Search results for: negative resistance compensation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7793

Search results for: negative resistance compensation

6773 Inter-Filling of CaO and MgO Mixed Layer in Surface Behavior of Al-Mg Alloys Containing Al2Ca

Authors: Seong-Ho Ha, Young-Ok Yoon, Shae K. Kim

Abstract:

Oxide layer of normal Al-Mg alloy can be characterized by upper MgO and lower MgAl2O4 spinel. The formation of the MgO outmost layer occurs by the surface segregation of Mg in the initial oxidation. After then, the oxidation is proceeded with the formation of MgA12O4 spinel beneath the MgO. Growth of the oxide layer is accelerated by constant formation of MgA12O4 spinel. On the other hand, the oxidation resistance of Al-Mg alloys can be significantly improved simply by Mg+Al2Ca master alloy use as the Mg alloying element and such an improvement is attributed to the CaO/MgO mixed layer. Al-Mg alloy containing Al2Ca shows CaO as the upper layer and MgO as the lower one without MgA12O4 spinel. Such a dense oxide film acts as a protective layer. However, the CaO/MgO scale has the outmost MgO, partly, after a long time exposure to a harsh oxidation condition. The aim of this study is to investigate the inter-filling behaviour of CaO and MgO mixed layer in oxidation resistance mechanism of Al-Mg alloys containing Al2Ca. The process of outmost MgO layer formation will be clarified.

Keywords: Al-Mg alloy, Al2Ca, oxidation, MgO

Procedia PDF Downloads 271
6772 Hydrodynamic Behaviour Study of Fast Mono-Hull and Catamaran Vessels in Calm Waters Using Free Surface Flow Analysis

Authors: Mohammad Sadeghian, Mohsen Sadeghian

Abstract:

In this paper, planning catamaran and mono-hull vessels resistance and trim in calm waters were considered. Hydrodynamic analysis of fast mono-hull planning vessel was also investigated. For hull form geometry optimization, numerical methods of different parameters were used for this type of vessels. Hull material was selected as carbon fiber composite. Exact architectural aspects were specified and stability calculations were performed, as well. Hydrodynamic calculations to extract the resistance force using semi-analytical methods and numerical modeling were carried out. Free surface numerical analysis of vessel in designed draft using finite volume method and double phase were evaluated and verified by experimental tests.

Keywords: fast vessel, hydrostatic and hydrodynamic optimization, free surface flow, computational fluid dynamics

Procedia PDF Downloads 271
6771 Behavioral and EEG Reactions in Children during Recognition of Emotionally Colored Sentences That Describe the Choice Situation

Authors: Tuiana A. Aiusheeva, Sergey S. Tamozhnikov, Alexander E. Saprygin, Arina A. Antonenko, Valentina V. Stepanova, Natalia N. Tolstykh, Alexander N. Savostyanov

Abstract:

Situation of choice is an important condition for the formation of essential character qualities of a child, such as being initiative, responsible, hard-working. We have studied the behavioral and EEG reactions in Russian schoolchildren during recognition of syntactic errors in emotionally colored sentences that describe the choice situation. Twenty healthy children (mean age 9,0±0,3 years, 12 boys, 8 girls) were examined. Forty sentences were selected for the experiment; the half of them contained a syntactic error. The experiment additionally had the hidden condition: 50% of the sentences described the children's own choice and were emotionally colored (positive or negative). The other 50% of the sentences described the forced-choice situation, also with positive or negative coloring. EEG were recorded during execution of error-recognition task. Reaction time and quality of syntactic error detection were chosen as behavioral measures. Event-related spectral perturbation (ERSP) was applied to characterize the oscillatory brain activity of children. There were two time-frequency intervals in EEG reactions: (1) 500-800 ms in the 3-7 Hz frequency range (theta synchronization) and (2) 500-1000 ms in the 8-12 Hz range (alpha desynchronization). We found out that behavioral and brain reactions in child brain during recognition of positive and negative sentences describing forced-choice situation did not have significant differences. Theta synchronization and alpha desynchronization were stronger during recognition of sentences with children's own choice, especially with negative coloring. Also, the quality and execution time of the task were higher for this types of sentences. The results of our study will be useful for improvement of teaching methods and diagnostics of children affective disorders.

Keywords: choice situation, electroencephalogram (EEG), emotionally colored sentences, schoolchildren

Procedia PDF Downloads 261
6770 Enhanced of Corrosion Resistance of Carbon Steel C1018 with Nano-Tio2 Films Using Dip-Coating Method

Authors: Mai M. Khalaf, Hany M. Abd El-Lateef

Abstract:

A new good application for the sol gel method is to improve the corrosion inhibition properties of carbon steel by the dip coating method of Nano TiO2 films and its modification with Poly Ethylene Glycol (PEG). The prepared coating samples were investigated by different techniques, X-ray diffraction, Scanning Electron Microscopy (SEM), transmission electron microscopy and Energy Dispersive X-ray Spectroscopy (EDAX). The corrosion inhibition performance of the blank carbon steel and prepared coatings samples were evaluated in 0.5 M H2SO4 by using Electrochemical Impedance Spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that corrosion resistance of carbon steel increases with increasing the number of coated layers of both nano–TiO2 films and its modification of PEG. SEM-EDAX analyses confirmed that the percentage atomic content of iron for the carbon steel in 0.5 M H2SO4 is 83% and after the deposition of the steel in nano TiO2 sol and that with PEG are 94.3% and 93.7% respectively.

