Search results for: nutrients removal
1128 Adsorption of Phenol and 4-Hydroxybenzoic Acid onto Functional Materials
Authors: Mourad Makhlouf, Omar Bouchher, Messabih Sidi Mohamed, Benrachedi Khaled
Abstract:
The objective of this study was to investigate the removal of two organic pollutants; 4-hydroxybenzoic acid (p-hydroxybenzoic acid) and phenol from synthetic wastewater by the adsorption on mesoporous materials. In this context, the aim of this work is to study the adsorption of organic compounds phenol and 4AHB on MCM-41 and FSM-16 non-grafted (NG) and other grafted (G) by trimethylchlorosilane (TMCS). The results of phenol and 4AHB adsorption in aqueous solution show that the adsorption capacity tends to increase after grafting in relation to the increase in hydrophobicity. The materials are distinguished by a higher adsorption capacity to the other NG materials. The difference in the phenol is 14.43% (MCM-41), 14.55% (FSM-16), and 16.72% (MCM-41), 13.57% (FSM-16) in the 4AHB. Our adsorption results show that the grafted materials by TMCS are good adsorbent at 25 °C.Keywords: MCM-41, FSM-16, TMCS, phenol, 4AHB
Procedia PDF Downloads 2741127 Design, Development and Application of a Green Manure Fertilizer Based on Mucuna Pruriens (L.) in Pelletized Presentation
Authors: Andres Zuñiga Orozco
Abstract:
Green manure fertilizers have special importance in the development of organic and sustainable agriculture as a substitute or complement to chemical fertilization. They have many advantages, but they have application limitations in greenhouse crops and in open field crops that have low growing size. On the other hand, the logistics of sowing, harvesting and applying have been difficult for producers to adopt. For this reason, a pelletized presentation was designed in conjunction with Trichoderma harzianum. The biopellet was applied in pineapple as the first experience, managing to improve carbon levels in the soil and some nutrients. Then it was applied to tomatoes where it was proven that, nutritionally, it is possible to nourish the crop up to day 60 only with the biopellet, improve carbon levels in soil and control the fungus Fusarium oxysporum. Subsequently, it was applied to coffee seedlings with an organo-mineral formulation. Here, the improvement in the growth and nutrition of the plants was notable, as well as the increase in the microbial activity of the soil. M. pruriens biopellets allow crops to be nourished, allow biocontrolers to be added, improve soil conditions to promote greater microbial activity, reincorporate carbon and CO2 into the soil, are easily applicable, allow dosing and have a favorable shelf-life. They can be applied to all types of crops, both in the greenhouse and in the field.Keywords: Mucuna pruriens, pellets, carbon, Trichoderma, Fusarium
Procedia PDF Downloads 591126 Performance of an Anaerobic Baffled Reactor (ABR) Treating High-Strength Food Industrial Wastewater with Fluctuating pH
Authors: D. M. Bassuney, W. A. Ibrahim, Medhat A. E. Moustafa
Abstract:
As awareness of the variable nature of food industrial wastewater and its environmental impact grows, a more stable treatment reactor is needed to treat such wastewater. In this paper, a performance of 5-compartment lab-scale Anaerobic Baffled Reactor (ABR) treating high strength wastewater with high pH variation was studied under three organic loading rates (OLRs). The reactor showed high COD removal efficiencies: 92.67, 97.44, and 98.19% corresponding to OLRs of 2.0, 3.0, and 4.8 KgCOD/m3 d, respectively. The first compartment showed a good buffering capacity and a distinct phase separation occurred in the ABR.Keywords: anaerobic baffled reactor, food industrial wastewater, high strength wastewater, organic loading, pH
Procedia PDF Downloads 4001125 Assessing Lithium Recovery from Secondary Sources
Authors: Carolina A. Santos, Alexandra B. Ribeiro
Abstract:
Climate change and environmental degradation are threats to humanity. Europe has been addressing these problems, namely through the Green Deal, with the use of batteries in mobility and energy fields. However, these require the use of critical raw materials, like lithium, which demand is estimated to grow 60 times in the next 30 years. Thus, it is fundamental to promote a circular economy with lithium recovery from secondary resources. These are nowadays key topics, which will be even more relevant in the future, so a new way to approach them is needed and must be encouraged. Therefore, one of our main goals is to analyse two methods of lithium retrieval from secondary sources, bioleaching, and electrodialysis, and assess them regarding their sustainability. The latest results show good efficiency of removal with both methods, even though there are some matrix interferences. Hence, further investment and research are needed in order to make this process sustainable and our society more circular.Keywords: lithium, sustainable mining, social license to operate, bioleaching, electrodialysis
Procedia PDF Downloads 1301124 Photocatalytic Degradation of Phenol by Fe-Doped Tio2 under Solar Simulated Light
Authors: Mohamed Gar Alalm, Shinichi Ookawara, Ahmed Tawfik
Abstract:
In the present work, photocatalytic oxidation of phenol by iron (Fe+2) doped titanium dioxide (TiO2) was studied. The source of irradiation was solar simulated light under measured UV flux. The effect of light intensity, pH, catalyst loading, and initial concentration of phenol were investigated. The maximum removal of phenol at optimum conditions was 78%. The optimum pH was 5.3. The most effective degradation occurred when the catalyst dosage was 600 mg/L. increasing the initial concentration of phenol decreased the degradation efficiency due to the deactivation of active sites by additional intermediates. Phenol photocatalytic degradation moderately fitted to the pseudo-first order kinetic equation approximated from Langmuir–Hinshelwood model.Keywords: phenol, photocatalytic, solar, titanium dioxide
Procedia PDF Downloads 4041123 Functional Foods and Their Health Benefits with an Emphasis on Probiotics
Authors: Tanu Malik, Eusebe Gnonlonfoun, Eudes L. Anihouvi
Abstract:
The rise of nutrition-related diseases, increase of health care cost, and the social perception that food could directly affect health have naturally created an environment conducive to the development of foods and beverages with an asserted health benefit. Consumer habits have turned considerably healthier in recent years and led to the demand for fortified and enhanced foods that could adequately provide health benefits beyond necessary nutrients for humans when they are consumed as part of the diet and regularly. These trends have developed a global market for functional foods, that grows annually and undoubtedly requires to be diversified. Product development appears thus as a key research priority for both the food industry and science sectors. The health benefits of these functional foods are summarized in two possible ways: either indirectly as a desired result of biogenic effect or through the direct interaction of ingested live microorganisms with the host (probiotic effect). This paper reviews functional foods and their beneficial health effects with a key focus on probiotics for the possible expansion of their use by the food industry in order to develop non-dairy based probiotics foods. Likewise, it reveals the need for more researches oriented towards an accurate understanding of the possible interaction between probiotic strains and the matrix and, on the other hand, the interaction between probiotic strains and some enzymes used during food manufacturing.Keywords: functional foods, food industry, health benefits, probiotics
Procedia PDF Downloads 1321122 Potential Use of Spore-Forming Biosurfactant Producing Bacteria in Oil-Pollution Bioremediation
Authors: S. N. Al-Bahry, Y. M. Al-Wahaibi, S. J. Joshi, E. A. Elshafie, A. S. Al-Bimani
Abstract:
Oman is one of the oil producing countries in the Arabian Peninsula and the Gulf region. About 30-40 % of oil produced from the Gulf is transported globally along the seacoast of Oman. Oil pollution from normal tanker operations, ballast water, illegal discharges and accidental spills are always serious threats to terrestrial and marine habitats. Due to Oman’s geographical location at arid region where the temperature ranges between high 40s and low 50s Celsius in summers with low annual rainfall, the main source of fresh water is desalinated sea and brackish water. Oil pollution, therefore, pose a major threat to drinking water. Biosurfactants are secondary metabolites produced by microorganisms in hydrophobic environments to release nutrients from solid surfaces, such as oil. In this study, indigenous oil degrading thermophilic spore forming bacteria were isolated from oil fields contaminated soil. The isolates were identified using MALDI-TOF biotyper and 16s RNA. Their growth conditions were optimized for the production of biosurfactant. Surface tension, interfacial tensions and microbial oil biodegradation capabilities were tested. Some thermophilic bacteria degraded either completely or partially heavy crude oil (API 10-15) within 48h suggesting their high potential in oil spill bioremediation and avoiding the commonly used physical and chemical methods which usually lead to other environmental pollution.Keywords: bacteria, bioremediation, biosurfactant, crude-oil-pollution
Procedia PDF Downloads 4271121 Risks for Cyanobacteria Harmful Algal Blooms in Georgia Piedmont Waterbodies Due to Land Management and Climate Interactions
Authors: Sam Weber, Deepak Mishra, Susan Wilde, Elizabeth Kramer
Abstract:
The frequency and severity of cyanobacteria harmful blooms (CyanoHABs) have been increasing over time, with point and non-point source eutrophication and shifting climate paradigms being blamed as the primary culprits. Excessive nutrients, warm temperatures, quiescent water, and heavy and less regular rainfall create more conducive environments for CyanoHABs. CyanoHABs have the potential to produce a spectrum of toxins that cause gastrointestinal stress, organ failure, and even death in humans and animals. To promote enhanced, proactive CyanoHAB management, risk modeling using geospatial tools can act as predictive mechanisms to supplement current CyanoHAB monitoring, management and mitigation efforts. The risk maps would empower water managers to focus their efforts on high risk water bodies in an attempt to prevent CyanoHABs before they occur, and/or more diligently observe those waterbodies. For this research, exploratory spatial data analysis techniques were used to identify the strongest predicators for CyanoHAB blooms based on remote sensing-derived cyanobacteria cell density values for 771 waterbodies in the Georgia Piedmont and landscape characteristics of their watersheds. In-situ datasets for cyanobacteria cell density, nutrients, temperature, and rainfall patterns are