Search results for: explainable machine learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8617

Search results for: explainable machine learning

7597 Analyzing Corporate Employee Preferences for E-Learning Platforms: A Survey-Based Approach to Knowledge Updation

Authors: Sandhyarani Mahananda

Abstract:

This study investigates the preferences of corporate employees for knowledge updates on the e-learning platform. The researchers explore the factors influencing their platform choices through a survey administered to employees across diverse industries and job roles. The survey examines preferences for specific platforms (e.g., Coursera, Udemy, LinkedIn Learning). It assesses the importance of content relevance, platform usability, mobile accessibility, and integration with workplace learning management systems. Preliminary findings indicate a preference for platforms that offer curated, job-relevant content, personalized learning paths, and seamless integration with employer-provided learning resources. This research provides valuable insights for organizations seeking to optimize their investment in e-learning and enhance employee knowledge development.

Keywords: corporate training, e-learning platforms, employee preferences, knowledge updation, professional development

Procedia PDF Downloads 28
7596 Deep Learning Based Fall Detection Using Simplified Human Posture

Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif

Abstract:

Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.

Keywords: fall detection, machine learning, deep learning, pose estimation, tracking

Procedia PDF Downloads 191
7595 The Application of ICT in E-Assessment and E-Learning in Language Learning and Teaching

Authors: Seyyed Hassan Seyyedrezaei

Abstract:

The advent of computer and ICT thereafter has introduced many irrevocable changes in learning and teaching. There is substantially growing need for the use of IT and ICT in language learning and teaching. In other words, the integration of Information Technology (IT) into online teaching is of vital importance for education and assessment. Considering the fact that the image of education is undergone drastic changes by the advent of technology, education systems and teachers move beyond the walls of traditional classes and methods in order to join with other educational centers to revitalize education. Given the advent of distance learning, online courses and virtual universities, e-assessment has taken a prominent place in effective teaching and meeting the learners' educational needs. The purpose of this paper is twofold: first, scrutinizing e-learning, it discusses how and why e-assessment is becoming widely used by educationalists and administrators worldwide. As a second purpose, a couple of effective strategies for online assessment will be enumerated.

Keywords: e-assessment, e learning, ICT, online assessment

Procedia PDF Downloads 573
7594 Geophysical Methods and Machine Learning Algorithms for Stuck Pipe Prediction and Avoidance

Authors: Ammar Alali, Mahmoud Abughaban

Abstract:

Cost reduction and drilling optimization is the goal of many drilling operators. Historically, stuck pipe incidents were a major segment of non-productive time (NPT) associated costs. Traditionally, stuck pipe problems are part of the operations and solved post-sticking. However, the real key to savings and success is in predicting the stuck pipe incidents and avoiding the conditions leading to its occurrences. Previous attempts in stuck-pipe predictions have neglected the local geology of the problem. The proposed predictive tool utilizes geophysical data processing techniques and Machine Learning (ML) algorithms to predict drilling activities events in real-time using surface drilling data with minimum computational power. The method combines two types of analysis: (1) real-time prediction, and (2) cause analysis. Real-time prediction aggregates the input data, including historical drilling surface data, geological formation tops, and petrophysical data, from wells within the same field. The input data are then flattened per the geological formation and stacked per stuck-pipe incidents. The algorithm uses two physical methods (stacking and flattening) to filter any noise in the signature and create a robust pre-determined pilot that adheres to the local geology. Once the drilling operation starts, the Wellsite Information Transfer Standard Markup Language (WITSML) live surface data are fed into a matrix and aggregated in a similar frequency as the pre-determined signature. Then, the matrix is correlated with the pre-determined stuck-pipe signature for this field, in real-time. The correlation used is a machine learning Correlation-based Feature Selection (CFS) algorithm, which selects relevant features from the class and identifying redundant features. The correlation output is interpreted as a probability curve of stuck pipe incidents prediction in real-time. Once this probability passes a fixed-threshold defined by the user, the other component, cause analysis, alerts the user of the expected incident based on set pre-determined signatures. A set of recommendations will be provided to reduce the associated risk. The validation process involved feeding of historical drilling data as live-stream, mimicking actual drilling conditions, of an onshore oil field. Pre-determined signatures were created for three problematic geological formations in this field prior. Three wells were processed as case studies, and the stuck-pipe incidents were predicted successfully, with an accuracy of 76%. This accuracy of detection could have resulted in around 50% reduction in NPT, equivalent to 9% cost saving in comparison with offset wells. The prediction of stuck pipe problem requires a method to capture geological, geophysical and drilling data, and recognize the indicators of this issue at a field and geological formation level. This paper illustrates the efficiency and the robustness of the proposed cross-disciplinary approach in its ability to produce such signatures and predicting this NPT event.