Keywords: dip-coatings, corrosion protection, sol gel, TiO2 films, PEG

Procedia PDF Downloads 414
6769 Hybridization of Steel and Polypropylene Fibers in Concrete: A Comprehensive Study with Various Mix Ratios

Authors: Qaiser uz Zaman Khan

Abstract:

This research article provides a comprehensive study of combining steel fiber and polypropylene fibers in concrete at different mix ratios. This blending of various fibers has led to the development of hybrid fiber-reinforced concrete (HFRC), which offers notable improvements in mechanical properties and increased resistance to cracking. Steel fibers are known for their high tensile strength and excellent crack control abilities, while polypropylene fibers offer increased toughness and impact resistance. The synergistic use of these two fiber types in concrete has yielded promising outcomes, effectively enhancing its overall performance. This article explores the key aspects of hybridization, including fiber types, proportions, mixing methods, and the resulting properties of the concrete. Additionally, challenges, potential applications, and future research directions in the field are discussed.

Keywords: FRC, fiber-reinforced concrete, split tensile testing, HFRC, mechanical properties, steel fibers, reinforced concrete, polypropylene fibers

Procedia PDF Downloads 75
6768 Analysis of Scaling Effects on Analog/RF Performance of Nanowire Gate-All-Around MOSFET

Authors: Dheeraj Sharma, Santosh Kumar Vishvakarma

Abstract:

We present a detailed analysis of analog and radiofrequency (RF) performance with different gate lengths for nanowire cylindrical gate (CylG) gate-all-around (GAA) MOSFET. CylG GAA MOSFET not only suppresses the short channel effects (SCEs), it is also a good candidate for analog/RF device due to its high transconductance (gm) and high cutoff frequency (fT ). The presented work would be beneficial for a new generation of RF circuits and systems in a broad range of applications and operating frequency covering the RF spectrum. For this purpose, the analog/RF figures of merit for CylG GAA MOSFET is analyzed in terms of gate to source capacitance (Cgs), gate to drain capacitance (Cgd), transconductance generation factor gm = Id (where Id represents drain current), intrinsic gain, output resistance, fT, maximum frequency of oscillation (fmax) and gain bandwidth (GBW) product.

Keywords: Gate-All-Around MOSFET, GAA, output resistance, transconductance generation factor, intrinsic gain, cutoff frequency, fT

Procedia PDF Downloads 385
6767 Effects of Biocompatible Substrates on the Electrical Properties of Graphene

Authors: M. Simchi, M. Amiri, E. Rezvani, I. Mirzaei, M. Berahman, A. Simchi, M. Fardmanesh

Abstract:

Graphene is a single-atomic two-dimensional crystal of carbon atoms that has considerable properties due to its unique structure and physics with applications in different fields. Graphene has sensitive electrical properties due to its atomic-thin structure. Along with the substrate materials and their influence on the transport properties in graphene, design and fabrication of graphene-based devices for biomedical and biosensor applications are challenging. In this work, large-area high-quality graphene nanosheets were prepared by low pressure chemical vapor deposition using methane gas as carbon source on copper foil and transferred on the biocompatible substrates. Through deposition of titanium and gold contacts, current-voltage response of the transferred graphene on four biocompatible substrates, including PDMS, SU-8, Nitrocellulose, and Kapton (Fig. 2) were experimentally determined. The considerable effect of the substrate type on the electrical properties of graphene is shown. The sheet resistance of graphene is changed from 0.34 to 14.5 kΩ/sq, depending on the substrate.

Keywords: biocompatible substrates, electrical properties, graphene, sheet resistance

Procedia PDF Downloads 125
6766 Development of a Novel Nanobiosystem for the Selective Nanophotothermolysis of Meticilin Resistant Staphyloccocous Aureus Using Anti-MRSA Antibody Functionalized Gold Nanoparticles

Authors: Lucian Mocan, Cristian Matea, Flaviu A. Tabaran, Teodora Mocan, Cornel Iancu

Abstract:

Introduction: Due to antibiotic resistance, systemic infections caused by Meticilin resistant Staphyloccocous Aureus (MRSA) are the main cause of millions of deaths each year. Development of new active biomolecules that are highly effective and refractory to antibiotic resistance may open new avenues in the field of antimicrobial therapy. In this research, we have focused on the development of a novel nanobiosystem with high affinity for MRSA microorganism to mediate its selective laser thermal ablation. Materials and Methods: Gold nanoparticles (15nm in diameter) linked to a specific antibody against MRSA surface were selectively delivered (at various concentrations and incubation times) and internalized into MRSA microorganism following the treatment these multidrug-resistant bacteria were irradiated using a 2w, 808 nm LASER. Results and Discussions: The post-irradiation necrotic rate ranged from 51.2% (for 1 mg/L) to 87.3% (for 50 mg/L) at 60 seconds (p<0.001), while at 30 minute the necrotic rate increased from 64.3% (1 mg/L) to 92.1% (50 mg/L), p value<0.001. Significantly lower apoptotic rates were obtained in irradiated MRSA treated with GNPs only (control) treated for 60 seconds and 30 minutes at concentrations ranging from 1 mg/L to 50 mg/L. We show here that the optimal LASER mediated the necrotic effect of MRSA after incubation with anti-MRSA-Ab was obtained at a concentration of 50 mg/L. Conclusion: In the presented research, we obtained a very efficacious pulse laser mode treatment of individual MRSA agents with minimal effects on the surrounding medium, providing highly localized destruction only for MRSA microorganism.

