Search results for: named data network
27397 A Hybrid Model for Secure Protocol Independent Multicast Sparse Mode and Dense Mode Protocols in a Group Network
Authors: M. S. Jimah, A. C. Achuenu, M. Momodu
Abstract:
Group communications over public infrastructure are prone to a lot of security issues. Existing network protocols like Protocol Independent Multicast Sparse Mode (PIM SM) and Protocol Independent Multicast Dense Mode (PIM DM) do not have inbuilt security features. Therefore, any user or node can easily access the group communication as long as the user can send join message to the source nodes, the source node then adds the user to the network group. In this research, a hybrid method of salting and hashing to encrypt information in the source and stub node was designed, and when stub nodes need to connect, they must have the appropriate key to join the group network. Object oriented analysis design (OOAD) was the methodology used, and the result shows that no extra controlled bandwidth overhead cost was added by encrypting and the hybrid model was more securing than the existing PIM SM, PIM DM and Zhang secure PIM SM.Keywords: group communications, multicast, PIM SM, PIM DM, encryption
Procedia PDF Downloads 16427396 Analyzing the Commentator Network Within the French YouTube Environment
Authors: Kurt Maxwell Kusterer, Sylvain Mignot, Annick Vignes
Abstract:
To our best knowledge YouTube is the largest video hosting platform in the world. A high number of creators, viewers, subscribers and commentators act in this specific eco-system which generates huge sums of money. Views, subscribers, and comments help to increase the popularity of content creators. The most popular creators are sponsored by brands and participate in marketing campaigns. For a few of them, this becomes a financially rewarding profession. This is made possible through the YouTube Partner Program, which shares revenue among creators based on their popularity. We believe that the role of comments in increasing the popularity is to be emphasized. In what follows, YouTube is considered as a bilateral network between the videos and the commentators. Analyzing a detailed data set focused on French YouTubers, we consider each comment as a link between a commentator and a video. Our research question asks what are the predominant features of a video which give it the highest probability to be commented on. Following on from this question, how can we use these features to predict the action of the agent in commenting one video instead of another, considering the characteristics of the commentators, videos, topics, channels, and recommendations. We expect to see that the videos of more popular channels generate higher viewer engagement and thus are more frequently commented. The interest lies in discovering features which have not classically been considered as markers for popularity on the platform. A quick view of our data set shows that 96% of the commentators comment only once on a certain video. Thus, we study a non-weighted bipartite network between commentators and videos built on the sub-sample of 96% of unique comments. A link exists between two nodes when a commentator makes a comment on a video. We run an Exponential Random Graph Model (ERGM) approach to evaluate which characteristics influence the probability of commenting a video. The creation of a link will be explained in terms of common video features, such as duration, quality, number of likes, number of views, etc. Our data is relevant for the period of 2020-2021 and focuses on the French YouTube environment. From this set of 391 588 videos, we extract the channels which can be monetized according to YouTube regulations (channels with at least 1000 subscribers and more than 4000 hours of viewing time during the last twelve months).In the end, we have a data set of 128 462 videos which consist of 4093 channels. Based on these videos, we have a data set of 1 032 771 unique commentators, with a mean of 2 comments per a commentator, a minimum of 1 comment each, and a maximum of 584 comments.Keywords: YouTube, social networks, economics, consumer behaviour
Procedia PDF Downloads 6927395 End-to-End Spanish-English Sequence Learning Translation Model
Authors: Vidhu Mitha Goutham, Ruma Mukherjee
Abstract:
The low availability of well-trained, unlimited, dynamic-access models for specific languages makes it hard for corporate users to adopt quick translation techniques and incorporate them into product solutions. As translation tasks increasingly require a dynamic sequence learning curve; stable, cost-free opensource models are scarce. We survey and compare current translation techniques and propose a modified sequence to sequence model repurposed with attention techniques. Sequence learning using an encoder-decoder model is now paving the path for higher precision levels in translation. Using a Convolutional Neural Network (CNN) encoder and a Recurrent Neural Network (RNN) decoder background, we use Fairseq tools to produce an end-to-end bilingually trained Spanish-English machine translation model including source language detection. We acquire competitive results using a duo-lingo-corpus trained model to provide for prospective, ready-made plug-in use for compound sentences and document translations. Our model serves a decent system for large, organizational data translation needs. While acknowledging its shortcomings and future scope, it also identifies itself as a well-optimized deep neural network model and solution.Keywords: attention, encoder-decoder, Fairseq, Seq2Seq, Spanish, translation