Keywords: drilling optimization, hazard prediction, machine learning, stuck pipe

Procedia PDF Downloads 236
7593 Students’ Perceptions of Using Wiki Technology to Enhance Language Learning

Authors: Hani Mustafa, Cristina Gonzalez Ruiz, Estelle Bech

Abstract:

The growing influence of digital technologies has made learning and interaction more accessible, resulting in effective collaboration if properly managed. Technology enabled learning has become an important conduit for learning, including collaborative learning. The use of wiki technology, for example, has opened a new learning platform that enables the integration of social, linguistic, and cognitive processes of language learning. It encourages students to collaborate in the construction, analysis, and understanding of knowledge. But to what extent is the use of wikis effective in promoting collaborative learning among students. In addition, how do students perceive this technology in enhancing their language learning? In this study, students were be given a wiki project to complete collaboratively with their group members. Students had to write collaboratively to produce and present a seven-day travel plan in which they had to describe places to visit and things to do to explore the best historical and cultural aspects of the country. The study involves students learning French, Malay, and Spanish as a foreign language. In completing this wiki project, students will move from passive learning of language to real engagement with classmates, requiring them to collaborate and negotiate effectively with one another. The objective of the study is to ascertain to what extent does wiki technology helped in promoting collaborative learning and improving language skills from students’ perception. It is found that while there was improvement in students language skills, the overall experience was less positive due to unfamiliarity with a new learning tool.

Keywords: collaborative learning, foreign language, wiki, teaching

Procedia PDF Downloads 139
7592 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs

Authors: Agastya Pratap Singh

Abstract:

This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.

Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications

Procedia PDF Downloads 32
7591 Curriculum-Based Multi-Agent Reinforcement Learning for Robotic Navigation

Authors: Hyeongbok Kim, Lingling Zhao, Xiaohong Su

Abstract:

Deep reinforcement learning has been applied to address various problems in robotics, such as autonomous driving and unmanned aerial vehicle. However, because of the sparse reward penalty for a collision with obstacles during the navigation mission, the agent fails to learn the optimal policy or requires a long time for convergence. Therefore, using obstacles and enemy agents, in this paper, we present a curriculum-based boost learning method to effectively train compound skills during multi-agent reinforcement learning. First, to enable the agents to solve challenging tasks, we gradually increased learning difficulties by adjusting reward shaping instead of constructing different learning environments. Then, in a benchmark environment with static obstacles and moving enemy agents, the experimental results showed that the proposed curriculum learning strategy enhanced cooperative navigation and compound collision avoidance skills in uncertain environments while improving learning efficiency.

Keywords: curriculum learning, hard exploration, multi-agent reinforcement learning, robotic navigation, sparse reward

Procedia PDF Downloads 95
7590 E-Learning in Primary Science: Teachers versus Students

Authors: Winnie Wing Mui So, Yu Chen

Abstract:

This study investigated primary school teachers’ and students’ perceptions of science learning in an e-learning environment. This study used a multiple case study design and involved eight science teachers and their students from four Hong Kong primary schools. The science topics taught included ‘season and weather’ ‘force and movement’, ‘solar and lunar eclipse’ and ‘living things and habitats’. Data were collected through lesson observations, interviews with teachers, and interviews with students. Results revealed some differences between the teachers’ and the students’ perceptions regarding the usefulness of e-learning resources, the organization of student-centred activities, and the impact on engagement and interactions in lessons. The findings have implications for the more effective creation of e-learning environments for science teaching and learning in primary schools.