Keywords: MRSA, photothermolysis, antibiotic resistance, gold nanoparticles

Procedia PDF Downloads 420
6765 The Interplay of Community-based Social Capital and Neighbourhood Dynamics in Enhancing SMEs’ Resilience During Crises: A Fuzzy-Set Qualitative Comparative Analysis Approach

Authors: Arash Sadeghi, Taimaz Larimian

Abstract:

This study explores the intricate interplay between community-based social capital (CBSC) and neighbourhood dynamics in enhancing resilience of Iranian SMEs, particularly under the strain of international sanctions. Utilising fuzzy-set Qualitative Comparative Analysis (fsQCA), we examine how different dimensions of CBSC—structural, relational, and cognitive—interact with neighbourhood socio-economic and built-environment characteristics to influence SME resilience. Findings reveal four configurations that contribute to the presence of resistance and five configurations associated with the adaptation outcome. Each configuration demonstrates a distinct combination of social capital elements, which vary according to the specific socio-economic and built-environmental characteristics of the neighbourhoods. The first configuration highlights the importance of structural social capital in deprived areas for building resistance, while the second emphasises the role of relational social capital in low-density, minimally deprived areas. Overall, cognitive social capital seems to be less effective in driving economic resilience compared to structural and relational types. This research contributes to the literature by providing a nuanced understanding of the synergistic effects of CBSC dimensions and neighbourhood characteristics on SME resilience. By adopting a configurational approach, we move beyond traditional methodologies, offering a comprehensive view of the complex dynamics of CBSC and neighbourhood characteristics and their impact on SME resilience in varying neighbourhoods.

Keywords: community-based social capital, fuzzy-set qualitative comparative analysis (fsQCA), place-based resilience, resistance

Procedia PDF Downloads 42
6764 Comparison of Computerized Dynamic Posturography and Functional Head Impulse Test Scores after of Hatha Yoga Practice and Resistance-Based Aerobic Exercise in Adult Female Yoga Practitioners

Authors: Çağla Aras, Kübra Bi̇nay, Aysberg Şamil önlü, Mine Baydan Aran, Dicle Aras

Abstract:

The purpose of the present research was to investigate the acute effects of 30-min hatha yoga and 30-min resistance-based aerobic exercise (RBAE) on computerized dynamic posturography (CDP) and functional head impulse test (fHIT) scores in adult female yoga practitioners. To reach this aim, ten participants executed CDP and fHIT three times in total: at rest, after yoga, and after RBAE. The yoga practice lasted a total of 30 minutes, including 25 min of asanas and 5 minutes of savasana. RBAE lasted a total of 30 minutes with an intensity of 70-75% of the heart rate reserve method. When the results were examined, no change was observed in any parameters of the fHIT scores due to resting or exercise implementation. On the contrary, some changes were observed in CDP test results depending on the type of exercise. The post-RBAE somatosensory and visual systems values were higher than resting (p<0.05). The composite balance score derived after RBAE was found to be improved when compared to post-yoga and resting values (p<0.01). Lastly, the post-RBAE vestibular system score was found to be statistically significantly higher than the post-Yoga values. In addition, it was observed that body composition parameters, especially decreasing BW, LBM, PBF, MBF and TBW, were associated with improved postural stability values. According to the results, it can be stated that neither hatha yoga nor resistance-based aerobic exercise has an acute effect on functional vestibulo-ocular reflex. In addition, although there was no change in balance level after yoga, it was observed that RBAE performed at 70-75% of the heart rate reserve and for 30 minutes had positive acute effects on postural stability and balance.

Keywords: hatha yoga, resistance training, aerobic training, high intensity training, computerized dynamic posturography, functional head impulse test

Procedia PDF Downloads 41
6763 Traditional and New Residential Architecture in the Approach of Sustainability in the Countryside after the Earthquake

Authors: Zeynep Tanriverdi̇

Abstract:

Sustainable architecture is a design approach that provides healthy, comfortable, safe, clean space production as well as utilizes minimum resources for efficient and economical use of natural resources and energy. Traditional houses located in rural areas are sustainable structures built at the design and implementation stage in accordance with the climatic environmental data of the region and also effectively using natural energy resources. The fact that these structures are located in an earthquake geography like Türkiye brings their earthquake resistance to the agenda. Since the construction of these structures, which contain the architectural and technological cultural knowledge of the past, is shaped according to the characteristics of the regions where they are located, their resistance to earthquakes also differs. Analyses in rural areas after the earthquake show that there are light-damaged structures that can survive, severely damaged structures, and completely destroyed structures. In this regard, experts can implement repair, consolidation, and reconstruction applications, respectively. While simple repair interventions are carried out in accordance with the original data in traditional houses that have shown great resistance to earthquakes, reinforcement work blended with new technologies can be applied in damaged structures. In reconstruction work, a wide variety of applications can be seen with the possibilities of modern technologies. In rural areas experiencing earthquakes around the world, there are experimental new housing applications that are renewable, environmentally friendly, and sustainable with modern construction techniques in the light of scientific data. With these new residences, it is aimed to create earthquake-resistant, economical, healthy, and pain-relieving therapy spaces for people whose daily lives have been interrupted by disasters. In this study, the preservation of high earthquake-prone rural areas will be discussed through the knowledge transfer of traditional architecture and also permanent housing practices using new sustainable technologies to improve the area. In this way, it will be possible to keep losses to a minimum with sustainable, reliable applications prepared for the worst aspects of the disaster situation and to establish a link between the knowledge of the past and the new technologies of the future.