Procedia PDF Downloads 17627394 Optimization of Traffic Agent Allocation for Minimizing Bus Rapid Transit Cost on Simplified Jakarta Network
Authors: Gloria Patricia Manurung
Abstract:
Jakarta Bus Rapid Transit (BRT) system which was established in 2009 to reduce private vehicle usage and ease the rush hour gridlock throughout the Jakarta Greater area, has failed to achieve its purpose. With gradually increasing the number of private vehicles ownership and reduced road space by the BRT lane construction, private vehicle users intuitively invade the exclusive lane of BRT, creating local traffic along the BRT network. Invaded BRT lanes costs become the same with the road network, making BRT which is supposed to be the main public transportation in the city becoming unreliable. Efforts to guard critical lanes with preventing the invasion by allocating traffic agents at several intersections have been expended, lead to the improving congestion level along the lane. Given a set of number of traffic agents, this study uses an analytical approach to finding the best deployment strategy of traffic agent on a simplified Jakarta road network in minimizing the BRT link cost which is expected to lead to the improvement of BRT system time reliability. User-equilibrium model of traffic assignment is used to reproduce the origin-destination demand flow on the network and the optimum solution conventionally can be obtained with brute force algorithm. This method’s main constraint is that traffic assignment simulation time escalates exponentially with the increase of set of agent’s number and network size. Our proposed metaheuristic and heuristic algorithms perform linear simulation time increase and result in minimized BRT cost approaching to brute force algorithm optimization. Further analysis of the overall network link cost should be performed to see the impact of traffic agent deployment to the network system.Keywords: traffic assignment, user equilibrium, greedy algorithm, optimization
Procedia PDF Downloads 23227393 Demand Forecasting Using Artificial Neural Networks Optimized by Particle Swarm Optimization
Authors: Daham Owaid Matrood, Naqaa Hussein Raheem
Abstract:
Evolutionary algorithms and Artificial neural networks (ANN) are two relatively young research areas that were subject to a steadily growing interest during the past years. This paper examines the use of Particle Swarm Optimization (PSO) to train a multi-layer feed forward neural network for demand forecasting. We use in this paper weekly demand data for packed cement and towels, which have been outfitted by the Northern General Company for Cement and General Company of prepared clothes respectively. The results showed superiority of trained neural networks using particle swarm optimization on neural networks trained using error back propagation because their ability to escape from local optima.Keywords: artificial neural network, demand forecasting, particle swarm optimization, weight optimization
Procedia PDF Downloads 45427392 Next-Generation Laser-Based Transponder and 3D Switch for Free Space Optics in Nanosatellite
Authors: Nadir Atayev, Mehman Hasanov
Abstract:
Future spacecraft will require a structural change in the way data is transmitted due to the increase in the volume of data required for space communication. Current radio frequency communication systems are already facing a bottleneck in the volume of data sent to the ground segment due to their technological and regulatory characteristics. To overcome these issues, free space optics communication plays an important role in the integrated terrestrial space network due to its advantages such as significantly improved data rate compared to traditional RF technology, low cost, improved security, and inter-satellite free space communication, as well as uses a laser beam, which is an optical signal carrier to establish satellite-ground & ground-to-satellite links. In this approach, there is a need for high-speed and energy-efficient systems as a base platform for sending high-volume video & audio data. Nano Satellite and its branch CubeSat platforms have more technical functionality than large satellites, wheres cover an important part of the space sector, with their Low-Earth-Orbit application area with low-cost design and technical functionality for building networks using different communication topologies. Along the research theme developed in this regard, the output parameter indicators for the FSO of the optical communication transceiver subsystem on the existing CubeSat platforms, and in the direction of improving the mentioned parameters of this communication methodology, 3D optical switch and laser beam controlled optical transponder with 2U CubeSat structural subsystems and application in the Low Earth Orbit satellite network topology, as well as its functional performance and structural parameters, has been studied accordingly.Keywords: cubesat, free space optics, nano satellite, optical laser communication.