not widely available, so free gridded geospatial datasets were used as proxy variables for assessing CyanoHAB risk. For example, the percent of a watershed that is agriculture was used as a proxy for nutrient loading, and the summer precipitation within a watershed was used as a proxy for water quiescence. Cyanobacteria cell density values were calculated using atmospherically corrected images from the European Space Agency’s Sentinel-2A satellite and multispectral instrument sensor at a 10-meter ground resolution. Seventeen explanatory variables were calculated for each watershed utilizing the multi-petabyte geospatial catalogs available within the Google Earth Engine cloud computing interface. The seventeen variables were then used in a multiple linear regression model, and the strongest predictors of cyanobacteria cell density were selected for the final regression model. The seventeen explanatory variables included land cover composition, winter and summer temperature and precipitation data, topographic derivatives, vegetation index anomalies, and soil characteristics. Watershed maximum summer temperature, percent agriculture, percent forest, percent impervious, and waterbody area emerged as the strongest predictors of cyanobacteria cell density with an adjusted R-squared value of 0.31 and a p-value ~ 0. The final regression equation was used to make a normalized cyanobacteria cell density index, and a Jenks Natural Break classification was used to assign waterbodies designations of low, medium, or high risk. Of the 771 waterbodies, 24.38% were low risk, 37.35% were medium risk, and 38.26% were high risk. This study showed that there are significant relationships between free geospatial datasets representing summer maximum temperatures, nutrient loading associated with land use and land cover, and the area of a waterbody with cyanobacteria cell density. This data analytics approach to CyanoHAB risk assessment corroborated the literature-established environmental triggers for CyanoHABs, and presents a novel approach for CyanoHAB risk mapping in waterbodies across the greater southeastern United States.Keywords: cyanobacteria, land use/land cover, remote sensing, risk mapping
Procedia PDF Downloads 2111120 Assessment of Different Industrial Wastewater Quality in the Most Common Industries in Kuwait
Authors: Mariam Aljumaa
Abstract:
Industrial wastewater has been increased rapidly in the last decades, however, the generated wastewater is not treated properly on site before transfer it to the treatment plant. In this study, the most common industries (dairy, soft drinks, detergent, and petrochemical) has been studied in term of wastewater quality. The main aim of this study is to characterize and evaluate the quality of the most common industrial wastewater in Kuwait. Industrial wastewater samples were collected from detergents, dairy, beverage, and petrochemical factories. The collected wastewater samples were analyzed for temperature, EC, pH, DO, BOD, COD, TOC, TS, TSS, volatile suspended solids (VSS), total volatile solids (TVS), NO2, NO3, NH3, N, P, K, CaCO3, heavy metals, Total coliform, Fecal coliform, and E.coli bacteria. The results showed that petrochemical industry has the highest concentration of organic and nutrients, followed by detergents wastewater, then dairy, and finally, soft drink wastewater. Regarding the heavy metals, the results showed that dairy wastewater had the highest concentration, specifically in Zinc, Arsenic, and Cadmium. In term of biological analysis, the dairy industry had the highest concentration of total coliform, followed by soft drinks industry, then shampoo industry, and finally petrochemical industry.Keywords: industrial wastewater, characterization, heavy metals, wastewater quality
Procedia PDF Downloads 911119 Preparation and Performance Evaluation of Green Chlorine-Free Coagulants
Authors: Huihui Zhang, Zhongzhi Zhang
Abstract:
Coagulation/flocculation is regarded a simple and effective wastewater treatment technology. Chlorine-containing coagulants may release chloride ions into the wastewater, causing corrosion. A green chlorine-free coagulant of polyaluminum ferric silicate (PSAF) was prepared by the copolymerization method to treat oily refractory wastewaters. Results showed that the highest removal efficiency of turbidity and chemical oxygen demand (COD) achieved 97.4% and 93.0% at a dosage of 700 mg/L, respectively. After PSAF coagulation, the chloride ion concentration was also almost the same as that in the raw wastewater. Thus, the chlorine-free coagulant is highly efficient and does not introduce additional chloride ions into the wastewater, avoiding corrosion.Keywords: coagulation, chloride-free coagulant, oily refractory wastewater, coagulation performance
Procedia PDF Downloads 2181118 Evaluation of Hazelnut Hulls as an Alternative Forage Resource for Ruminant Animals
Authors: N. Cetinkaya, Y. S. Kuleyin
Abstract:
The aim of this study was to estimate the digestibility of the fruit internal skin of different varieties of hazelnuts to propose hazelnut fruit skin as an alternative feed source as roughage in ruminant nutrition. In 2015, the fruit internal skins of three different varieties of round hazelnuts (RH), pointed hazelnuts (PH) and almond hazelnuts (AH) were obtained from hazelnut processing factory then their crude nutrients analysis were carried out. Organic matter digestibility (OMD) and metabolisable energy (ME) values of hazelnut fruit skins were estimated from gas measured by in vitro gas production method. Their antioxidant activities were determined by spectrophotometric method. Crude nutrient values of three different varieties were; organic matter (OM): 87.83, 87.81 and 87.78%), crude protein (CP): 5.97, 5.93 and 5.89%, neutral detergent fiber (NDF): 30.30, 30.29 and 30.29%, acid detergent fiber (ADF): 48.68, 48.67 and 48.66% and acid detergent lignin (ADL): 25.43, 25.43 and 25.39% respectively. OMD from 24 h incubation time of RH, PH and AH were 22.04, 22.46 and 22.74%; MEGP values were 3.69, 3.75 and 3.79 MJ/kg DM; and antioxidant activity values were 94.60, 94.54 and 94.52 IC 50 mg/mL respectively. The fruit internal skin of different varieties of hazelnuts may be considered as an alternative roughage for ruminant nutrition regarding to their crude and digestible nutritive values. Moreover, hazelnut fruit skin has a rich antioxidant content so it may be used as a feed additive for both ruminant and non-ruminant animals.Keywords: antioxidant activity, hazelnut fruit skin, metabolizable energy, organic matter digestibility
Procedia PDF Downloads 3021117 Carbon Nanocomposites : Structure, Characterization and Environmental Application
Authors: Bensacia Nabila, Hadj-Ziane Amel, Sefah Karima
Abstract:
Carbon nanocomposites have received more attention in the last years in view of their special properties such as low density, high specific surface area, and thermal and mechanical stability. Taking into account the importance of these materials, many studies aimed at improving the synthesis process have been conducted. However, the presence of impurities could affect significantly the properties of these materials, and the characterization of these compounds is an important challenge to assure the quality of the new carbon nanocomposites. The present study aims to develop a new recyclable decontaminating material for dyes removal. This new material consists of an active element based on carbon nanotubes wrapped in a microcapsule of iron oxide. The adsorbent is characterized by Transmission electron microscopy, X-ray diffraction and the surface area was measured by the BET method.Keywords: carbon nanocomposite, chitozen, elimination, dyes
Procedia PDF Downloads 3211116 Effect of Ultrasound on Carotenoids Extraction from Pepper and Process Optimization Using Response Surface Methodology (RSM)
Authors: Elham Mahdian, Reza Karazhian, Rahele Dehghan Tanha
Abstract:
Pepper (Capsicum annum L.) which belong to the family Solananceae, are known for their versatility as a vegetable crop and are consumed both as fresh vegetables or dehydrated for spices. Pepper is considered an excellent source of bioactive nutrients. Ascorbic acid, carotenoids and phenolic compounds are its main antioxidant constituents. Ultrasound assisted extraction is an inexpensive, simple and efficient alternative to conventional extraction techniques. The mechanism of action for ultrasound-assisted extraction are attributed to cavitations, mechanical forces and thermal impact, which result in disruption of cells walls, reduce particle size, and enhance mass transfer across cell membranes. In this study, response surface methodology was used to optimize experimental conditions for ultrasonic assisted extraction of carotenoid compounds from Chili peppers. Variables were included extraction temperatures at 3 levels (30, 40 and 50 °C), extraction times at 3 levels (10, 25 and 40 minutes) and power at 3 levels (30, 60 and 90 %). It was observed that ultrasound waves applied at temperature of 49°C, time of 10 minutes and power 89 % resulted to the highest carotenoids contents (lycopene and β-carotene), while the lowest value was recorded in the control. Thus, results showed that ultrasound waves have strong impact on extraction of carotenoids from pepper.Keywords: carotenoids, optimization, pepper, response surface methodology
Procedia PDF Downloads 4741115 Modeling of Coagulation Process for the Removal of Carbofuran in Aqueous Solution
Authors: Roli Saini, Pradeep Kumar
Abstract:
A coagulation/flocculation process was adopted for the reduction of carbamate insecticide (carbofuran) from aqueous solution. Ferric chloride (FeCl3) was used as a coagulant to treat the carbofuran. To exploit the reduction efficiency of pesticide concentration and COD, the jar-test experiments were carried out and process was optimized through response surface methodology (RSM). The effects of two independent factors; i.e., FeCl3 dosage and pH on the reduction efficiency were estimated by using central composite design (CCD). The initial COD of the 30 mg/L concentrated solution was found to be 510 mg/L. Results exposed that the maximum reduction occurred at an optimal condition of FeCl3 = 80 mg/L, and pH = 5.0, from which the reduction of concentration and COD 75.13% and 65.34%, respectively. The present study also predicted that the obtained regression equations could be helpful as the theoretical basis for the coagulation process of pesticide wastewater.Keywords: carbofuran, coagulation, optimization, response surface methodology
Procedia PDF Downloads 3241114 Using SNAP and RADTRAD to Establish the Analysis Model for Maanshan PWR Plant
Authors: J. R. Wang, H. C. Chen, C. Shih, S. W. Chen, J. H. Yang, Y. Chiang
Abstract:
In this study, we focus on the establishment of the analysis model for Maanshan PWR nuclear power plant (NPP) by using RADTRAD and SNAP codes with the FSAR, manuals, and other data. In order to evaluate the cumulative dose at the Exclusion Area Boundary (EAB) and Low Population Zone (LPZ) outer boundary, Maanshan NPP RADTRAD/SNAP model was used to perform the analysis of the DBA LOCA case. The analysis results of RADTRAD were similar to FSAR data. These analysis results were lower than the failure criteria of 10 CFR 100.11 (a total radiation dose to the whole body, 250 mSv; a total radiation dose to the thyroid from iodine exposure, 3000 mSv).Keywords: RADionuclide, transport, removal, and dose estimation (RADTRAD), symbolic nuclear analysis package (SNAP), dose, PWR
Procedia PDF Downloads 4631113 DNA-Based Analysis of Gut Content of Zygoribatula sp (Acari: Oribatida) and Scheloribates sp (Acari: Oribatida), under the Canopy of Prosopis Laevigata, in a Semiarid Land
Authors: Daniel Isaac Sanchez Chavez, Salvador Rodríguez Zaragoza, Patricia Velez Aguilar
Abstract:
In arid and semi-arid regions, plants are essential in the functional activity and productivity, modifying the microclimatic conditions of their environment, which allows many organisms to grow under them. Within these organisms, oribatid mites play a key role in reintegrating nutrients into the soil through the consumption of soil fungi. However, oribatid mites feed on a vast array of fungal species, which is likely to have strong impacts on their population dynamics and their environment. So, in this study, the aim was to determine the gut content of the abundant oribatid mites Zygoribatula sp and Scheloribates sp, under the canopy of the bush P. laevigata in a semi-arid zone through DNA-based analysis. The results showed the presence in the gut of both mites of different fungal taxa. Fungi, such as Aspergillus sp and Mortierella sp, probably served as a food despite the production of deterrent compounds or structures from both fungal species. Saccharomyces sp might serve as well as a food source; however, it might be part of their microbial endosymbionts. On the other hand, the presence of Beauveria sp indicates a probable pathogenicity interaction, instead of fungal consumption, since this fungus is known to be entomopathogenic. Finally, the results might indicate a feeding preference to certain soil fungi according to diverse features from both taxa.Keywords: microenvironment, endosymbionts, Oribatida, fungi
Procedia PDF Downloads 1421112 Soil Properties and Yam Performance as Influenced by Poultry Manure and Tillage on an Alfisol in Southwestern Nigeria
Authors: E. O. Adeleye
Abstract:
Field experiments were conducted to investigate the effect of soil tillage techniques and poultry manure application on the soil properties and yam (Dioscorea rotundata) performance in Ondo, southwestern Nigeria for two farming seasons. Five soil tillage techniques, namely ploughing (P), ploughing plus harrowing (PH), manual ridging (MR), manual heaping (MH) and zero-tillage (ZT) each combined with and without poultry manure at the rate of 10 tha-1 were investigated. Data were obtained on soil properties, nutrient uptake, growth and yield of yam. Soil moisture content, bulk density, total porosity and post harvest soil chemical characteristics were significantly (p>0.05) influenced by soil tillage-manure treatments. Addition of poultry manure to the tillage techniques in the study increased soil total porosity, soil moisture content and reduced soil bulk density. Poultry manure improved soil organic matter, total nitrogen, available phosphorous, exchangeable Ca, k, leaf nutrients content of yam, yam growth and tuber yield relative to tillage techniques plots without poultry manure application. It is concluded that the possible deleterious effect of tillage on soil properties, growth and yield of yam on an alfisol in southwestern Nigeria can be reduced by combining tillage with poultry manure.Keywords: poultry manure, tillage, soil chemical properties, yield
Procedia PDF Downloads 4461111 Biosorption of Phenol onto Water Hyacinth Activated Carbon: Kinetics and Isotherm Study
Authors: Manoj Kumar Mahapatra, Arvind Kumar
Abstract:
Batch adsorption experiments were carried out for the removal of phenol from its aqueous solution using water hyancith activated carbon (WHAC) as an adsorbent. The sorption kinetics were analysed using pseudo-first order kinetics and pseudo-second order model, and it was observed that the sorption data tend to fit very well in pseudo-second order model for the entire sorption time. The experimental data were analyzed by the Langmuir and Freundlich isotherm models. Equilibrium data fitted well to the Freundlich model with a maximum biosorption capacity of 31.45 mg/g estimated using Langmuir model. The adsorption intensity 3.7975 represents a favorable adsorption condition.Keywords: adsorption, isotherm, kinetics, phenol
Procedia PDF Downloads 4441110 Assessment of Treatment Methods to Remove Hazardous Dyes from Synthetic Wastewater
Authors: Abhiram Siva Prasad Pamula
Abstract:
Access to clean drinking water becomes scarce due to the increase in extreme weather events because of the rise in the average global temperatures and climate change. By 2030, approximately 47% of the world’s population will face water shortages due to uncertainty in seasonal rainfall. Over 10000 varieties of synthetic dyes are commercially available in the market and used by textile and paper industries, negatively impacting human health when ingested. Besides humans, textile dyes have a negative impact on aquatic ecosystems by increasing biological oxygen demand and chemical oxygen demand. This study assesses different treatment methods that remove dyes from textile wastewater while focusing on energy, economic, and engineering aspects of the treatment processes.Keywords: textile wastewater, dye removal, treatment methods, hazardous pollutants