Keywords: sustainability, conservation, traditional construction systems and materials, new technologies, earthquake resistance

Procedia PDF Downloads 52
6762 The Effect of Oil Price Uncertainty on Food Price in South Africa

Authors: Goodness C. Aye

Abstract:

This paper examines the effect of the volatility of oil prices on food price in South Africa using monthly data covering the period 2002:01 to 2014:09. Food price is measured by the South African consumer price index for food while oil price is proxied by the Brent crude oil. The study employs the GARCH-in-mean VAR model, which allows the investigation of the effect of a negative and positive shock in oil price volatility on food price. The model also allows the oil price uncertainty to be measured as the conditional standard deviation of a one-step-ahead forecast error of the change in oil price. The results show that oil price uncertainty has a positive and significant effect on food price in South Africa. The responses of food price to a positive and negative oil price shocks is asymmetric.

Keywords: oil price volatility, food price, bivariate, GARCH-in-mean VAR, asymmetric

Procedia PDF Downloads 466
6761 Hydrodynamic Behavior Study of Fast Mono Hull and Catamaran Vessels in Calm Waters Using Free Surface Flow Analysis

Authors: Mohammad Ali Badri, Pouya Molana, Amin Rezvanpour

Abstract:

In this paper, planning catamaran and mono-hull vessels resistance and trim in calm waters were considered. Hydrodynamic analysis of fast mono-hull planning vessel was also investigated. In order to hull form geometry optimization, numerical methods of different parameters were used for this type of vessels. Hull material was selected in carbon fiber composite. Exact architectural aspects were specified and stability calculations were performed as well. Hydrodynamic calculations to extract the resistance force using semi-analytical methods and numerical modeling were carried out. Free surface numerical analysis of vessel in designed draft using finite volume method and double phase were evaluated and verified by experimental tests.

Keywords: fast vessel, hydrostatic and hydrodynamic optimization, free surface flow, computational fluid dynamics

Procedia PDF Downloads 507
6760 A Full Factorial Analysis of Microhardness Variation in Bead Welds Deposited by the Process Cold Wire Gas Metal Arc Welding (CW-GMAW)

Authors: R. A. Ribeiro, P. D. Angelo Assunção, E. M. Braga

Abstract:

The microhardness in weld beads is a function of the microstructure obtained in the welding process, and this by its time is dependent of the input variables established at the outset of the process. In this study the influence of angle between the plate and the cold wire, the position in which the cold wire is introduced and the rate in which this introduction is made are assessed as input parameters in CW-GMAW process. This paper looks to show that ordinary changes in the frame of CW-GMAW can improve microhardness, which is expected to vary as the input parameters change. To properly correlate the changes in the input parameters to consequent changes in microhardness of the weld bead, a full factorial design was employed. In fact, changes in the operational parameters improved the overall microhardness of the weld bead, which in turns can be an indication of improvement in the resistance to abrasive wear, constituting a cheap way to augment the abrasion wear resistance of welds used for cladding.

Keywords: abrasion, CW-GMAW, full factorial design, microhardness

Procedia PDF Downloads 538
6759 Profiling the Volatile Metabolome in Pear Leaves with Different Resistance to the Pear Psylla Cacopsylla bidens (Sulc) and Characterization of Phenolic Acid Decarboxylase

Authors: Mwafaq Ibdah, Mossab, Yahyaa, Dor Rachmany, Yoram Gerchman, Doron Holland, Liora Shaltiel-Harpaz

Abstract:

Pear Psylla is the most important pest of pear in all pear-growing regions, in Asian, European, and the USA. Pear psylla damages pears in several ways: high-density populations of these insects can cause premature leaf and fruit drop, diminish plant growth, and reduce fruit size. In addition, their honeydew promotes sooty mold on leaves and russeting on fruit. Pear psyllas are also considered vectors of pear pathogens such as Candidatus Phytoplasma pyri causing pear decline that can lead to loss of crop and tree vigor, and sometimes loss of trees. Psylla control is a major obstacle to efficient integrated pest management. Recently we have identified two naturally resistance pear accessions (Py.760-261 and Py.701-202) in the Newe Ya’ar live collection. GC-MS volatile metabolic profiling identified several volatile compounds common in these accessions but lacking, or much less common, in a sensitive accession, the commercial Spadona variety. Among these volatiles were styrene and its derivatives. When the resistant accessions were used as inter-stock, the volatile compounds appear in commercial Spadona scion leaves, and it showed reduced susceptibility to pear psylla. Laboratory experiments and applications of some of these volatile compounds were very effective against psylla eggs, nymphs, and adults. The genes and enzymes involved in the specific reactions that lead to the biosynthesis of styrene in plant are unknown. We have identified a phenolic acid decarboxylase that catalyzes the formation of p-hydroxystyrene, which occurs as a styrene analog in resistant pear genotypes. The His-tagged and affinity chromatography purified E. coli-expressed pear PyPAD1 protein could decarboxylate p-coumaric acid and ferulic acid to p-hydroxystyrene and 3-methoxy-4-hydroxystyrene. In addition, PyPAD1 had the highest activity toward p-coumaric acid. Expression analysis of the PyPAD gene revealed that its expressed as expected, i.e., high when styrene levels and psylla resistance were high.

