500 generated homogeneous regions using a 4 parameter Kappa distribution. The best fit distribution was selected based on ZDIST statistics and L-moments ratio diagram from the five extreme value distributions GPD, GLO, GEV, P3 and LP3. The LN3 distribution was selected and regional rainfall frequency relationship was established using index-rainfall procedure. A regional mean rainfall relationship was developed using multiple linear regression with latitude and longitude of the sites as variables.Keywords: L-moments, ZDIST statistics, serial correlation, Mann Kendall test
Procedia PDF Downloads 4417974 Simulation of Internal Flow Field of Pitot-Tube Jet Pump
Authors: Iqra Noor, Ihtzaz Qamar
Abstract:
Pitot-tube Jet pump, single-stage pump with low flow rate and high head, consists of a radial impeller that feeds water to rotating cavity. Water then enters stationary pitot-tube collector (diffuser), which discharges to the outside. By means of ANSYS Fluent 15.0, the internal flow characteristics for Pitot-tube Jet pump with standard pitot and curved pitot are studied. Under design condition, realizable k-e turbulence model and SIMPLEC algorithm are used to calculate 3D flow field inside both pumps. The simulation results reveal that energy is imparted to the flow by impeller and inside the rotor, forced vortex type flow is observed. Total pressure decreases inside pitot-tube whereas static pressure increases. Changing pitot-tube from standard to curved shape results in minimum flow circulation inside pitot-tube and leads to a higher pump performance.Keywords: CFD, flow circulation, high pressure pump, impeller, internal flow, pickup tube pump, rectangle channels, rotating casing, turbulence
Procedia PDF Downloads 160