Procedia PDF Downloads 931109 A Gastro-Intestinal Model for a Rational Design of in vitro Systems to Study Drugs Bioavailability
Authors: Pompa Marcello, Mauro Capocelli, Vincenzo Piemonte
Abstract:
This work focuses on a mathematical model able to describe the gastro-intestinal physiology and providing a rational tool for the design of an artificial gastro-intestinal system. This latter is mainly devoted to analyse the absorption and bioavailability of drugs and nutrients through in vitro tests in order to overcome (or, at least, to partially replace) in vivo trials. The provided model realizes a conjunction ring (with extended prediction capability) between in vivo tests and mechanical-laboratory models emulating the human body. On this basis, no empirical equations controlling the gastric emptying are implemented in this model as frequent in the cited literature and all the sub-unit and the related system of equations are physiologically based. More in detail, the model structure consists of six compartments (stomach, duodenum, jejunum, ileum, colon and blood) interconnected through pipes and valves. Paracetamol, Ketoprofen, Irbesartan and Ketoconazole are considered and analysed in this work as reference drugs. The mathematical model has been validated against in vivo literature data. Results obtained show a very good model reliability and highlight the possibility to realize tailored simulations for different couples patient-drug, including food adsorption dynamics.Keywords: gastro-intestinal model, drugs bioavailability, paracetamol, ketoprofen
Procedia PDF Downloads 1681108 Screening of Ionic Liquids for Hydrogen Sulfide Removal Using COSMO-RS
Authors: Zulaika Mohd Khasiran
Abstract:
The capability of ionic liquids in various applications makes them attracted by many researchers. They have potential to be developed as “green” solvents for gas separation, especially H2S gas. In this work, it is attempted to predict the solubility of hydrogen sulfide (H2S) in ILs by COSMO-RS method. Since H2S is a toxic pollutant, it is difficult to work on it in the laboratory, therefore an appropriate model will be necessary in prior work. The COSMO-RS method is implemented to predict the Henry’s law constants and activity coefficient of H2S in 140 ILs with various combinations of cations and anions. It is found by the screening that more H2S can be absorbed in ILs with [Cl] and [Ac] anion. The solubility of H2S in ILs with different alkyl chain at the cations not much affected and with different type of cations are slightly influence H2S capture capacities. Even though the cations do not affect much in solubility of H2S, we still need to consider the effectiveness of cation in different way. The prediction results only show their physical absorption ability, but the absorption of H2S need to be consider chemically to get high capacity of absorption of H2S.Keywords: H2S, hydrogen sulfide, ionic liquids, COSMO-RS
Procedia PDF Downloads 1391107 Pollutants Removal from Synthetic Wastewater by the Combined Electrochemical Sequencing Batch Reactor
Authors: Amin Mojiri, Akiyoshi Ohashi, Tomonori Kindaichi
Abstract:
Synthetic domestic wastewater was treated via combining treatment methods, including electrochemical oxidation, adsorption, and sequencing batch reactor (SBR). In the upper part of the reactor, an anode and a cathode (Ti/RuO2-IrO2) were organized in parallel for the electrochemical oxidation procedure. Sodium sulfate (Na2SO4) with a concentration of 2.5 g/L was applied as the electrolyte. The voltage and current were fixed on 7.50 V and 0.40 A, respectively. Then, 15% working value of the reactor was filled by activated sludge, and 85% working value of the reactor was added with synthetic wastewater. Powdered cockleshell, 1.5 g/L, was added in the reactor to do ion-exchange. Response surface methodology was employed for statistical analysis. Reaction time (h) and pH were considered as independent factors. A total of 97.0% biochemical oxygen demand, 99.9% phosphorous and 88.6% cadmium were eliminated at the optimum reaction time (80.0 min) and pH (6.4).Keywords: adsorption, electrochemical oxidation, metals, SBR
Procedia PDF Downloads 2101106 Image Denoising Using Spatial Adaptive Mask Filter for Medical Images
Authors: R. Sumalatha, M. V. Subramanyam
Abstract:
In medical image processing the quality of the image is degraded in the presence of noise. Especially in ultra sound imaging and Magnetic resonance imaging the data was corrupted by signal dependent noise known as salt and pepper noise. Removal of noise from the medical images is a critical issue for researchers. In this paper, a new type of technique Adaptive Spatial Mask Filter (ASMF) has been proposed. The proposed filter is used to increase the quality of MRI and ultra sound images. Experimental results show that the proposed filter outperforms the implementation of mean, median, adaptive median filters in terms of MSE and PSNR.Keywords: salt and pepper noise, ASMF, PSNR, MSE
Procedia PDF Downloads 4361105 The Investigation of Enzymatic Activity in the Soils Under the Impact of Metallurgical Industrial Activity in Lori Marz, Armenia