Keywords: pear Psylla, volatile, GC-MS, resistance

Procedia PDF Downloads 131
6758 Formation of Stable Aqueous Dispersions of Polyaniline-Silica Particles for Application in Anticorrosive Coatings on Steel

Authors: K. Kamburova, N. Boshkova, N. Boshkov, T. Radeva

Abstract:

Coatings based on polyaniline (PANI) can improve the resistance of steel against corrosion. Two forms of PANI are generally accepted to have effective protection of steel: the conducting emeraldine salt (ES) and the non-conducting emeraldine base (EB). The ability to intercept electrons at the metal surface and to transport them is typically attributed to ES, while the success of EB as an anticorrosive additive in the coating is attributed to its ability to oxidize and reduce in a reversible way. This electrochemical mechanism is probably combined with barrier effect against corrosion species. In this work, we describe the preparation of stable suspensions of colloidal PANI-SiO₂ particles, suitable for obtaining of composite anticorrosive coating on steel. Electrokinetic data as a function of pH are presented, showing that the zeta potentials of the PANI-SiO₂ particles are governed primarily by the charged groups at the silica oxide surface. Electrosteric stabilization of the PANI-SiO₂ particles’ suspension against aggregation is realized at pH > 5.5 (EB form of PANI) by adsorption of positively charged polyelectrolyte molecules onto negatively charged PANI-SiO₂ particles. We anticipate that incorporation of the small particles will provide a more homogeneous distribution in the coating matrix and will decrease the negative effect on barrier properties of the composite coating.

Keywords: particles, stable dispersion, composite coatings, corrosion protection

Procedia PDF Downloads 165
6757 Electromechanical Reliability of ITO/Ag/ITO Multilayer Coated Pet Substrate for Optoelectronic Application

Authors: D. W. Mohammed, J. Bowen, S. N. Kukureka

Abstract:

Successful design and fabrication of flexible devices for electrode components requires a low sheet resistance, high optical transmittance, high mechanical reliability. Indium tin oxide (ITO) film is currently the predominant transparent conductive oxide (TCO) film in potential applications such as flexible organic light- emitting diodes, flat-panel displays, solar cells, and thin film transistors (TFTs). However ITO films are too brittle and their resistivity is rather high in some cases compared with ITO/Ag/ ITO, and they cannot completely meet flexible optoelectronic device requirements. Therefore, in this work the mechanical properties of ITO /Ag/ITO multilayer film that deposited on Polyethylene terephthalate (PET) compared with the single layered ITO sample were investigated using bending fatigue, twisting fatigue and thermal cycling experiments. The electrical resistance was monitored during the application of mechanical and thermal loads to see the pattern of relationship between the load and the electrical continuity as a consequent of failure. Scanning electron microscopy and atomic force microscopy were used to provide surface characterization of the mechanically-tested samples. The effective embedment of the Ag layer between upper and lower ITO films led to metallic conductivity and superior flexibility to the single ITO electrode, due to the high failure strain of the ductile Ag layer. These results indicate that flexible ITO/Ag/ITO multilayer electrodes are a promising candidate for use as transparent conductor in flexible displays. They provided significantly reduced sheet resistance compared to ITO, and improved bending and twisting properties both as a function of radius, angle and thermal cycling.

Keywords: ITO/Ag/ITO multilayer, failure strain, mechanical properties, PET

Procedia PDF Downloads 289
6756 Variation of Quality of Roller-Compacted Concrete Based on Consistency

Authors: C. Chhorn, S. H. Han, S. W. Lee

Abstract:

Roller-compacted concrete (RCC) has been used for decades in many pavement applications due to its economic cost and high construction speed. However, due to the lack of deep researches and experiences, this material has not been widely employed. An RCC mixture with appropriate consistency can induce high compacted density, while high density can induce good aggregate interlock and high strength. Consistency of RCC is mainly known to define its constructability. However, it was not well specified how this property may affect other properties of a constructed RCC pavement (RCCP). This study suggested the possibility of an ideal range of consistency that may provide adequate quality of RCCP. In this research, five sections of RCCP consisted of both 13 mm and 19 mm aggregate sections were investigated. The effects of consistency on compacted depth, strength, international roughness index (IRI), skid resistance are examined. From this study, a new range of consistency is suggested for RCCP application.