Procedia PDF Downloads 9127391 Multi-Objective Evolutionary Computation Based Feature Selection Applied to Behaviour Assessment of Children
Authors: F. Jiménez, R. Jódar, M. Martín, G. Sánchez, G. Sciavicco
Abstract:
Abstract—Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time, to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Its application to unsupervised classification is restricted to a limited number of experiments in the literature. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We present a feature selection wrapper model composed by a multi-objective evolutionary algorithm, the clustering method Expectation-Maximization (EM), and the classifier C4.5 for the unsupervised classification of data extracted from a psychological test named BASC-II (Behavior Assessment System for Children - II ed.) with two objectives: Maximizing the likelihood of the clustering model and maximizing the accuracy of the obtained classifier. We present a methodology to integrate feature selection for unsupervised classification, model evaluation, decision making (to choose the most satisfactory model according to a a posteriori process in a multi-objective context), and testing. We compare the performance of the classifier obtained by the multi-objective evolutionary algorithms ENORA and NSGA-II, and the best solution is then validated by the psychologists that collected the data.Keywords: evolutionary computation, feature selection, classification, clustering
Procedia PDF Downloads 37227390 Multi-scale Spatial and Unified Temporal Feature-fusion Network for Multivariate Time Series Anomaly Detection
Authors: Hang Yang, Jichao Li, Kewei Yang, Tianyang Lei
Abstract:
Multivariate time series anomaly detection is a significant research topic in the field of data mining, encompassing a wide range of applications across various industrial sectors such as traffic roads, financial logistics, and corporate production. The inherent spatial dependencies and temporal characteristics present in multivariate time series introduce challenges to the anomaly detection task. Previous studies have typically been based on the assumption that all variables belong to the same spatial hierarchy, neglecting the multi-level spatial relationships. To address this challenge, this paper proposes a multi-scale spatial and unified temporal feature fusion network, denoted as MSUT-Net, for multivariate time series anomaly detection. The proposed model employs a multi-level modeling approach, incorporating both temporal and spatial modules. The spatial module is designed to capture the spatial characteristics of multivariate time series data, utilizing an adaptive graph structure learning model to identify the multi-level spatial relationships between data variables and their attributes. The temporal module consists of a unified temporal processing module, which is tasked with capturing the temporal features of multivariate time series. This module is capable of simultaneously identifying temporal dependencies among different variables. Extensive testing on multiple publicly available datasets confirms that MSUT-Net achieves superior performance on the majority of datasets. Our method is able to model and accurately detect systems data with multi-level spatial relationships from a spatial-temporal perspective, providing a novel perspective for anomaly detection analysis.Keywords: data mining, industrial system, multivariate time series, anomaly detection
Procedia PDF Downloads 1727389 AI-Enabled Smart Contracts for Reliable Traceability in the Industry 4.0
Authors: Harris Niavis, Dimitra Politaki
Abstract:
The manufacturing industry was collecting vast amounts of data for monitoring product quality thanks to the advances in the ICT sector and dedicated IoT infrastructure is deployed to track and trace the production line. However, industries have not yet managed to unleash the full potential of these data due to defective data collection methods and untrusted data storage and sharing. Blockchain is gaining increasing ground as a key technology enabler for Industry 4.0 and the smart manufacturing domain, as it enables the secure storage and exchange of data between stakeholders. On the other hand, AI techniques are more and more used to detect anomalies in batch and time-series data that enable the identification of unusual behaviors. The proposed scheme is based on smart contracts to enable automation and transparency in the data exchange, coupled with anomaly detection algorithms to enable reliable data ingestion in the system. Before sensor measurements are fed to the blockchain component and the smart contracts, the anomaly detection mechanism uniquely combines artificial intelligence models to effectively detect unusual values such as outliers and extreme deviations in data coming from them. Specifically, Autoregressive integrated moving average, Long short-term memory (LSTM) and Dense-based autoencoders, as well as Generative adversarial networks (GAN) models, are used to detect both point and collective anomalies. Towards the goal of preserving the privacy of industries' information, the smart contracts employ techniques to ensure that only anonymized pointers to the actual data are stored on the ledger while sensitive information remains off-chain. In the same spirit, blockchain technology guarantees the security of the data storage through strong cryptography as well as the integrity of the data through the decentralization of the network and the execution of the smart contracts by the majority of the blockchain network actors. The blockchain component of the Data Traceability Software is based on the Hyperledger Fabric framework, which lays the ground for the deployment of smart contracts and APIs to expose the functionality to the end-users. The results of this work demonstrate that such a system can increase the quality of the end-products and the trustworthiness of the monitoring process in the smart manufacturing domain. The proposed AI-enabled data traceability software can be employed by industries to accurately trace and verify records about quality through the entire production chain and take advantage of the multitude of monitoring records in their databases.Keywords: blockchain, data quality, industry4.0, product quality
Procedia PDF Downloads 19127388 Effect of Natural Molecular Crowding on the Structure and Stability of DNA Duplex
Authors: Chaudhari S. G., Saxena, S.
