Search results for: fuzzy logistic regression
3066 Association of Preoperative Pain Catastrophizing with Postoperative Pain after Lower Limb Trauma Surgery
Authors: Asish Subedi, Krishna Pokharel, Birendra Prasad Sah, Pashupati Chaudhary
Abstract:
Objectives: To evaluate an association between preoperative Nepali pain catastrophizing scale (N-PCS) scores and postoperative pain intensity and total opioid consumption. Methods: In this prospective cohort study we enrolled 135 patients with an American Society of Anaesthesiologists physical status I or II, aged between 18 and 65 years, and scheduled for surgery for lower-extremity fracture under spinal anaesthesia. Maximum postoperative pain reported during the 24 h was classified into two groups, no-mild pain group (Numeric rating scale [NRS] scores 1 to 3) and a moderate-severe pain group (NRS 4-10). The Spearman correlation coefficient was used to compare the association between the baseline N-PCS scores and outcome variables, i.e., the maximum NRS pain score and the total tramadol consumption within the first 24 h after surgery. Logistic regression models were used to identify the predictors for the intensity of postoperative pain. Results: As four patients violated the protocol, the data of 131 patients were analysed. Mean N-PCS scores reported by the moderate-severe pain group was 27.39 ±9.50 compared to 18.64 ±10 mean N-PCS scores by the no-mild pain group (p<0.001). Preoperative PCS scores correlated positively with postoperative pain intensity (r =0.39, [95% CI 0.23-0.52], p<0.001) and total tramadol consumption (r =0.32, [95% CI 0.16-0.47], p<0.001). An increase in catastrophizing scores was associated with postoperative moderate-severe pain (odds ratio, 1.08 [95% confidence interval, 1.02-1.15], p=0.006) after adjusting for gender, ethnicity and preoperative anxiety. Conclusion: Patients who reported higher pain catastrophizing preoperatively were at increased risk of experiencing moderate-severe postoperative pain.Keywords: nepali, pain catastrophizing, postoperative pain, trauma
Procedia PDF Downloads 1203065 Neighborhood Linking Social Capital as a Predictor of Drug Abuse: A Swedish National Cohort Study
Authors: X. Li, J. Sundquist, C. Sjöstedt, M. Winkleby, K. S. Kendler, K. Sundquist
Abstract:
Aims: This study examines the association between the incidence of drug abuse (DA) and linking (communal) social capital, a theoretical concept describing the amount of trust between individuals and societal institutions. Methods: We present results from an 8-year population-based cohort study that followed all residents in Sweden, aged 15-44, from 2003 through 2010, for a total of 1,700,896 men and 1,642,798 women. Social capital was conceptualized as the proportion of people in a geographically defined neighborhood who voted in local government elections. Multilevel logistic regression was used to estimate odds ratios (ORs) and between-neighborhood variance. Results: We found robust associations between linking social capital (scored as a three level variable) and DA in men and women. For men, the OR for DA in the crude model was 2.11 [95% confidence interval (CI) 2.02-2.21] for those living in areas with the lowest vs. highest level of social capital. After accounting for neighborhood-level deprivation, the OR fell to 1.59 (1.51-1-68), indicating that neighborhood deprivation lies in the pathway between linking social capital and DA. The ORs remained significant after accounting for age, sex, family income, marital status, country of birth, education level, and region of residence, and after further accounting for comorbidities and family history of comorbidities and family history of DA. For women, the OR decreased from 2.15 (2.03-2.27) in the crude model to 1.31 (1.22-1.40) in the final model, adjusted for multiple neighborhood-level and individual-level variables. Conclusions: Our study suggests that low linking social capital may have important independent effects on DA.Keywords: drug abuse, social linking capital, environment, family
Procedia PDF Downloads 4733064 Partial Least Square Regression for High-Dimentional and High-Correlated Data
Authors: Mohammed Abdullah Alshahrani
Abstract:
The research focuses on investigating the use of partial least squares (PLS) methodology for addressing challenges associated with high-dimensional correlated data. Recent technological advancements have led to experiments producing data characterized by a large number of variables compared to observations, with substantial inter-variable correlations. Such data patterns are common in chemometrics, where near-infrared (NIR) spectrometer calibrations record chemical absorbance levels across hundreds of wavelengths, and in genomics, where thousands of genomic regions' copy number alterations (CNA) are recorded from cancer patients. PLS serves as a widely used method for analyzing high-dimensional data, functioning as a regression tool in chemometrics and a classification method in genomics. It handles data complexity by creating latent variables (components) from original variables. However, applying PLS can present challenges. The study investigates key areas to address these challenges, including unifying interpretations across three main PLS algorithms and exploring unusual negative shrinkage factors encountered during model fitting. The research presents an alternative approach to addressing the interpretation challenge of predictor weights associated with PLS. Sparse estimation of predictor weights is employed using a penalty function combining a lasso penalty for sparsity and a Cauchy distribution-based penalty to account for variable dependencies. The results demonstrate sparse and grouped weight estimates, aiding interpretation and prediction tasks in genomic data analysis. High-dimensional data scenarios, where predictors outnumber observations, are common in regression analysis applications. Ordinary least squares regression (OLS), the standard method, performs inadequately with high-dimensional and highly correlated data. Copy number alterations (CNA) in key genes have been linked to disease phenotypes, highlighting the importance of accurate classification of gene expression data in bioinformatics and biology using regularized methods like PLS for regression and classification.Keywords: partial least square regression, genetics data, negative filter factors, high dimensional data, high correlated data
Procedia PDF Downloads 493063 Using Predictive Analytics to Identify First-Year Engineering Students at Risk of Failing
Authors: Beng Yew Low, Cher Liang Cha, Cheng Yong Teoh
Abstract:
Due to a lack of continual assessment or grade related data, identifying first-year engineering students in a polytechnic education at risk of failing is challenging. Our experience over the years tells us that there is no strong correlation between having good entry grades in Mathematics and the Sciences and excelling in hardcore engineering subjects. Hence, identifying students at risk of failure cannot be on the basis of entry grades in Mathematics and the Sciences alone. These factors compound the difficulty of early identification and intervention. This paper describes the development of a predictive analytics model in the early detection of students at risk of failing and evaluates its effectiveness. Data from continual assessments conducted in term one, supplemented by data of student psychological profiles such as interests and study habits, were used. Three classification techniques, namely Logistic Regression, K Nearest Neighbour, and Random Forest, were used in our predictive model. Based on our findings, Random Forest was determined to be the strongest predictor with an Area Under the Curve (AUC) value of 0.994. Correspondingly, the Accuracy, Precision, Recall, and F-Score were also highest among these three classifiers. Using this Random Forest Classification technique, students at risk of failure could be identified at the end of term one. They could then be assigned to a Learning Support Programme at the beginning of term two. This paper gathers the results of our findings. It also proposes further improvements that can be made to the model.Keywords: continual assessment, predictive analytics, random forest, student psychological profile
Procedia PDF Downloads 1343062 The Risk of Hyperglycemia Associated with Use of Dolutegravir among Adults Living with HIV in Kampala, Uganda: A Case Control Study
Authors: Daphine Namara, Jeremy I. Schwartz, Andrew K. Tusubira, Willi McFarland, Caroline Birungi, Fred C. Semitala, Martin Muddu
Abstract:
Emerging evidence suggests a possible association between hyperglycemia and dolutegravir (DTG), a preferred first-line antiretroviral agent in sub-Saharan Africa (SSA). There is a need for rigorous studies to validate this association in the face of increasing DTG use and the burden of non-communicable diseases among people living with HIV (PLHIV). We conducted a case-control study to assess the risk of hyperglycemia associated with the use of DTG among PLHIV attending Mulago ISS Clinic in Kampala. Cases had hyperglycemia, while controls had no hyperglycemia, as confirmed by fasting plasma glucose and oral glucose tolerance tests. Demographic, laboratory, and clinical data were collected using interviewer-administered questionnaires and medical record abstraction. The analysis compared cases and controls on DTG use prior to diagnosis of hyperglycemia while controlling for potential confounders using multivariable logistic regression. We included 204 cases and 231 controls. In multivariable analysis, patients with prior DTG use had seven times greater odds of subsequent diagnosis of hyperglycemia compared to those who had non-DTG-based regimens (adjusted odds ratio [aOR] 7.01, 95% CI 1.96-25.09). The odds of hyperglycemia also increased with age (56 years and above vs. 18-35, aOR 12.38, 95% CI 3.79-40.50) and hypertension (aOR 5.78, 95% CI 2.53-13.21). Our study demonstrates a strong association between prior DTG exposure and subsequent diagnosis of hyperglycemia. Given the benefits of DTG, wide-scale use, and the growing burden of diabetes mellitus (DM) in SSA, there is a need for systematic screening for hyperglycemia and consideration of alternate regimens for those at risk for DM.Keywords: HIV, hyperglycemia, doluteravir, diabetes
Procedia PDF Downloads 863061 Factors Associated with Injuries and Trauma Among the Survivors of Gender-Based Violence in Afghanistan
Authors: Mohammad Akbar Paiman, Yasmin Nadeem Parpio, Naureen Akbarali, Khwaja Mir Islam Saeed, Murad Moosa Khan
Abstract:
Background: Gender-based violence (GBV) is widely considered a significant public health problem that is associated with acute morbidity and mortality. GBV is commonly understood as a physical, sexual, and mental assault from intimate partners, sexual violence by non-partners, sexual assault of girls, and acts like trafficking women for sex. Objective: This study aimed to determine the factors associated with injuries and trauma among victims of GBV in Afghanistan. Method: We conducted a record-based analysis of the data collected by the Gender Department of the Family Protection Centre nationally between November 2013 and October 2019. Cross-tabulation between different variables such as age, sex, marital status, and type of violence and associations between different types of violence, age, gender, and geographical location was determined using the logistic regression model. Results: During the study period, there were a total of 58,160 GBV in Afghanistan. Most of the victims were women 98% with over three-quarters being adults 78%. Most of the victims were married 76%, followed by single 14%, widowed 5%, and engaged 5%. Over three-quarters of the violence, 73% was observed in the victim’s house while nearly one-quarter of the violence 24 % occurred in the perpetrator’s house. Conclusions: GBV is a significant public health problem in Afghanistan that needs to be addressed at multiple levels including policy, state, and community as well as by raising public awareness and education and a strong code of conduct against GBV by all stakeholders.Keywords: gender-based violence, physical and psychological violence, injuries, Afghanistan
Procedia PDF Downloads 543060 Glucose Monitoring System Using Machine Learning Algorithms
Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe
Abstract:
The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning
Procedia PDF Downloads 2043059 Statistical Analysis of the Impact of Maritime Transport Gross Domestic Product (GDP) on Nigeria’s Economy
Authors: Kehinde Peter Oyeduntan, Kayode Oshinubi
Abstract:
Nigeria is referred as the ‘Giant of Africa’ due to high population, land mass and large economy. However, it still trails far behind many smaller economies in the continent in terms of maritime operations. As we have seen that the maritime industry is the spark plug for national growth, because it houses the most crucial infrastructure that generates wealth for a nation, it is worrisome that a nation with six seaports lag in maritime activities. In this research, we have studied how the Gross Domestic Product (GDP) of the maritime transport influences the Nigerian economy. To do this, we applied Simple Linear Regression (SLR), Support Vector Machine (SVM), Polynomial Regression Model (PRM), Generalized Additive Model (GAM) and Generalized Linear Mixed Model (GLMM) to model the relationship between the nation’s Total GDP (TGDP) and the Maritime Transport GDP (MGDP) using a time series data of 20 years. The result showed that the MGDP is statistically significant to the Nigerian economy. Amongst the statistical tool applied, the PRM of order 4 describes the relationship better when compared to other methods. The recommendations presented in this study will guide policy makers and help improve the economy of Nigeria in terms of its GDP.Keywords: maritime transport, economy, GDP, regression, port