Keywords: compacted depth, consistency, international roughness index (IRI), pavement, roller-compacted concrete (RCC), skid resistance, strength

Procedia PDF Downloads 233
6755 Characterisation of Pasteurella multocida from Asymptomatic Animals

Authors: Rajeev Manhas, M. A. Bhat, A. K. Taku, Dalip Singh, Deep Shikha, Gulzar Bader

Abstract:

The study was aimed to understand the distribution of various serogroups of Pasteurella multocida in bovines, small ruminants, pig, rabbit, and poultry from Jammu, Jammu and Kashmir and to characterize the isolates with respect to LPS synthesizing genes, dermonecrotic toxin gene (toxA) gene and antibiotic resistance. For isolation, the nasopharyngeal swab procedure appeared to be better than nasal swab procedure, particularly in ovine and swine. Out of 200 samples from different animals, isolation of P. multocida could be achieved from pig and sheep (5 each) and from poultry and buffalo (2 each) samples only, which accounted for 14 isolates. Upon molecular serogrouping, 3 isolates from sheep and 2 isolates from poultry were found as serogroup A, 2 isolates from buffalo were confirmed as serogroup B and 5 isolates from pig were found to belong to serogroup D. However, 2 isolates from sheep could not be typed, hence, untypable. All the 14 isolates were subjected to mPCR genotyping. A total of 10 isolates, 5 each from pig and sheep, generated an amplicon specific to genotype L6 and L6 indicates Heddleston serovars 10, 11, 12 and 15. Similarly, 2 isolates from bovines generated an amplicon of genotype L2 which indicates Heddleston serovar 2/5. However, 2 isolates from poultry generated specific amplicon with L1 signifying Heddleston serovar 1, but these isolates also produced multiple bands with primer L5. Only, one isolate of capsular type A from sheep possessed the structural gene, toxA for dermonecrotoxin. There was variability in the antimicrobial susceptibility pattern in sheep isolates, but overall the rate of tetracycline resistance was relatively high (64.28%) in our strains while all the isolates were sensitive to streptomycin. Except for the swine isolates and one toxigenic sheep isolate, the P. multocida isolates from this study were sensitive to quinolones. Although the level of resistance to commercial antibiotics was generally low, the use of tetracycline and erythromycin was not recommended.

Keywords: antibiogram, genotyping, Pasteurella multocida, serogrouping, toxA

Procedia PDF Downloads 444
6754 Choosing between the Regression Correlation, the Rank Correlation, and the Correlation Curve

Authors: Roger L. Goodwin

Abstract:

This paper presents a rank correlation curve. The traditional correlation coefficient is valid for both continuous variables and for integer variables using rank statistics. Since the correlation coefficient has already been established in rank statistics by Spearman, such a calculation can be extended to the correlation curve. This paper presents two survey questions. The survey collected non-continuous variables. We will show weak to moderate correlation. Obviously, one question has a negative effect on the other. A review of the qualitative literature can answer which question and why. The rank correlation curve shows which collection of responses has a positive slope and which collection of responses has a negative slope. Such information is unavailable from the flat, "first-glance" correlation statistics.

Keywords: Bayesian estimation, regression model, rank statistics, correlation, correlation curve

Procedia PDF Downloads 459
6753 Investigation of Comfort Properties of Knitted Fabrics

Authors: Mehmet Karahan, Nevin Karahan

Abstract:

Water and air permeability and thermal resistance of fabrics are the important attributes which strongly influence the thermo-physiological comfort properties of sportswear fabrics in different environmental conditions. In this work, terry and fleece fabrics were developed by varying the fiber content and areal density of fabrics. Further, the thermo-physical properties, including air permeability, water vapor permeability, and thermal resistance, of the developed fabrics were analyzed before and after washing. The multi-response optimization of thermo-physiological comfort properties was done by using principal component analysis (PCA) and Taguchi signal to noise ratio (PCA-S/N ratio) for optimal properties. It was found that the selected parameters resulted in a significant effect on thermo-physiological comfort properties of knitted fabrics. The PCA analysis showed that before wash, 100% cotton fabric with an aerial weight of 220 g.m⁻² gave optimum values of thermo-physiological comfort.

Keywords: thermo-physiological comfort, fleece knitted fabric, air permeability, water vapor transmission, cotton/polyester

Procedia PDF Downloads 99
6752 Fabrication of Cesium Iodide Columns by Rapid Heating Method

Authors: Chien-Wan Hun, Shao-Fu Chang, Chien-Chon Chen, Ker-Jer Huang

Abstract:

This study presents how to use a high-efficiency process for producing cesium iodide (CsI) crystal columns by rapid heating method. In the past, the heating rate of the resistance wire heating furnace was relatively slow and excessive iodine and CsI vapors were therefore generated during heating. Because much iodine and CsI vapors are produced during heating process, the composition of CsI crystal columns is not correct. In order to enhance the heating rate, making CsI material in the heating process can quickly reach the melting point temperature. This study replaced the traditional type of external resistance heating furnace with halogen-type quartz heater, and then, CsI material can quickly reach the melting point. Eventually, CsI melt can solidify in the anodic aluminum template forming CsI crystal columns.

Keywords: cesium iodide, high efficiency, vapor, rapid heating, crystal column

Procedia PDF Downloads 358
6751 Metal-Oxide-Semiconductor-Only Process Corner Monitoring Circuit

Authors: Davit Mirzoyan, Ararat Khachatryan

Abstract:

A process corner monitoring circuit (PCMC) is presented in this work. The circuit generates a signal, the logical value of which depends on the process corner only. The signal can be used in both digital and analog circuits for testing and compensation of process variations (PV). The presented circuit uses only metal-oxide-semiconductor (MOS) transistors, which allow increasing its detection accuracy, decrease power consumption and area. Due to its simplicity the presented circuit can be easily modified to monitor parametrical variations of only n-type and p-type MOS (NMOS and PMOS, respectively) transistors, resistors, as well as their combinations. Post-layout simulation results prove correct functionality of the proposed circuit, i.e. ability to monitor the process corner (equivalently die-to-die variations) even in the presence of within-die variations.