Authors: T. H. Derdzyan, K. A. Ghazaryan, G. A. Gevorgyan
Abstract:
Beta-glucosidase, chitinase, leucine-aminopeptidase, acid phosphomonoestearse and acetate-esterase enzyme activities in the soils under the impact of metallurgical industrial activity in Lori marz (district) were investigated. The results of the study showed that the activities of the investigated enzymes in the soils decreased with increasing distance from the Shamlugh copper mine, the Chochkan tailings storage facility and the ore transportation road. Statistical analysis revealed that the activities of the enzymes were positively correlated (significant) to each other according to the observation sites which indicated that enzyme activities were affected by the same anthropogenic factor. The investigations showed that the soils were polluted with heavy metals (Cu, Pb, As, Co, Ni, Zn) due to copper mining activity in this territory. The results of Pearson correlation analysis revealed a significant negative correlation between heavy metal pollution degree (Nemerow integrated pollution index) and soil enzyme activity. All of this indicated that copper mining activity in this territory causing the heavy metal pollution of the soils resulted in the inhabitation of the activities of the enzymes which are considered as biological catalysts to decompose organic materials and facilitate the cycling of nutrients.Keywords: Armenia, metallurgical industrial activity, heavy metal pollutionl, soil enzyme activity
Procedia PDF Downloads 2961104 The Potential of Edaphic Algae for Bioremediation of the Diesel-Contaminated Soil
Authors: C. J. Tien, C. S. Chen, S. F. Huang, Z. X. Wang
Abstract:
Algae in soil ecosystems can produce organic matters and oxygen by photosynthesis. Heterocyst-forming cyanobacteria can fix nitrogen to increase soil nitrogen contents. Secretion of mucilage by some algae increases the soil water content and soil aggregation. These actions will improve soil quality and fertility, and further increase abundance and diversity of soil microorganisms. In addition, some mixotrophic and heterotrophic algae are able to degrade petroleum hydrocarbons. Therefore, the objectives of this study were to analyze the effects of algal addition on the degradation of total petroleum hydrocarbons (TPH), diversity and activity of bacteria and algae in the diesel-contaminated soil under different nutrient contents and frequency of plowing and irrigation in order to assess the potential bioremediation technique using edaphic algae. The known amount of diesel was added into the farmland soil. This diesel-contaminated soil was subject to five settings, experiment-1 with algal addition by plowing and irrigation every two weeks, experiment-2 with algal addition by plowing and irrigation every four weeks, experiment-3 with algal and nutrient addition by plowing and irrigation every two weeks, experiment-4 with algal and nutrient addition by plowing and irrigation every four weeks, and the control without algal addition. Soil samples were taken every two weeks to analyze TPH concentrations, diversity of bacteria and algae, and catabolic genes encoding functional degrading enzymes. The results show that the TPH removal rates of five settings after the two-month experimental period were in the order: experiment-2 > expermient-4 > experiment-3 > experiment-1 > control. It indicated that algal addition enhanced the degradation of TPH in the diesel-contaminated soil, but not for nutrient addition. Plowing and irrigation every four weeks resulted in more TPH removal than that every two weeks. The banding patterns of denaturing gradient gel electrophoresis (DGGE) revealed an increase in diversity of bacteria and algae after algal addition. Three petroleum hydrocarbon-degrading algae (Anabaena sp., Oscillatoria sp. and Nostoc sp.) and two added algal strains (Leptolyngbya sp. and Synechococcus sp.) were sequenced from DGGE prominent bands. The four hydrocarbon-degrading bacteria Gordonia sp., Mycobacterium sp., Rodococcus sp. and Alcanivorax sp. were abundant in the treated soils. These results suggested that growth of indigenous bacteria and algae were improved after adding edaphic algae. Real-time polymerase chain reaction results showed that relative amounts of four catabolic genes encoding catechol 2, 3-dioxygenase, toluene monooxygenase, xylene monooxygenase and phenol monooxygenase were appeared and expressed in the treated soil. The addition of algae increased the expression of these genes at the end of experiments to biodegrade petroleum hydrocarbons. This study demonstrated that edaphic algae were suitable biomaterials for bioremediating diesel-contaminated soils with plowing and irrigation every four weeks.Keywords: catabolic gene, diesel, diversity, edaphic algae
Procedia PDF Downloads 2801103 Investigation on Machine Tools Energy Consumptions
Authors: Shiva Abdoli, Daniel T.Semere
Abstract:
Several researches have been conducted to study consumption of energy in cutting process. Most of these researches are focusing to measure the consumption and propose consumption reduction methods. In this work, the relation between the cutting parameters and the consumption is investigated in order to establish a generalized energy consumption model that can be used for process and production planning in real production lines. Using the generalized model, the process planning will be carried out by taking into account the energy as a function of the selected process parameters. Similarly, the generalized model can be used in production planning to select the right operational parameters like batch sizes, routing, buffer size, etc. in a production line. The description and derivation of the model as well as a case study are given in this paper to illustrate the applicability and validity of the model.Keywords: process parameters, cutting process, energy efficiency, Material Removal Rate (MRR)