Abstract:
We systematically and quantitatively investigated the effect of glucose as a model of natural molecular crowding agent on the structure and thermodynamics of Watson-Crick base paired three duplexes (named as D1, D2 and D3) of different base compositions and lengths. Structural analyses demonstrated that duplexes (D1 and D2) folded into B-form with different cations in the absence and presence of glucose while duplex (D3) folded into mixed A and B-form. Moreover, we demonstrated that the duplex was more stable in the absence of glucose, and marginally destabilized in its presence because glucose act as a weak structure breaker on the tetrahedral network of water. In the absence of glucose, the values of ΔG°25 for duplex (D1) were -13.56, -13.76, -12.46, and -12.36 kcal/mol, for duplex (D2) were -13.64, -12.93, -12.86, and -12.30 kcal/mol, for duplex (D3) were -10.05, -11.76, -9.91, -9.70 kcal/mol in the presence of Na+, K+, Na+ + Mg++ and K+ + Mg++ respectively. At high concentration of glucose (1:10000), there was increase in ΔG°25 for duplex (D1) -12.47, -12.37, -11.96, -11.55 kcal/mol, for duplex (D2) -12.37, -11.47, -11.98, -11.01 kcal/mol and for duplex (D3) -8.47, -9.17, -9.16, -8.66 kcal/mol. Our results provide the information that structure and stability of DNA duplex depends on the structure of molecular crowding agent present in its close vicinity. In this study, I have taken the hydration of simple sugar as an essential model for understanding interactions between hydrophilic groups and interfacial water molecules and its effect on hydrogen bonded DNA duplexes. On the basis of these relatively simple building blocks I hope to gain some insights for understanding more generally the properties of sugar–water–salt systems with DNA duplexes.Keywords: natural molecular crowding, DNA Duplex, structure of DNA, bioengineering and life sciences
Procedia PDF Downloads 46627387 Perception-Oriented Model Driven Development for Designing Data Acquisition Process in Wireless Sensor Networks
Authors: K. Indra Gandhi
Abstract:
Wireless Sensor Networks (WSNs) have always been characterized for application-specific sensing, relaying and collection of information for further analysis. However, software development was not considered as a separate entity in this process of data collection which has posed severe limitations on the software development for WSN. Software development for WSN is a complex process since the components involved are data-driven, network-driven and application-driven in nature. This implies that there is a tremendous need for the separation of concern from the software development perspective. A layered approach for developing data acquisition design based on Model Driven Development (MDD) has been proposed as the sensed data collection process itself varies depending upon the application taken into consideration. This work focuses on the layered view of the data acquisition process so as to ease the software point of development. A metamodel has been proposed that enables reusability and realization of the software development as an adaptable component for WSN systems. Further, observing users perception indicates that proposed model helps in improving the programmer's productivity by realizing the collaborative system involved.Keywords: data acquisition, model-driven development, separation of concern, wireless sensor networks
Procedia PDF Downloads 43527386 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis
Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan
Abstract:
Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis
Procedia PDF Downloads 8827385 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System
Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid
Abstract:
Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.Keywords: artificial neural network, bending angle, fuzzy logic, laser forming
Procedia PDF Downloads 59927384 Weighted Data Replication Strategy for Data Grid Considering Economic Approach
Authors: N. Mansouri, A. Asadi
Abstract:
Data Grid is a geographically distributed environment that deals with data intensive application in scientific and enterprise computing. Data replication is a common method used to achieve efficient and fault-tolerant data access in Grids. In this paper, a dynamic data replication strategy, called Enhanced Latest Access Largest Weight (ELALW) is proposed. This strategy is an enhanced version of Latest Access Largest Weight strategy. However, replication should be used wisely because the storage capacity of each Grid site is limited. Thus, it is important to design an effective strategy for the replication replacement task. ELALW replaces replicas based on the number of requests in future, the size of the replica, and the number of copies of the file. It also improves access latency by selecting the best replica when various sites hold replicas. The proposed replica selection selects the best replica location from among the many replicas based on response time that can be determined by considering the data transfer time, the storage access latency, the replica requests that waiting in the storage queue and the distance between nodes. Simulation results utilizing the OptorSim show our replication strategy achieve better performance overall than other strategies in terms of job execution time, effective network usage and storage resource usage.Keywords: data grid, data replication, simulation, replica selection, replica placement
Procedia PDF Downloads 26127383 A Tuning Method for Microwave Filter via Complex Neural Network and Improved Space Mapping
Authors: Shengbiao Wu, Weihua Cao, Min Wu, Can Liu
Abstract:
This paper presents an intelligent tuning method of microwave filter based on complex neural network and improved space mapping. The tuning process consists of two stages: the initial tuning and the fine tuning. At the beginning of the tuning, the return loss of the filter is transferred to the passband via the error of phase. During the fine tuning, the phase shift caused by the transmission line and the higher order mode is removed by the curve fitting. Then, an Cauchy method based on the admittance parameter (Y-parameter) is used to extract the coupling matrix. The influence of the resonant cavity loss is eliminated during the parameter extraction process. By using processed data pairs (the amount of screw variation and the variation of the coupling matrix), a tuning model is established by the complex neural network. In view of the improved space mapping algorithm, the mapping relationship between the actual model and the ideal model is established, and the amplitude and direction of the tuning is constantly updated. Finally, the tuning experiment of the eight order coaxial cavity filter shows that the proposed method has a good effect in tuning time and tuning precision.Keywords: microwave filter, scattering parameter, coupling matrix, intelligent tuning
Procedia PDF Downloads 31527382 Horizontal-Vertical and Enhanced-Unicast Interconnect Testing Techniques for Network-on-Chip
Authors: Mahdiar Hosseinghadiry, Razali Ismail, F. Fotovati
Abstract:
One of the most important and challenging tasks in testing network-on-chip based system-on-chips (NoC based SoCs) is to verify the communication entity. It is important because of its usage for transferring both data packets and test patterns for intellectual properties (IPs) during normal and test mode. Hence, ensuring of NoC reliability is required for reliable IPs functionality and testing. On the other hand, it is challenging due to the required time to test it and the way of transferring test patterns from the tester to the NoC components. In this paper, two testing techniques for mesh-based NoC interconnections are proposed. The first one is based on one-by-one testing and the second one divides NoC interconnects into three parts, horizontal links of switches in even columns, horizontal links of switches in odd columns and all vertical. A design for testability (DFT) architecture is represented to send test patterns directly to each switch under test and also support the proposed testing techniques by providing a loopback path in each switch. The simulation results shows the second proposed testing mechanism outperforms in terms of test time because this method test all the interconnects in only three phases, independent to the number of existed interconnects in the network, while test time of other methods are highly dependent to the number of switches and interconnects in the NoC.Keywords: on chip, interconnection testing, horizontal-vertical testing, enhanced unicast
Procedia PDF Downloads 55427381 Preprocessing and Fusion of Multiple Representation of Finger Vein patterns using Conventional and Machine Learning techniques
Authors: Tomas Trainys, Algimantas Venckauskas
Abstract:
Application of biometric features to the cryptography for human identification and authentication is widely studied and promising area of the development of high-reliability cryptosystems. Biometric cryptosystems typically are designed for patterns recognition, which allows biometric data acquisition from an individual, extracts feature sets, compares the feature set against the set stored in the vault and gives a result of the comparison. Preprocessing and fusion of biometric data are the most important phases in generating a feature vector for key generation or authentication. Fusion of biometric features is critical for achieving a higher level of security and prevents from possible spoofing attacks. The paper focuses on the tasks of initial processing and fusion of multiple representations of finger vein modality patterns. These tasks are solved by applying conventional image preprocessing methods and machine learning techniques, Convolutional Neural Network (SVM) method for image segmentation and feature extraction. An article presents a method for generating sets of biometric features from a finger vein network using several instances of the same modality. Extracted features sets were fused at the feature level. The proposed method was tested and compared with the performance and accuracy results of other authors.Keywords: bio-cryptography, biometrics, cryptographic key generation, data fusion, information security, SVM, pattern recognition, finger vein method.
Procedia PDF Downloads 15227380 Immuno-field Effect Transistor Using Carbon Nanotubes Network – Based for Human Serum Albumin Highly Sensitive Detection
Authors: Muhamad Azuddin Hassan, Siti Shafura Karim, Ambri Mohamed, Iskandar Yahya
Abstract:
Human serum albumin plays a significant part in the physiological functions of the human body system (HSA).HSA level monitoring is critical for early detection of HSA-related illnesses. The goal of this study is to show that a field effect transistor (FET)-based immunosensor can assess HSA using high aspect ratio carbon nanotubes network (CNT) as a transducer. The CNT network were deposited using air brush technique, and the FET device was made using a shadow mask process. Field emission scanning electron microscopy and a current-voltage measurement system were used to examine the morphology and electrical properties of the CNT network, respectively. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to confirm the surface alteration of the CNT. The detection process is based on covalent binding interactions between an antibody and an HSA target, which resulted in a change in the manufactured biosensor's drain current (Id).In a linear range between 1 ng/ml and 10zg/ml, the biosensor has a high sensitivity of 0.826 mA (g/ml)-1 and a LOD value of 1.9zg/ml.HSA was also identified in a genuine serum despite interference from other biomolecules, demonstrating the CNT-FET immunosensor's ability to quantify HSA in a complex biological environment.Keywords: carbon nanotubes network, biosensor, human serum albumin