Keywords: detection, monitoring, process corner, process variation

Procedia PDF Downloads 512
6750 Metallic-Diamond Tools with Increased Abrasive Wear Resistance for Grinding Industrial Floor Systems

Authors: Elżbieta Cygan, Bączek, Piotr Wyżga

Abstract:

This paper presents the results of research on the physical, mechanical, and tribological properties of materials constituting the matrix in sintered metallic-diamond tools. The ground powders based on the Fe-Mn-Cu-Sn-C system were modified with micro-sized particles of the ceramic phase: SiC, Al₂O₃ and consolidated using the SPS (spark plasma sintering) method to a relative density of over 98% at 850-950°C, at a pressure of 35 MPa and time 10 min. After sintering, an analysis of the microstructure was conducted using scanning electron microscopy. The resulting materials were tested for the apparent density determined by Archimedes’ method, Rockwell hardness (scale B), Young’s modulus, as well as for technological properties. The performance results of obtained diamond composites were compared with the base material (Fe–Mn–Cu–Sn–C) and the commercial alloy Co-20% WC. The hardness of composites has achieved the maximum at a temperature of 900°C; therefore, it should be considered that at this temperature it was obtained optimal physical and mechanical properties of the subjects' composites were. Research on tribological properties showed that the composites modified with micro-sized particles of the ceramic phase are characterized by more than twice higher wear resistance in comparison with base materials and the commercial alloy Co-20% WC. Composites containing Al₂O₃ phase particles in the matrix material were composites containing Al₂O₃ phase particles in the matrix material were characterized by the lowest abrasion wear resistance. The manufacturing technology presented in the paper is economically justified and can be successfully used in the production process of the matrix in sintered diamond-impregnated tools used for the machining of an industrial floor system. Acknowledgment: The study was performed under LIDER IX Research Project No. LIDER/22/0085/L-9/17/NCBR/2018 entitled “Innovative metal-diamond tools without the addition of critical raw materials for applications in the process of grinding industrial floor systems” funded by the National Centre for Research and Development of Poland, Warsaw.

Keywords: abrasive wear resistance, metal matrix composites, sintered diamond tools, Spark Plasma Sintering

Procedia PDF Downloads 67
6749 Comparative Study between Classical P-Q Method and Modern Fuzzy Controller Method to Improve the Power Quality of an Electrical Network

Authors: A. Morsli, A. Tlemçani, N. Ould Cherchali, M. S. Boucherit

Abstract:

This article presents two methods for the compensation of harmonics generated by a nonlinear load. The first is the classic method P-Q. The second is the controller by modern method of artificial intelligence specifically fuzzy logic. Both methods are applied to an Active Power Filter shunt (APFs) based on a three-phase voltage converter at five levels NPC topology. In calculating the harmonic currents of reference, we use the algorithm P-Q and pulse generation, we use the intersective PWM. For flexibility and dynamics, we use fuzzy logic. The results give us clear that the rate of Harmonic Distortion issued by fuzzy logic is better than P-Q.

Keywords: fuzzy logic controller, P-Q method, pulse width modulation (PWM), shunt active power filter (sAPF), total harmonic distortion (THD)

Procedia PDF Downloads 537
6748 The Use of Authentic Videos to Change Learners’ Negative Attitudes and Perceptions toward Grammar Learning

Authors: Khaldi Youcef

Abstract:

This investigation seeks to inquire into the effectiveness of using authentic videos for grammar teaching purposes. In this investigation, an English animated situation, Hercules, was used as a type of authentic multimedia to teach a particular grammatical structure, namely conditional sentences. This study also aims at investigating the EFL learners’ attitudes toward grammar learning after being exposed to such an authentic video. To reach that purpose, 56 EFL learners were required ultimately to respond to a questionnaire with an aim to reveal their attitudes towards grammar as a language entity and as a subject for being learned. Then, as a second stage of the investigation, the EFL learners were divided into a control group and an experimental group with 28 learners in each. The first group was taught grammar -conditional sentences- using a deductive-inductive approach, while the second group was exposed to an authentic video to learn conditional sentences. There was a post-lesson stage that included a questionnaire to be answered by learners of each group. The aim of this stage is to capture any change in learners' attitudes shown in the pre-lesson questionnaire. The findings of the first stage revealed learners' negative attitudes towards grammar learning. And the third stage results showed the effectiveness of authentic videos in entirely turning learners' attitudes toward grammar learning to be significantly positive. Also, the utility of authentic videos in highly motivating EFL learners can be deduced. The findings of this survey asserted the need for incorporation and integration of authentic videos in EFL classrooms as they resulted in rising effectively learners’ awareness of grammar and looking at it from a communicative perspective.