Procedia PDF Downloads 1543058 Teacher Support and Academic Resilience in Vietnam: An Analysis of Low Socio-Economic Status Students in Programme for International Student Assessment 2018
Authors: My Ha, Suwei Lin, Huiying Zou
Abstract:
This study aimed at investigating the association between teacher support and academic resilience in a developing country. Using the data from PISA 2018 Student Questionnaire and Cognitive Tests, the study provided evidence of the significant impact teacher support had on reading literacy among 15-year-old students from low socio-economic status (SES) homes in Vietnam. From a total of 5773 Vietnamese participants from all backgrounds, a sample of 1765 disadvantaged students was drawn for analysis. As a result, 32 percent of the low SES sample was identified as resilient. Through their response to the PISA items regarding the frequency of support they received from teachers, the result of Latent Class Analysis (LCA) divides children into three subgroups: High Support (74.6%), Fair Support (21.6%), and Low Support (3.8%). The high support group reported the highest proportion of resilient students. Meanwhile, the low support group scored the lowest mean on reading test and had the lowest rate of resilience. Also, as the level of support increases, reading achievement becomes less dependent on socioeconomic status, reflected by the decrease in both the slope and magnitude of their correlation. Logistic regression revealed that 1 unit increase in standardized teacher support would lead to an increase of 29.1 percent in the odds of a student becoming resilient. The study emphasizes the role of supportive teachers in promoting resilience, as well as lowering educational inequity in general.Keywords: academic resilience, disadvantaged students, teacher support, inequity, PISA
Procedia PDF Downloads 903057 A Cros Sectional Observational Study of Prescription Pattern of Gastro-Protective Drugs with Non-Steroidal Anti-Inflammatory Drugs in Nilgiris, India
Authors: B.S. Roopa
Abstract:
Objectives: To investigate the prevalence of concomitant use of GPDs in patients treated with NSAIDs and GPDs in recommended dose and frequency as prophylaxis. And also to know the association between risk factors and prescription of GPDs in patients treated with NSAIDs. Methods: Study was a prospective, observational, cross-sectional survey. Data from patients with prescription of NSAIDs at the out-patient departments of secondary care Hospital, Nilgiris, India were collected in a specially designed proforma for a period of 45 days. Analysis using χ2 tests for discrete variables. Factors that might be associated with prescription of GPD with NSIADs were assessed in multiple logistic regression models. Results: Three hundred and three patients were included in this study, and the rate of GPD prescription was 89.1%. Most of the patients received H2-receptor antagonist, and, to a lesser degree, antacid and proton pump inhibitor. Patients with history of GI ulcer/bleeding were much more likely to be co-prescribed GPD than those who had no history of GI disorders .Compared with patients who were managed in general outpatient clinic, those managed in Secondary care hospital in Nilgrisis, India were more likely to receive GPD. Conclusions: The prescription rate of GPD with NSAIDs is high. Patients were prescribed with H2RA with dose of 150mg twice daily, which are not effective in reducing the risk of NSAIDs induced gastric ulcer. Only the frequency of NSAIDs prescription was considered significant determinant for the co-prescription with GPAs in patients who are < 65 years and ≥ 65 years old.Keywords: gastro protective agents, non steridol anti inlfammatory agents
Procedia PDF Downloads 2963056 Fuzzy Optimization for Identifying Anticancer Targets in Genome-Scale Metabolic Models of Colon Cancer
Authors: Feng-Sheng Wang, Chao-Ting Cheng
Abstract:
Developing a drug from conception to launch is costly and time-consuming. Computer-aided methods can reduce research costs and accelerate the development process during the early drug discovery and development stages. This study developed a fuzzy multi-objective hierarchical optimization framework for identifying potential anticancer targets in a metabolic model. First, RNA-seq expression data of colorectal cancer samples and their healthy counterparts were used to reconstruct tissue-specific genome-scale metabolic models. The aim of the optimization framework was to identify anticancer targets that lead to cancer cell death and evaluate metabolic flux perturbations in normal cells that have been caused by cancer treatment. Four objectives were established in the optimization framework to evaluate the mortality of cancer cells for treatment and to minimize side effects causing toxicity-induced tumorigenesis on normal cells and smaller metabolic perturbations. Through fuzzy set theory, a multiobjective optimization problem was converted into a trilevel maximizing decision-making (MDM) problem. The applied nested hybrid differential evolution was applied to solve the trilevel MDM problem using two nutrient media to identify anticancer targets in the genome-scale metabolic model of colorectal cancer, respectively. Using Dulbecco’s Modified Eagle Medium (DMEM), the computational results reveal that the identified anticancer targets were mostly involved in cholesterol biosynthesis, pyrimidine and purine metabolisms, glycerophospholipid biosynthetic pathway and sphingolipid pathway. However, using Ham’s medium, the genes involved in cholesterol biosynthesis were unidentifiable. A comparison of the uptake reactions for the DMEM and Ham’s medium revealed that no cholesterol uptake reaction was included in DMEM. Two additional media, i.e., a cholesterol uptake reaction was included in DMEM and excluded in HAM, were respectively used to investigate the relationship of tumor cell growth with nutrient components and anticancer target genes. The genes involved in the cholesterol biosynthesis were also revealed to be determinable if a cholesterol uptake reaction was not induced when the cells were in the culture medium. However, the genes involved in cholesterol biosynthesis became unidentifiable if such a reaction was induced.Keywords: Cancer metabolism, genome-scale metabolic model, constraint-based model, multilevel optimization, fuzzy optimization, hybrid differential evolution
Procedia PDF Downloads 803055 A Sustainable Supplier Selection and Order Allocation Based on Manufacturing Processes and Product Tolerances: A Multi-Criteria Decision Making and Multi-Objective Optimization Approach
Authors: Ravi Patel, Krishna K. Krishnan
Abstract:
In global supply chains, appropriate and sustainable suppliers play a vital role in supply chain development and feasibility. In a larger organization with huge number of suppliers, it is necessary to divide suppliers based on their past history of quality and delivery of each product category. Since performance of any organization widely depends on their suppliers, well evaluated selection criteria and decision-making models lead to improved supplier assessment and development. In this paper, SCOR® performance evaluation approach and ISO standards are used to determine selection criteria for better utilization of supplier assessment by using hybrid model of Analytic Hierchchy Problem (AHP) and Fuzzy Techniques for Order Preference by Similarity to Ideal Solution (FTOPSIS). AHP is used to determine the global weightage of criteria which helps TOPSIS to get supplier score by using triangular fuzzy set theory. Both qualitative and quantitative criteria are taken into consideration for the proposed model. In addition, a multi-product and multi-time period model is selected for order allocation. The optimization model integrates multi-objective integer linear programming (MOILP) for order allocation and a hybrid approach for supplier selection. The proposed MOILP model optimizes order allocation based on manufacturing process and product tolerances as per manufacturer’s requirement for quality product. The integrated model and solution approach are tested to find optimized solutions for different scenario. The detailed analysis shows the superiority of proposed model over other solutions which considered individual decision making models.Keywords: AHP, fuzzy set theory, multi-criteria decision making, multi-objective integer linear programming, TOPSIS
Procedia PDF Downloads 1703054 Quality of Life of Health Professionals during the COVID-19 Pandemic
Authors: Elucir Gir, Myllena Nilce de Freitas Surmano, Laelson Rochelle Milanês Sousa, Mayra Gonçalves Menegueti, Ana Cristina de Oliveira E Silva, Renata Karina Reis
Abstract:
Objective: To analyze the factors associated with the worsening of the quality of life of health professionals in the Southeast region of Brazil during the COVID-19 pandemic and its associated factors. Method: Analytical cross-sectional study carried out with health professionals from the southeastern region of Brazil. Data collection took place through an online survey with a form stored on the Survey Monkey platform. Bivariate analysis was used, and the chi-square test was adopted, followed by the multiple binary logistic regression model based on the stepwise method. Results: 3,493 health professionals participated in the study. Factors associated with worsening quality of life were: Professional Category (Nursing assistant) [OR 1.851 (95%CI 1.035-3.311) p= 0.038]; types of people who provided care (people in general) [OR 1.445 (95%CI 1.072-1.945) p=0.015]; Supply of good quality PPE by the institution where he works (no) [OR 1.595 (CI 95% 1.144-2.223) p= 0.006] and Supply of good quality PPE by the institution where he works (in part) [OR 1.563 (CI 95% 1.257-1.943) p < 0.001]. Conclusion: The factors associated with the worsening of the quality of life of health professionals during the COVID-19 pandemic were: Professional Category (Nursing assistant); types of people who provided assistance (people in general); Supply of sufficient PPE by the institution where you work (no) and Supply of good quality PPE by the institution where you work (in part). Future studies should investigate to what extent QoL can be improved based on modifiable factors.Keywords: COVID-19, quality of life, health professionals, respiratory infections
Procedia PDF Downloads 913053 The Communication of Audit Report: Key Audit Matters in United Kingdom
Authors: L. Sierra, N. Gambetta, M. A. Garcia-Benau, M. Orta
Abstract:
Financial scandals and financial crisis have led to an international debate on the value of auditing. In recent years there have been significant legislative reforms aiming to increase markets’ confidence in audit services. In particular, there has been a significant debate on the need to improve the communication of auditors with audit reports users as a way to improve its informative value and thus, to improve audit quality. The International Auditing and Assurance Standards Board (IAASB) has proposed changes to the audit report standards. The International Standard on Auditing 701, Communicating Key Audit Matters (KAM) in the Independent Auditor's Report, has introduced new concepts that go beyond the auditor's opinion and requires to disclose the risks that, from the auditor's point of view, are more significant in the audited company information. Focusing on the companies included in the Financial Times Stock Exchange 100 index, this study aims to focus on the analysis of the determinants of the number of KAM disclosed by the auditor in the audit report and moreover, the analysis of the determinants of the different type of KAM reported during the period 2013-2015. To test the hypotheses in the empirical research, two different models have been used. The first one is a linear regression model to identify the client’s characteristics, industry sector and auditor’s characteristics that are related to the number of KAM disclosed in the audit report. Secondly, a logistic regression model is used to identify the determinants of the number of each KAM type disclosed in the audit report; in line with the risk-based approach to auditing financial statements, we categorized the KAM in 2 groups: Entity-level KAM and Accounting-level KAM. Regarding the auditor’s characteristics impact on the KAM disclosure, the results show that PwC tends to report a larger number of KAM while KPMG tends to report less KAM in the audit report. Further, PwC reports a larger number of entity-level risk KAM while KPMG reports less account-level risk KAM. The results also show that companies paying higher fees tend to have more entity-level risk KAM and less account-level risk KAM. The materiality level is positively related to the number of account-level risk KAM. Additionally, these study results show that the relationship between client’s characteristics and number of KAM is more evident in account-level risk KAM than in entity-level risk KAM. A highly leveraged company carries a great deal of risk, but due to this, they are usually subject to strong capital providers monitoring resulting in less account-level risk KAM. The results reveal that the number of account-level risk KAM is strongly related to the industry sector in which the company operates assets. This study helps to understand the UK audit market, provides information to auditors and finally, it opens new research avenues in the academia.Keywords: FTSE 100, IAS 701, key audit matters, auditor’s characteristics, client’s characteristics
Procedia PDF Downloads 2313052 The Effect of Accounting Conservatism on Cost of Capital: A Quantile Regression Approach for MENA Countries
Authors: Maha Zouaoui Khalifa, Hakim Ben Othman, Hussaney Khaled
Abstract:
Prior empirical studies have investigated the economic consequences of accounting conservatism by examining its impact on the cost of equity capital (COEC). However, findings are not conclusive. We assume that inconsistent results of such association may be attributed to the regression models used in data analysis. To address this issue, we re-examine the effect of different dimension of accounting conservatism: unconditional conservatism (U_CONS) and conditional conservatism (C_CONS) on the COEC for a sample of listed firms from Middle Eastern and North Africa (MENA) countries, applying quantile regression (QR) approach developed by Koenker and Basset (1978). While classical ordinary least square (OLS) method is widely used in empirical accounting research, however it may produce inefficient and bias estimates in the case of departures from normality or long tail error distribution. QR method is more powerful than OLS to handle this kind of problem. It allows the coefficient on the independent variables to shift across the distribution of the dependent variable whereas OLS method only estimates the conditional mean effects of a response variable. We find as predicted that U_CONS has a significant positive effect on the COEC however, C_CONS has a negative impact. Findings suggest also that the effect of the two dimensions of accounting conservatism differs considerably across COEC quantiles. Comparing results from QR method with those of OLS, this study throws more lights on the association between accounting conservatism and COEC.Keywords: unconditional conservatism, conditional conservatism, cost of equity capital, OLS, quantile regression, emerging markets, MENA countries
Procedia PDF Downloads 3563051 Shear Strength Evaluation of Ultra-High-Performance Concrete Flexural Members Using Adaptive Neuro-Fuzzy System
Authors: Minsu Kim, Hae-Chang Cho, Jae Hoon Chung, Inwook Heo, Kang Su Kim
Abstract:
For safe design of the UHPC flexural members, accurate estimations of their shear strengths are very important. However, since the shear strengths are significantly affected by various factors such as tensile strength of concrete, shear span to depth ratio, volume ratio of steel fiber, and steel fiber factor, the accurate estimations of their shear strengths are very challenging. In this study, therefore, the Adaptive Neuro-Fuzzy System (ANFIS), which has been widely used to solve many complex problems in engineering fields, was introduced to estimate the shear strengths of UHPC flexural members. A total of 32 experimental results has been collected from previous studies for training of the ANFIS algorithm, and the well-trained ANFIS algorithm provided good estimations on the shear strengths of the UHPC test specimens. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(NRF-2016R1A2B2010277).Keywords: ultra-high-performance concrete, ANFIS, shear strength, flexural member
Procedia PDF Downloads 1883050 Optimizing the Scanning Time with Radiation Prediction Using a Machine Learning Technique
Authors: Saeed Eskandari, Seyed Rasoul Mehdikhani
Abstract:
Radiation sources have been used in many industries, such as gamma sources in medical imaging. These waves have destructive effects on humans and the environment. It is very important to detect and find the source of these waves because these sources cannot be seen by the eye. A portable robot has been designed and built with the purpose of revealing radiation sources that are able to scan the place from 5 to 20 meters away and shows the location of the sources according to the intensity of the waves on a two-dimensional digital image. The operation of the robot is done by measuring the pixels separately. By increasing the image measurement resolution, we will have a more accurate scan of the environment, and more points will be detected. But this causes a lot of time to be spent on scanning. In this paper, to overcome this challenge, we designed a method that can optimize this time. In this method, a small number of important points of the environment are measured. Hence the remaining pixels are predicted and estimated by regression algorithms in machine learning. The research method is based on comparing the actual values of all pixels. These steps have been repeated with several other radiation sources. The obtained results of the study show that the values estimated by the regression method are very close to the real values.Keywords: regression, machine learning, scan radiation, robot
Procedia PDF Downloads 803049 Prevalence and Correlates of Anemia in Adolescents in Riyadh City, Kingdom of Saudi Arabia
Authors: Aljohara M. Alquaiz, Tawfik A. M. Khoja, Abdullah Alsharif, Ambreen Kazi, Ashry Gad Mohamed, Hamad Al Mane, Abdullah Aldiris, Shaffi Ahamed Shaikh
Abstract:
Objective: To determine the prevalence and correlates of anemia in male and female adolescents in Riyadh, Kingdom of Saudi Arabia. Design: A cross-sectional community based study setting: Five primary health care centers in Riyadh. Subjects: We invited 203 male and 292 female adolescents aged 13-18 years for interview, anthropometric measurements and complete blood count. Blood hemoglobin was measured with coulter cellular analysis system using light scatter method. Results: Using the WHO cut-off of Hb < 12gms/dl, 16.7%(34) males and 34%(100) females were suffering from anemia. The mean Hb (±SD) in males and females was 13.5(±1.4) and 12.3(±1.2) mg/dl, respectively. Mean(±SD) MCV, MCH, MCHC and RDW in male and female adolescents were 77.8(±6.2) vs76.4(±10.3)fL, 26.1(±2.7) vs25.5(±2.6)pg, 32.7(±2.4) vs32.2(±2.6)g/dL, 13.9(±1.4) vs13.6(±1.3)%, respectively. Multivariate logistic regression revealed that positive family history of iron deficiency anemia(IDA)(OR 4.7,95%CI 1.7–12.2), infrequent intake (OR 3.7,95%CI 1.3–10.0) and never intake of fresh juices(OR 3.5,95%CI 1.4–9.5), 13 to 14 years age (OR 3.1,95%CI 1.2–9.3) were significantly associated with anemia in male adolescents; whereas in females: family history of IDA (OR 3.4, 95%CI 1.5–7.6), being over-weight(OR 3.0,95%CI 1.4–6.1), no intake of fresh juice (OR 2.6,95%CI 1.4–5.1), living in an apartment (OR 2.0, 95%CI 1.1-3.8) or living in small house (OR 2.5, 95%CI 1.2-5.3) were significantly associated with anemia. Conclusion: Anemia is more prevalent among Saudi female adolescents as compared to males. Important factors like positive family history of IDA, overweight, lack of fresh juice intake and low socioeconomic status are significantly associated with anemia in adolescents.Keywords: adolescents, anemia, correlates, obesity
Procedia PDF Downloads 3503048 Streamlining the Fuzzy Front-End and Improving the Usability of the Tools Involved
Authors: Michael N. O'Sullivan, Con Sheahan
Abstract:
Researchers have spent decades developing tools and techniques to aid teams in the new product development (NPD) process. Despite this, it is evident that there is a huge gap between their academic prevalence and their industry adoption. For the fuzzy front-end, in particular, there is a wide range of tools to choose from, including the Kano Model, the House of Quality, and many others. In fact, there are so many tools that it can often be difficult for teams to know which ones to use and how they interact with one another. Moreover, while the benefits of using these tools are obvious to industrialists, they are rarely used as they carry a learning curve that is too steep and they become too complex to manage over time. In essence, it is commonly believed that they are simply not worth the effort required to learn and use them. This research explores a streamlined process for the fuzzy front-end, assembling the most effective tools and making them accessible to everyone. The process was developed iteratively over the course of 3 years, following over 80 final year NPD teams from engineering, design, technology, and construction as they carried a product from concept through to production specification. Questionnaires, focus groups, and observations were used to understand the usability issues with the tools involved, and a human-centred design approach was adopted to produce a solution to these issues. The solution takes the form of physical toolkit, similar to a board game, which allows the team to play through an example of a new product development in order to understand the process and the tools, before using it for their own product development efforts. A complimentary website is used to enhance the physical toolkit, and it provides more examples of the tools being used, as well as deeper discussions on each of the topics, allowing teams to adapt the process to their skills, preferences and product type. Teams found the solution very useful and intuitive and experienced significantly less confusion and mistakes with the process than teams who did not use it. Those with a design background found it especially useful for the engineering principles like Quality Function Deployment, while those with an engineering or technology background found it especially useful for design and customer requirements acquisition principles, like Voice of the Customer. Products developed using the toolkit are added to the website as more examples of how it can be used, creating a loop which helps future teams understand how the toolkit can be adapted to their project, whether it be a small consumer product or a large B2B service. The toolkit unlocks the potential of these beneficial tools to those in industry, both for large, experienced teams and for inexperienced start-ups. It allows users to assess the market potential of their product concept faster and more effectively, arriving at the product design stage with technical requirements prioritized according to their customers’ needs and wants.Keywords: new product development, fuzzy front-end, usability, Kano model, quality function deployment, voice of customer
Procedia PDF Downloads 1083047 Chemometric Regression Analysis of Radical Scavenging Ability of Kombucha Fermented Kefir-Like Products
Authors: Strahinja Kovacevic, Milica Karadzic Banjac, Jasmina Vitas, Stefan Vukmanovic, Radomir Malbasa, Lidija Jevric, Sanja Podunavac-Kuzmanovic
Abstract:
The present study deals with chemometric regression analysis of quality parameters and the radical scavenging ability of kombucha fermented kefir-like products obtained with winter savory (WS), peppermint (P), stinging nettle (SN) and wild thyme tea (WT) kombucha inoculums. Each analyzed sample was described by milk fat content (MF, %), total unsaturated fatty acids content (TUFA, %), monounsaturated fatty acids content (MUFA, %), polyunsaturated fatty acids content (PUFA, %), the ability of free radicals scavenging (RSA Dₚₚₕ, % and RSA.ₒₕ, %) and pH values measured after each hour from the start until the end of fermentation. The aim of the conducted regression analysis was to establish chemometric models which can predict the radical scavenging ability (RSA Dₚₚₕ, % and RSA.ₒₕ, %) of the samples by correlating it with the MF, TUFA, MUFA, PUFA and the pH value at the beginning, in the middle and at the end of fermentation process which lasted between 11 and 17 hours, until pH value of 4.5 was reached. The analysis was carried out applying univariate linear (ULR) and multiple linear regression (MLR) methods on the raw data and the data standardized by the min-max normalization method. The obtained models were characterized by very limited prediction power (poor cross-validation parameters) and weak statistical characteristics. Based on the conducted analysis it can be concluded that the resulting radical scavenging ability cannot be precisely predicted only on the basis of MF, TUFA, MUFA, PUFA content, and pH values, however, other quality parameters should be considered and included in the further modeling. This study is based upon work from project: Kombucha beverages production using alternative substrates from the territory of the Autonomous Province of Vojvodina, 142-451-2400/2019-03, supported by Provincial Secretariat for Higher Education and Scientific Research of AP Vojvodina.Keywords: chemometrics, regression analysis, kombucha, quality control
Procedia PDF Downloads 1423046 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis
Authors: Yakin Hajlaoui, Richard Labib, Jean-François Plante, Michel Gamache
Abstract:
This study introduces the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs' processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW's ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. it employ gradient descent and backpropagation to train ML-IDW, comparing its performance against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. the results highlight the efficacy of ML-IDW, particularly in handling complex spatial datasets, exhibiting lower mean square error in regression and higher F1 score in classification.Keywords: deep learning, multi-layer neural networks, gradient descent, spatial interpolation, inverse distance weighting
Procedia PDF Downloads 523045 Vaccination against Hepatitis B in Tunisian Health Care Workers
Authors: Asma Ammar, Nabiha Bouafia , Asma BenCheikh, Mohamed Mahjoub, Olfa Ezzi, Wadiaa Bannour, Radhia Helali, Mansour Njah
Abstract:
Background: The objective of the present study was to identify factors associated with vaccination against Hepatitis B virus (HBV) among healthcare workers (HWs) in the University Hospital Center (UHC) Farhat Hached Sousse, Tunisia. Methods: We conducted a descriptive cross-sectional study all licensed physicians (n= 206) and a representative sample of paramedical staff (n= 372) exercising at UHC Hached Sousse (Tunisia) during two months (January and February 2014). Data were collected using a self-administered and pre-tested questionnaire, which composed by 21 questions. In order to determinate factors associated with vaccination against hepatitis B among HWs, this questionnaire was based on the Health Belief Model, one of the most classical behavior theories. Logistic regression with the stepwise method of Hosmer and Lemeshow was used to identify the determinants of the use of vaccination against HBV. Results: The response rates were 79.8%. Fifty two percent believe that HBV is frequent in our healthcare units and 60.6% consider it a severe infection. The prevalence of HWs vaccination was 39%, 95% CI [34.49%; 43.5%]. In multivariate analysis, determinants of the use of vaccination against HBV among HWs were young age (p=10-4), male gender (p = 0. 006), high or very high importance accorded to health (p = 0.035), perception membership in a risk group for HBV infection (p = 0.038) and very favorable or favorable opinion about vaccination against HVB (p=10-4). Conclusion: The results of our study should be considered in any strategy for preventing VHB infection in HWs. In the mean time, coverage with standard vaccines should be improved also by supplying complete information on the risks of VHB infection and on the safety and efficacy of vaccination.Keywords: Hepatitis B virus, healthcare workers, prevalence, vaccination
Procedia PDF Downloads 3513044 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models
Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti
Abstract:
In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics
Procedia PDF Downloads 533043 Prevalence and Associated Factors of Chronic Energy Malnutrition among Human Immune Deficiency Virus Infected Pregnant Women in Health Centers of Addis Ababa, Ethiopia
Authors: Getachew Adugna
Abstract:
Background: Chronic energy malnutrition and human immune deficiency virus among pregnant women are highly prevalent in Sub-Saharan Africa, and they are interrelated in a vicious cycle. However, the prevalence of chronic energy malnutrition and its determinant factors among human immune deficiency virus-positive pregnant women is not well studied in Ethiopia and Addis Ababa in particular. Objective: To determine the prevalence & associated factors of chronic energy malnutrition among human immune deficiency virus-positive pregnant women in health centres of Addis Ababa Ethiopia. Methods: An institution-based cross-sectional study was conducted and a systematic random sampling technique was used to select study subjects. A total of 253 study subjects were enrolled in the study—a structured and pre-tested questionnaire collected sociodemographic, maternal health-related, and nutritional-related variables. MUAC measurements were taken and medical charts were reviewed. Bi-variable and multi-variable logistic regression analyses were used to assess the effect of different factors on chronic energy malnutrition. Result: The overall prevalence of chronic energy malnutrition was 32.0%. It was significantly associated with dietary counselling (AOR: 0.062; 95%CI: 0.007, 0.549), CD4 level (AOR: 0.219; 95%CI: 0.025, 1.908), and clinical stage (AOR: 0.127; 95%CI: 0.053, 0.305). Conclusions: The prevalence of chronic energy malnutrition among Human Immune deficiency virus-infected pregnant women in Addis Ababa was high and Nutritional Intervention should be an integral part of the HIV care program.Keywords: chronic energy malnutrition, HIV, MUAC, Addis Ababa
Procedia PDF Downloads 773042 An Adaptive Neuro-Fuzzy Inference System (ANFIS) Modelling of Bleeding
Authors: Seyed Abbas Tabatabaei, Fereydoon Moghadas Nejad, Mohammad Saed
Abstract:
The bleeding prediction of the asphalt is one of the most complex subjects in the pavement engineering. In this paper, an Adaptive Neuro Fuzzy Inference System (ANFIS) is used for modeling the effect of important parameters on bleeding is trained and tested with the experimental results. bleeding index based on the asphalt film thickness differential as target parameter,asphalt content, temperature depth of two centemeter, heavy traffic, dust to effective binder, Marshall strength, passing 3/4 sieves, passing 3/8 sieves,passing 3/16 sieves, passing NO8, passing NO50, passing NO100, passing NO200 as input parameters. Then, we randomly divided empirical data into train and test sections in order to accomplish modeling. We instructed ANFIS network by 72 percent of empirical data. 28 percent of primary data which had been considered for testing the approprativity of the modeling were entered into ANFIS model. Results were compared by two statistical criterions (R2, RMSE) with empirical ones. Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can also be promoted to more general states.Keywords: bleeding, asphalt film thickness differential, Anfis Modeling
Procedia PDF Downloads 2693041 The Impact of Unconditional and Conditional Conservatism on Cost of Equity Capital: A Quantile Regression Approach for MENA Countries
Authors: Khalifa Maha, Ben Othman Hakim, Khaled Hussainey
Abstract:
Prior empirical studies have investigated the economic consequences of accounting conservatism by examining its impact on the cost of equity capital (COEC). However, findings are not conclusive. We assume that inconsistent results of such association may be attributed to the regression models used in data analysis. To address this issue, we re-examine the effect of different dimension of accounting conservatism: unconditional conservatism (U_CONS) and conditional conservatism (C_CONS) on the COEC for a sample of listed firms from Middle Eastern and North Africa (MENA) countries, applying quantile regression (QR) approach developed by Koenker and Basset (1978). While classical ordinary least square (OLS) method is widely used in empirical accounting research, however it may produce inefficient and bias estimates in the case of departures from normality or long tail error distribution. QR method is more powerful than OLS to handle this kind of problem. It allows the coefficient on the independent variables to shift across the distribution of the dependent variable whereas OLS method only estimates the conditional mean effects of a response variable. We find as predicted that U_CONS has a significant positive effect on the COEC however, C_CONS has a negative impact. Findings suggest also that the effect of the two dimensions of accounting conservatism differs considerably across COEC quantiles. Comparing results from QR method with those of OLS, this study throws more lights on the association between accounting conservatism and COEC.Keywords: unconditional conservatism, conditional conservatism, cost of equity capital, OLS, quantile regression, emerging markets, MENA countries
Procedia PDF Downloads 3593040 The Conceptualization of the Term “Feeling Stressed” Among Polyvalent Nursing Students at ISPITS of Rabat-Morocco
Authors: Ktiri Fouad
Abstract:
Objectives: The present study examined how the polyvalent nursing students of the Higher Institute of Nursing Professions and Health Techniques (ISPITS-Rabat-Morocco) conceived the term "feeling stressed.” We checked whether they were referring to a specific type of sensation (emotional, mental, physical) or both or all of them when they said they were stressed at the time they felt it. Materials and methods: A quantitative cross-sectional study was conducted among students of the three years of polyvalent nursing courses. Using a 7-Likert scale, the students were asked to assess their states of stress and the emotional, mental and physical sensations they were experiencing before and after carrying out a mental arithmetic task. An ordinal logistic regression method was used to investigate the association between the states of stress and the 3 types of sensations. Results: 222 polyvalent nursing students out of 307 were included in the experience. Their increased perceived states of stress after carrying out the mental task were found to be significantly associated with emotional distress and mental fatigue and not with physical tiredness. The mental sensation (mental fatigue) was found to have more effects in predicting the likelihood of feeling stressed. In addition, the lower the intensity of emotional or mental sensation, the more likely the students were to experience stress, given that one of both sensations is held constant, whatever the intensity of the physical sensation. We conclude that the polyvalent nursing students refer to mental fatigue and emotional distress and not to physical tiredness when they say they felt stressed, the mental fatigue having more effects. The implications of the study are discussed.Keywords: feeling stressed”, emotional sensation, mental sensation, physical sensation
Procedia PDF Downloads 823039 Landfill Site Selection Using Multi-Criteria Decision Analysis A Case Study for Gulshan-e-Iqbal Town, Karachi
Authors: Javeria Arain, Saad Malik
Abstract:
The management of solid waste is a crucial and essential aspect of urban environmental management especially in a city with an ever increasing population such as Karachi. The total amount of municipal solid waste generated from Gulshan e Iqbal town on average is 444.48 tons per day and landfill sites are a widely accepted solution for final disposal of this waste. However, an improperly selected site can have immense environmental, economical and ecological impacts. To select an appropriate landfill site a number of factors should be kept into consideration to minimize the potential hazards of solid waste. The purpose of this research is to analyse the study area for the construction of an appropriate landfill site for disposal of municipal solid waste generated from Gulshan e-Iqbal Town by using geospatial techniques considering hydrological, geological, social and geomorphological factors. This was achieved using analytical hierarchy process and fuzzy analysis as a decision support tool with integration of geographic information sciences techniques. Eight most critical parameters, relevant to the study area, were selected. After generation of thematic layers for each parameter, overlay analysis was performed in ArcGIS 10.0 software. The results produced by both methods were then compared with each other and the final suitability map using AHP shows that 19% of the total area is Least Suitable, 6% is Suitable but avoided, 46% is Moderately Suitable, 26% is Suitable, 2% is Most Suitable and 1% is Restricted. In comparison the output map of fuzzy set theory is not in crisp logic rather it provides an output map with a range of 0-1, where 0 indicates least suitable and 1 indicates most suitable site. Considering the results it is deduced that the northern part of the city is appropriate for constructing the landfill site though a final decision for an optimal site could be made after field survey and considering economical and political factors.Keywords: Analytical Hierarchy Process (AHP), fuzzy set theory, Geographic Information Sciences (GIS), Multi-Criteria Decision Analysis (MCDA)
Procedia PDF Downloads 5043038 Self‑reported Auditory Problems Are Associated with Adverse Mental Health Outcomes and Alcohol Misuse in the UK Armed Forces
Authors: Fred N. H. Parker, Nicola T. Fear, S. A. M. Stevelink, L. Rafferty
Abstract:
Purpose Auditory problems, such as hearing loss and tinnitus, have been associated with mental health problems and alcohol misuse in the UK general population and in the US Armed Forces; however, few studies have examined these associations within the UK Armed Forces. The present study examined the association between auditory problems and probable common mental disorders, post-traumatic stress disorder and alcohol misuse. Methods 5474 serving and ex-service personnel from the UK Armed Forces were examined, selected from those who responded to phase two (data collection 2007–09) and phase three (2014–16) of a military cohort study. Multivariable logistic regression was used to examine the association between auditory problems at phase two and mental health problems at phase three. Results 9.7% of participants reported ever experiencing hearing problems alone, 7.9% reported tinnitus within the last month alone, and 7.8% reported hearing problems with tinnitus. After adjustment, hearing problems with tinnitus at phase two was associated with increased odds of probable common mental disorders (AOR = 1.50, 95% CI 1.09–2.08), post-traumatic stress disorder (AOR = 2.30, 95% CI 1.41–3.76), and alcohol misuse (AOR = 1.94, 95% CI 1.28–2.96) at phase three. Tinnitus alone was associated with probable post-traumatic stress disorder (AOR = 1.80, 95% CI 1.03–3.15); however, hearing problems alone were not associated with any outcomes of interest. Conclusions The association between auditory problems and mental health problems emphasizes the importance of the prevention of auditory problems in the Armed Forces: through enhanced audiometric screening, improved hearing protection equipment, and greater levels of utilization of such equipment.Keywords: armed forces, hearing problems, tinnitus, mental health, alcohol misuse
Procedia PDF Downloads 1663037 A Preliminary Study of the Subcontractor Evaluation System for the International Construction Market
Authors: Hochan Seok, Woosik Jang, Seung-Heon Han
Abstract:
The stagnant global construction market has intensified competition since 2008 among firms that aim to win overseas contracts. Against this backdrop, subcontractor selection is identified as one of the most critical success factors in overseas construction project. However, it is difficult to select qualified subcontractors due to the lack of evaluation standards and reliability. This study aims to identify the problems associated with existing subcontractor evaluations using a correlations analysis and a multiple regression analysis with pre-qualification and performance evaluation of 121 firms in six countries.Keywords: subcontractor evaluation system, pre-qualification, performance evaluation, correlation analysis, multiple regression analysis
Procedia PDF Downloads 370