Procedia PDF Downloads 13727379 Pavement Maintenance and Rehabilitation Scheduling Using Genetic Algorithm Based Multi Objective Optimization Technique
Authors: Ashwini Gowda K. S, Archana M. R, Anjaneyappa V
Abstract:
This paper presents pavement maintenance and management system (PMMS) to obtain optimum pavement maintenance and rehabilitation strategies and maintenance scheduling for a network using a multi-objective genetic algorithm (MOGA). Optimal pavement maintenance & rehabilitation strategy is to maximize the pavement condition index of the road section in a network with minimum maintenance and rehabilitation cost during the planning period. In this paper, NSGA-II is applied to perform maintenance optimization; this maintenance approach was expected to preserve and improve the existing condition of the highway network in a cost-effective way. The proposed PMMS is applied to a network that assessed pavement based on the pavement condition index (PCI). The minimum and maximum maintenance cost for a planning period of 20 years obtained from the non-dominated solution was found to be 5.190x10¹⁰ ₹ and 4.81x10¹⁰ ₹, respectively.Keywords: genetic algorithm, maintenance and rehabilitation, optimization technique, pavement condition index
Procedia PDF Downloads 15127378 Impact of Normative Institutional Factors on Sustainability Reporting
Authors: Lina Dagilienė
Abstract:
The article explores the impact of normative institutional factors on the development of sustainability reporting. The vast majority of research in the scientific literature focuses on mandatory institutional factors, i.e. how public institutions and market regulators affect sustainability reporting. Meanwhile, there is lack of empirical data for the impact of normative institutional factors. The effect of normative factors in this paper is based on the role of non-governmental organizations (NGO) and institutional theory. The case of Global Compact Local Network in the developing country was examined. The research results revealed that in the absence of regulated factors, companies were not active with regard to social disclosures; they presented non-systemized social information of a descriptive nature. Only 10% of sustainability reports were prepared using the GRI methodology. None of the reports were assured by third parties.Keywords: institutional theory, normative, sustainability reporting, Global Compact Local Network
Procedia PDF Downloads 38527377 Investigating Message Timing Side Channel Attacks on Networks on Chip with Ring Topology
Authors: Mark Davey
Abstract:
Communications on a Network on Chip (NoC) produce timing information, i.e., network injection delays, packet traversal times, throughput metrics, and other attributes relating to the traffic being sent across the chip. The security requirements of a platform encompass each node to operate with confidentiality, integrity, and availability (ISO 27001). Inherently, a shared NoC interconnect is exposed to analysis of timing patterns created by contention for the network components, i.e., links and switches/routers. This phenomenon is defined as information leakage, which represents a ‘side channel’ of sensitive information that can be correlated to platform activity. The key algorithm presented in this paper evaluates how an adversary can control two platform neighbouring nodes of a target node to obtain sensitive information about communication with the target node. The actual information obtained is the period value of a periodic task communication. This enacts a breach of the expected confidentiality of a node operating in a multiprocessor platform. An experimental investigation of the side channel is undertaken to judge the level and significance of inferred information produced by access times to the NoC. Results are presented with a series of expanding task set scenarios to evaluate the efficacy of the side channel detection algorithm as the network load increases.Keywords: embedded systems, multiprocessor, network on chip, side channel
Procedia PDF Downloads 7327376 Self-Organizing Map Network for Wheeled Robot Movement Optimization
Authors: Boguslaw Schreyer
Abstract:
The paper investigates the application of the Kohonen’s Self-Organizing Map (SOM) to the wheeled robot starting and braking dynamic states. In securing wheeled robot stability as well as minimum starting and braking time, it is important to ensure correct torque distribution as well as proper slope of braking and driving moments. In this paper, a correct movement distribution has been formulated, securing optimum adhesion coefficient and good transversal stability of a wheeled robot. A neural tuner has been proposed to secure the above properties, although most of the attention is attached to the SOM network application. If the delay of the torque application or torque release is not negligible, it is important to change the rising and falling slopes of the torque. The road/surface condition is also paramount in robot dynamic states control. As the road conditions may randomly change in time, application of the SOM network has been suggested in order to classify the actual road conditions.Keywords: slip control, SOM network, torque distribution, wheeled Robot
Procedia PDF Downloads 12827375 Identity Verification Based on Multimodal Machine Learning on Red Green Blue (RGB) Red Green Blue-Depth (RGB-D) Voice Data
Authors: LuoJiaoyang, Yu Hongyang
Abstract:
In this paper, we experimented with a new approach to multimodal identification using RGB, RGB-D and voice data. The multimodal combination of RGB and voice data has been applied in tasks such as emotion recognition and has shown good results and stability, and it is also the same in identity recognition tasks. We believe that the data of different modalities can enhance the effect of the model through mutual reinforcement. We try to increase the three modalities on the basis of the dual modalities and try to improve the effectiveness of the network by increasing the number of modalities. We also implemented the single-modal identification system separately, tested the data of these different modalities under clean and noisy conditions, and compared the performance with the multimodal model. In the process of designing the multimodal model, we tried a variety of different fusion strategies and finally chose the fusion method with the best performance. The experimental results show that the performance of the multimodal system is better than that of the single modality, especially in dealing with noise, and the multimodal system can achieve an average improvement of 5%.Keywords: multimodal, three modalities, RGB-D, identity verification
Procedia PDF Downloads 7127374 Development of an Artificial Neural Network to Measure Science Literacy Leveraging Neuroscience
Authors: Amanda Kavner, Richard Lamb
Abstract:
Faster growth in science and technology of other nations may make staying globally competitive more difficult without shifting focus on how science is taught in US classes. An integral part of learning science involves visual and spatial thinking since complex, and real-world phenomena are often expressed in visual, symbolic, and concrete modes. The primary barrier to spatial thinking and visual literacy in Science, Technology, Engineering, and Math (STEM) fields is representational competence, which includes the ability to generate, transform, analyze and explain representations, as opposed to generic spatial ability. Although the relationship is known between the foundational visual literacy and the domain-specific science literacy, science literacy as a function of science learning is still not well understood. Moreover, the need for a more reliable measure is necessary to design resources which enhance the fundamental visuospatial cognitive processes behind scientific literacy. To support the improvement of students’ representational competence, first visualization skills necessary to process these science representations needed to be identified, which necessitates the development of an instrument to quantitatively measure visual literacy. With such a measure, schools, teachers, and curriculum designers can target the individual skills necessary to improve students’ visual literacy, thereby increasing science achievement. This project details the development of an artificial neural network capable of measuring science literacy using functional Near-Infrared Spectroscopy (fNIR) data. This data was previously collected by Project LENS standing for Leveraging Expertise in Neurotechnologies, a Science of Learning Collaborative Network (SL-CN) of scholars of STEM Education from three US universities (NSF award 1540888), utilizing mental rotation tasks, to assess student visual literacy. Hemodynamic response data from fNIRsoft was exported as an Excel file, with 80 of both 2D Wedge and Dash models (dash) and 3D Stick and Ball models (BL). Complexity data were in an Excel workbook separated by the participant (ID), containing information for both types of tasks. After changing strings to numbers for analysis, spreadsheets with measurement data and complexity data were uploaded to RapidMiner’s TurboPrep and merged. Using RapidMiner Studio, a Gradient Boosted Trees artificial neural network (ANN) consisting of 140 trees with a maximum depth of 7 branches was developed, and 99.7% of the ANN predictions are accurate. The ANN determined the biggest predictors to a successful mental rotation are the individual problem number, the response time and fNIR optode #16, located along the right prefrontal cortex important in processing visuospatial working memory and episodic memory retrieval; both vital for science literacy. With an unbiased measurement of science literacy provided by psychophysiological measurements with an ANN for analysis, educators and curriculum designers will be able to create targeted classroom resources to help improve student visuospatial literacy, therefore improving science literacy.Keywords: artificial intelligence, artificial neural network, machine learning, science literacy, neuroscience
Procedia PDF Downloads 12127373 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts
Authors: Ş. Karabulut, A. Güllü, A. Güldaş, R. Gürbüz
Abstract:
This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis
Procedia PDF Downloads 44827372 Smart Forms and Intelligent Transportation Network Patterns, an Integrated Spatial Approach to Smart Cities and Intelligent Transport Systems in India Cities
Authors: Geetanjli Rani
Abstract:
The physical forms and network pattern of the city is expected to be enhanced with the advancement of technology. Reason being, the era of virtualisation and digital urban realm convergence with physical development. By means of comparative Spatial graphics and visuals of cities, the present paper attempts to revisit the very base of efficient physical forms and patterns to sync the emergence of virtual activities. Thus, the present approach to integrate spatial Smartness of Cities and Intelligent Transportation Systems is a brief assessment of smart forms and intelligent transportation network pattern to the dualism of physical and virtual urban activities. Finally, the research brings out that the grid iron pattern, radial, ring-radial, orbital etc. stands to be more efficient, effective and economical transit friendly for users, resource optimisation as well as compact urban and regional systems. Moreover, this paper concludes that the idea of flow and contiguity hidden in such smart forms and intelligent transportation network pattern suits to layering, deployment, installation and development of Intelligent Transportation Systems of Smart Cities such as infrastructure, facilities and services.Keywords: smart form, smart infrastructure, intelligent transportation network pattern, physical and virtual integration