Keywords: multimedia, authentic videos, negative attitudes, grammar learning, EFL learners

Procedia PDF Downloads 91
6747 Air Pollution and Respiratory-Related Restricted Activity Days in Tunisia

Authors: Mokhtar Kouki Inès Rekik

Abstract:

This paper focuses on the assessment of the air pollution and morbidity relationship in Tunisia. Air pollution is measured by ozone air concentration and the morbidity is measured by the number of respiratory-related restricted activity days during the 2-week period prior to the interview. Socioeconomic data are also collected in order to adjust for any confounding covariates. Our sample is composed by 407 Tunisian respondents; 44.7% are women, the average age is 35.2, near 69% are living in a house built after the 1980, and 27.8% have reported at least one day of respiratory-related restricted activity. The model consists on the regression of the number of respiratory-related restricted activity days on the air quality measure and the socioeconomic covariates. In order to correct for zero-inflation and heterogeneity, we estimate several models (Poisson, Negative binomial, Zero inflated Poisson, Poisson hurdle, Negative binomial hurdle and finite mixture Poisson models). Bootstrapping and post-stratification techniques are used in order to correct for any sample bias. According to the Akaike information criteria, the hurdle negative binomial model has the greatest goodness of fit. The main result indicates that, after adjusting for socioeconomic data, the ozone concentration increases the probability of positive number of restricted activity days.

Keywords: bootstrapping, hurdle negbin model, overdispersion, ozone concentration, respiratory-related restricted activity days

Procedia PDF Downloads 247
6746 Mechanical Analysis and Characterization of Friction Stir Processed Aluminium Alloy

Authors: Jaswinder Kumar, Kulbir Singh Sandhu

Abstract:

Friction stir processing (FSP) is a solid-state surface processing technique. A single-pass FSP was performed on Aluminum alloy at combinations of different tool rotational speeds with cylindrical threaded pin profiled tool. The effect of these parameters on tribological properties was studied. The wear resistance is found to be increased from base metal to a single pass FSP sample. The results revealed that with an increase in tool rotational speed, the wear rate increases. The high heat generation causes matrix softening, which results in an increased wear rate; on the other hand, high heat generation leads to coarse grains, which also affected tribological properties. Furthermore, Microstructure results showed that FSPed alloy has a more refined grain structure as compare to the base material, which may be resulted in enhancement of hardness and resistance to wear in FSP.

Keywords: friction stir processing, aluminium alloy, microhardness, microstructure

Procedia PDF Downloads 95
6745 Mechanical, Thermal and Biodegradable Properties of Bioplast-Spruce Green Wood Polymer Composites

Authors: A. Atli, K. Candelier, J. Alteyrac

Abstract:

Environmental and sustainability concerns push the industries to manufacture alternative materials having less environmental impact. The Wood Plastic Composites (WPCs) produced by blending the biopolymers and natural fillers permit not only to tailor the desired properties of materials but also are the solution to meet the environmental and sustainability requirements. This work presents the elaboration and characterization of the fully green WPCs prepared by blending a biopolymer, BIOPLAST® GS 2189 and spruce sawdust used as filler with different amounts. Since both components are bio-based, the resulting material is entirely environmentally friendly. The mechanical, thermal, structural properties of these WPCs were characterized by different analytical methods like tensile, flexural and impact tests, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and X-ray Diffraction (XRD). Their water absorption properties and resistance to the termite and fungal attacks were determined in relation with different wood filler content. The tensile and flexural moduli of WPCs increased with increasing amount of wood fillers into the biopolymer, but WPCs became more brittle compared to the neat polymer. Incorporation of spruce sawdust modified the thermal properties of polymer: The degradation, cold crystallization, and melting temperatures shifted to higher temperatures when spruce sawdust was added into polymer. The termite, fungal and water absorption resistance of WPCs decreased with increasing wood amount in WPCs, but remained in durability class 1 (durable) concerning fungal resistance and quoted 1 (attempted attack) in visual rating regarding to the termites resistance except that the WPC with the highest wood content (30 wt%) rated 2 (slight attack) indicating a long term durability. All the results showed the possibility to elaborate the easy injectable composite materials with adjustable properties by incorporation of BIOPLAST® GS 2189 and spruce sawdust. Therefore, lightweight WPCs allow both to recycle wood industry byproducts and to produce a full ecologic material.

Keywords: biodegradability, color measurements, durability, mechanical properties, melt flow index, MFI, structural properties, thermal properties, wood-plastic composites, WPCs

Procedia PDF Downloads 128
6744 Numerical Optimization of Trapezoidal Microchannel Heat Sinks

Authors: Yue-Tzu Yang, Shu-Ching Liao

Abstract:

This study presents the numerical simulation of three-dimensional incompressible steady and laminar fluid flow and conjugate heat transfer of a trapezoidal microchannel heat sink using water as a cooling fluid in a silicon substrate. Navier-Stokes equations with conjugate energy equation are discretized by finite-volume method. We perform numerical computations for a range of 50 ≦ Re ≦ 600, 0.05W ≦ P ≦ 0.8W, 20W/cm2 ≦ ≦ 40W/cm2. The present study demonstrates the numerical optimization of a trapezoidal microchannel heat sink design using the response surface methodology (RSM) and the genetic algorithm method (GA). The results show that the average Nusselt number increases with an increase in the Reynolds number or pumping power, and the thermal resistance decreases as the pumping power increases. The thermal resistance of a trapezoidal microchannel is minimized for a constant heat flux and constant pumping power.

Keywords: microchannel heat sinks, conjugate heat transfer, optimization, genetic algorithm method

Procedia PDF Downloads 308