Keywords: e-learning, science education, teacher' and students' perceptions, primary schools

Procedia PDF Downloads 205
7589 Design and Experiment of Orchard Gas Explosion Subsoiling and Fertilizer Injection Machine

Authors: Xiaobo Xi, Ruihong Zhang

Abstract:

At present, the orchard ditching and fertilizing technology has a series of problems, such as easy tree roots damage, high energy consumption and uneven fertilizing. In this paper, a gas explosion subsoiling and fertilizer injection machine was designed, which used high pressure gas to shock soil body and then injected fertilizer. The drill pipe mechanism with pneumatic chipping hammer excitation and hydraulic assistance was designed to drill the soil. The operation of gas and liquid fertilizer supply was controlled by PLC system. The 3D model of the whole machine was established by using SolidWorks software. The machine prototype was produced, and field experiments were carried out. The results showed that soil fractures were created and diffused by gas explosion, and the subsoiling effect radius reached 40 cm under the condition of 0.8 MPa gas pressure and 30 cm drilling depth. What’s more, the work efficiency is 0.048 hm2/h at least. This machine could meet the agronomic requirements of orchard, garden and city greening fertilization, and the tree roots were not easily damaged and the fertilizer evenly distributed, which was conducive to nutrient absorption of root growth.

Keywords: gas explosion subsoiling, fertigation, pneumatic chipping hammer exciting, soil compaction

Procedia PDF Downloads 212
7588 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor

Authors: Yash Jain

Abstract:

The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.

Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier

Procedia PDF Downloads 166
7587 Vector Control of Two Five Phase PMSM Connected in Series Powered by Matrix Converter Application to the Rail Traction

Authors: S. Meguenni, A. Djahbar, K. Tounsi

Abstract:

Electric railway traction systems are complex; they have electrical couplings, magnetic and solid mechanics. These couplings impose several constraints that complicate the modeling and analysis of these systems. An example of drive systems, which combine the advantages of the use of multiphase machines, power electronics and computing means, is mono convert isseur multi-machine system which can control a fully decoupled so many machines whose electric windings are connected in series. In this approach, our attention especially on modeling and independent control of two five phase synchronous machine with permanent magnet connected in series and fed by a matrix converter application to the rail traction (bogie of a locomotive BB 36000).

Keywords: synchronous machine, vector control Multi-machine/ Multi-inverter, matrix inverter, Railway traction

Procedia PDF Downloads 376
7586 Using Artificial Intelligence Technology to Build the User-Oriented Platform for Integrated Archival Service

Authors: Lai Wenfang

Abstract:

Tthis study will describe how to use artificial intelligence (AI) technology to build the user-oriented platform for integrated archival service. The platform will be launched in 2020 by the National Archives Administration (NAA) in Taiwan. With the progression of information communication technology (ICT) the NAA has built many systems to provide archival service. In order to cope with new challenges, such as new ICT, artificial intelligence or blockchain etc. the NAA will try to use the natural language processing (NLP) and machine learning (ML) skill to build a training model and propose suggestions based on the data sent to the platform. NAA expects the platform not only can automatically inform the sending agencies’ staffs which records catalogues are against the transfer or destroy rules, but also can use the model to find the details hidden in the catalogues and suggest NAA’s staff whether the records should be or not to be, to shorten the auditing time. The platform keeps all the users’ browse trails; so that the platform can predict what kinds of archives user could be interested and recommend the search terms by visualization, moreover, inform them the new coming archives. In addition, according to the Archives Act, the NAA’s staff must spend a lot of time to mark or remove the personal data, classified data, etc. before archives provided. To upgrade the archives access service process, the platform will use some text recognition pattern to black out automatically, the staff only need to adjust the error and upload the correct one, when the platform has learned the accuracy will be getting higher. In short, the purpose of the platform is to deduct the government digital transformation and implement the vision of a service-oriented smart government.