Procedia PDF Downloads 15727371 Exponential Value and Learning Effects in VR-Cutting-Vegetable Training
Authors: Jon-Chao Hong, Tsai-Ru Fan, Shih-Min Hsu
Abstract:
Virtual reality (VR) can generate mirror neurons that facilitate learners to transfer virtual skills to a real environment in skill training, and most studies approved the positive effect of applying in many domains. However, rare studies have focused on the experiential values of participants from a gender perspective. To address this issue, the present study used a VR program named kitchen assistant training, focusing on cutting vegetables and invited 400 students to practice for 20 minutes. Useful data from 367 were subjected to statistical analysis. The results indicated that male participants. From the comparison of average, it seems that females perceived higher than males in learning effectiveness. Expectedly, the VR-Cutting vegetables can be used for pre-training of real vegetable cutting.Keywords: exponential value, facilitate learning, gender difference, virtual reality
Procedia PDF Downloads 9427370 Sensor and Actuator Fault Detection in Connected Vehicles under a Packet Dropping Network
Authors: Z. Abdollahi Biron, P. Pisu
Abstract:
Connected vehicles are one of the promising technologies for future Intelligent Transportation Systems (ITS). A connected vehicle system is essentially a set of vehicles communicating through a network to exchange their information with each other and the infrastructure. Although this interconnection of the vehicles can be potentially beneficial in creating an efficient, sustainable, and green transportation system, a set of safety and reliability challenges come out with this technology. The first challenge arises from the information loss due to unreliable communication network which affects the control/management system of the individual vehicles and the overall system. Such scenario may lead to degraded or even unsafe operation which could be potentially catastrophic. Secondly, faulty sensors and actuators can affect the individual vehicle’s safe operation and in turn will create a potentially unsafe node in the vehicular network. Further, sending that faulty sensor information to other vehicles and failure in actuators may significantly affect the safe operation of the overall vehicular network. Therefore, it is of utmost importance to take these issues into consideration while designing the control/management algorithms of the individual vehicles as a part of connected vehicle system. In this paper, we consider a connected vehicle system under Co-operative Adaptive Cruise Control (CACC) and propose a fault diagnosis scheme that deals with these aforementioned challenges. Specifically, the conventional CACC algorithm is modified by adding a Kalman filter-based estimation algorithm to suppress the effect of lost information under unreliable network. Further, a sliding mode observer-based algorithm is used to improve the sensor reliability under faults. The effectiveness of the overall diagnostic scheme is verified via simulation studies.Keywords: fault diagnostics, communication network, connected vehicles, packet drop out, platoon
Procedia PDF Downloads 23927369 Classification of Contexts for Mentioning Love in Interviews with Victims of the Holocaust
Authors: Marina Yurievna Aleksandrova
Abstract:
Research of the Holocaust retains value not only for history but also for sociology and psychology. One of the most important fields of study is how people were coping during and after this traumatic event. The aim of this paper is to identify the main contexts of the topic of love and to determine which contexts are more characteristic for different groups of victims of the Holocaust (gender, nationality, age). In this research, transcripts of interviews with Holocaust victims that were collected during 1946 for the "Voices of the Holocaust" project were used as data. Main contexts were analyzed with methods of network analysis and latent semantic analysis and classified by gender, age, and nationality with random forest. The results show that love is articulated and described significantly differently for male and female informants, nationality is shown results with lower values of quality metrics, as well as the age.Keywords: Holocaust, latent semantic analysis, network analysis, text-mining, random forest
Procedia PDF Downloads 18227368 Synchronization of Bus Frames during Universal Serial Bus Transfer
Authors: Petr Šimek
Abstract:
This work deals with the problem of synchronization of bus frames during transmission using USB (Universal Serial Bus). The principles for synchronization between USB and the non-deterministic CAN (Controller Area Network) bus will be described here. Furthermore, the work deals with ensuring the time sequence of communication frames when receiving from multiple communication bus channels. The structure of a general object for storing frames from different types of communication buses, such as CAN and LIN (Local Interconnect Network), will be described here. Finally, an evaluation of the communication throughput of bus frames for USB High speed will be performed. The creation of this architecture was based on the analysis of the communication of control units with a large number of communication buses. For the design of the architecture, a test HW with a USB-HS interface was used, which received previously known messages, which were compared with the received result. The result of this investigation is the block architecture of the control program for test HW ensuring correct data transmission via the USB bus.Keywords: analysis, CAN, interface, LIN, synchronization, USB
Procedia PDF Downloads 65