Procedia PDF Downloads 4981102 Environmental Engineering Case Study of Waste Water Treatement
Authors: Harold Jideofor
Abstract:
Wastewater treatment consists of applying known technology to improve or upgrade the quality of a wastewater. Usually wastewater treatment will involve collecting the wastewater in a central, segregated location (the Wastewater Treatment Plant) and subjecting the wastewater to various treatment processes. Most often, since large volumes of wastewater are involved, treatment processes are carried out on continuously flowing wastewaters (continuous flow or "open" systems) rather than as "batch" or a series of periodic treatment processes in which treatment is carried out on parcels or "batches" of wastewaters. While most wastewater treatment processes are continuous flow, certain operations, such as vacuum filtration, involving storage of sludge, the addition of chemicals, filtration and removal or disposal of the treated sludge, are routinely handled as periodic batch operations.Keywords: wastewater treatment, environmental engineering, waste water
Procedia PDF Downloads 5861101 Pervaporation of Dimethyl Carbonate / Methanol / Water Mixtures Using Zeolite Membranes
Authors: Jong-Ho Moon, Dong-Ho Lee, Hyunuk Kim, Young Cheol Park, Jong-Seop Lee, Jae-deok Jeon, Hyung-Keun Lee
Abstract:
A novel membrane reactor process for DMC synthesis from carbon dioxide has been developing in Korea Institute of Energy Research. The scheme of direct synthesis of DMC from CO₂ and Methanol is 'CO₂ + 2MeOH ↔ DMC + H₂O'. Among them, reactants are CO₂ and MeOH, product is DMC, and byproduct is H₂O (water). According to Le Chatelier’s principle, removing byproduct (water) can shift the reaction equilibrium to the right (DMC production). The main purpose of this process is removing water during the reaction. For efficient in situ water removal (dehydration) and DMC separation, zeolite 4A membranes with very small pore diameter and hydrophilicity were introduced. In this study, pervaporation performances of binary and ternary DMC / methanol / water mixtures were evaluated.Keywords: dimehtyl carbonate, methanol, water, zeolite membrane, pervaporation
Procedia PDF Downloads 3621100 Comparison of Stereotactic Craniotomy for Brain Metastasis, as Compared to Stereotactic Radiosurgery
Authors: Mostafa El Khashab
Abstract:
Our experience with 50 patients with metastatic tumors located in different locations of the brain by a stereotactic-guided craniotomy and total microsurgical resection. Patients ranged in age from 36 to 73 years. There were 28 women and 22 men. Thirty-four patients presented with hemiparesis and 6 with aphasia and the remaining presented with psychological manifestations and memory issues. Gross total resection was accomplished in all cases, with postoperative imaging confirmation of complete removal. Forty patients were subjected to whole brain irradiation. One patient developed a stroke postoperatively and another one had a flap infection. 4 patients developed different postoperative but unrelated morbidities, including pneumonia and DVT. No mortality was encountered. We believe that with the assistance of stereotactic localization, metastases in vital regions of the brain can be removed with very low neurologic morbidity and that, in comparison to other modalities, they fare better regarding their long-term outcome.Keywords: stereotactic, craniotomy, radiosurgery, patient
Procedia PDF Downloads 911099 Nutrition of Preschool Children in the Aspect of Nutritional Status
Authors: Klaudia Tomala, Elzbieta Grochowska-Niedworok, Katarzyna Brukalo, Marek Kardas, Beata Calyniuk, Renata Polaniak
Abstract:
Background. Nutrition plays an important role in the psychophysical growth of children and has effects on their health. Providing children with the appropriate supply of macro- and micro-nutrients requires dietary diversity across every food group. Meals in kindergartens should provide 70-75% of their daily food requirement. Aim. The aim of this study was to determine the vitamin content in the food rations of children attending kindergarten in the wider aspect of nutritional status. Material and Methods. Kindergarten menus from the spring and autumn seasons of 2015 were analyzed. In these meals, fat content and levels of water-soluble vitamins were estimated. The vitamin content was evaluated using the diet calculator “Aliant”. Statistical analysis was done in MS Office Excel 2007. Results. Vitamin content in the analyzed menus in many cases is too high with reference to dietary intake, with only vitamin D intake being insufficient. Vitamin E intake was closest to the dietary reference intake. Conclusion. The results show that vitamin intake is usually too high, and menus should, therefore, be modified. Also, nutrition education among kindergarten staff is needed. The identified errors in the composition of meals will affect the nutritional status of children and their proper composition in the body.Keywords: children, nutrition status, vitamins, preschool
Procedia PDF Downloads 159