Keywords: artificial intelligence, natural language processing, machine learning, visualization

Procedia PDF Downloads 179
7585 The Mental Workload of ICU Nurses in Performing Human-Machine Tasks: A Cross-sectional Survey

Authors: Yan Yan, Erhong Sun, Lin Peng, Xuchun Ye

Abstract:

Aims: The present study aimed to explore Intensive Care Unit(ICU) nurses’ mental workload (MWL) and associated factors with it in performing human-machine tasks. Background: A wide range of emerging technologies have penetrated widely in the field of health care, and ICU nurses are facing a dramatic increase in nursing human-machine tasks. However, there is still a paucity of literature reporting on the general MWL of ICU nurses performing human-machine tasks and the associated influencing factors. Methods: A cross-sectional survey was employed. The data was collected from January to February 2021 from 9 tertiary hospitals in 6 provinces (Shanghai, Gansu, Guangdong, Liaoning, Shandong, and Hubei). Two-stage sampling was used to recruit eligible ICU nurses (n=427). The data were collected with an electronic questionnaire comprising sociodemographic characteristics and the measures of MWL, self-efficacy, system usability, and task difficulty. The univariate analysis, two-way analysis of variance(ANOVA), and a linear mixed model were used for data analysis. Results: Overall, the mental workload of ICU nurses in performing human-machine tasks was medium (score 52.04 on a 0-100 scale). Among the typical nursing human-machine tasks selected, the MWL of ICU nurses in completing first aid and life support tasks (‘Using a defibrillator to defibrillate’ and ‘Use of ventilator’) was significantly higher than others (p < .001). And ICU nurses’ MWL in performing human-machine tasks was also associated with age (p = .001), professional title (p = .002), years of working in ICU (p < .001), willingness to study emerging technology actively (p = .006), task difficulty (p < .001), and system usability (p < .001). Conclusion: The MWL of ICU nurses is at a moderate level in the context of a rapid increase in nursing human-machine tasks. However, there are significant differences in MWL when performing different types of human-machine tasks, and MWL can be influenced by a combination of factors. Nursing managers need to develop intervention strategies in multiple ways. Implications for practice: Multidimensional approaches are required to perform human-machine tasks better, including enhancing nurses' willingness to learn emerging technologies actively, developing training strategies that vary with tasks, and identifying obstacles in the process of human-machine system interaction.

Keywords: mental workload(MWL), nurse, ICU, human-machine, tasks, cross-sectional study, linear mixed model, China

Procedia PDF Downloads 110
7584 Predictive Models of Ruin Probability in Retirement Withdrawal Strategies

Authors: Yuanjin Liu

Abstract:

Retirement withdrawal strategies are very important to minimize the probability of ruin in retirement. The ruin probability is modeled as a function of initial withdrawal age, gender, asset allocation, inflation rate, and initial withdrawal rate. The ruin probability is obtained based on the 2019 period life table for the Social Security, IRS Required Minimum Distribution (RMD) Worksheets, US historical bond and equity returns, and inflation rates using simulation. Several popular machine learning algorithms of the generalized additive model, random forest, support vector machine, extreme gradient boosting, and artificial neural network are built. The model validation and selection are based on the test errors using hyperparameter tuning and train-test split. The optimal model is recommended for retirees to monitor the ruin probability. The optimal withdrawal strategy can be obtained based on the optimal predictive model.

Keywords: ruin probability, retirement withdrawal strategies, predictive models, optimal model

Procedia PDF Downloads 77
7583 A Physiological Approach for Early Detection of Hemorrhage

Authors: Rabie Fadil, Parshuram Aarotale, Shubha Majumder, Bijay Guargain

Abstract:

Hemorrhage is the loss of blood from the circulatory system and leading cause of battlefield and postpartum related deaths. Early detection of hemorrhage remains the most effective strategy to reduce mortality rate caused by traumatic injuries. In this study, we investigated the physiological changes via non-invasive cardiac signals at rest and under different hemorrhage conditions simulated through graded lower-body negative pressure (LBNP). Simultaneous electrocardiogram (ECG), photoplethysmogram (PPG), blood pressure (BP), impedance cardiogram (ICG), and phonocardiogram (PCG) were acquired from 10 participants (age:28 ± 6 year, weight:73 ± 11 kg, height:172 ± 8 cm). The LBNP protocol consisted of applying -20, -30, -40, -50, and -60 mmHg pressure to the lower half of the body. Beat-to-beat heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean aerial pressure (MAP) were extracted from ECG and blood pressure. Systolic amplitude (SA), systolic time (ST), diastolic time (DT), and left ventricle Ejection time (LVET) were extracted from PPG during each stage. Preliminary results showed that the application of -40 mmHg i.e. moderate stage simulated hemorrhage resulted significant changes in HR (85±4 bpm vs 68 ± 5bpm, p < 0.01), ST (191 ± 10 ms vs 253 ± 31 ms, p < 0.05), LVET (350 ± 14 ms vs 479 ± 47 ms, p < 0.05) and DT (551 ± 22 ms vs 683 ± 59 ms, p < 0.05) compared to rest, while no change was observed in SA (p > 0.05) as a consequence of LBNP application. These findings demonstrated the potential of cardiac signals in detecting moderate hemorrhage. In future, we will analyze all the LBNP stages and investigate the feasibility of other physiological signals to develop a predictive machine learning model for early detection of hemorrhage.

Keywords: blood pressure, hemorrhage, lower-body negative pressure, LBNP, machine learning

Procedia PDF Downloads 168
7582 Learning Model Applied to Cope with Professional Knowledge Gaps in Final Project of Information System Students

Authors: Ilana Lavy, Rami Rashkovits

Abstract:

In this study, we describe Information Systems students' learning model which was applied by students in order to cope with professional knowledge gaps in the context of their final project. The students needed to implement a software system according to specifications and design they have made beforehand. They had to select certain technologies and use them. Most of them decided to use programming environments that were learned during their academic studies. The students had to cope with various levels of knowledge gaps. For that matter they used learning strategies that were organized by us as a learning model which includes two phases each suitable for different learning tasks. We analyze the learning model, describing advantages and shortcomings as perceived by the students, and provide excerpts to support our findings.

Keywords: knowledge gaps, independent learner skills, self-regulated learning, final project

Procedia PDF Downloads 479
7581 The Influence of Machine Tool Composite Stiffness to the Surface Waviness When Processing Posture Constantly Switching

Authors: Song Zhiyong, Zhao Bo, Du Li, Wang Wei

Abstract:

Aircraft structures generally have complex surface. Because of constantly switching postures of motion axis, five-axis CNC machine’s composite stiffness changes during CNC machining. It gives rise to different amplitude of vibration of processing system, which further leads to the different effects on surface waviness. In order to provide a solution for this problem, we take the “S” shape test specimen’s CNC machining for the object, through calculate the five axis CNC machine’s composite stiffness and establish vibration model, we analysis of the influence mechanism between vibration amplitude and surface waviness. Through carry out the surface quality measurement experiments, verify the validity and accuracy of the theoretical analysis. This paper’s research results provide a theoretical basis for surface waviness control.

Keywords: five axis CNC machine, “S” shape test specimen, composite stiffness, surface waviness

Procedia PDF Downloads 391
7580 Designing, Manufacturing and Testing a Portable Tractor Unit Biocoal Harvester Combine of Agriculture and Animal Wastes

Authors: Ali Moharrek, Hosein Mobli, Ali Jafari, Ahmad Tabataee Far

Abstract:

Biomass is a material generally produced by plants living on soil or water and their derivatives. The remains of agricultural and forest products contain biomass which is changeable into fuel. Besides, you can obtain biogas and ethanol from the charcoal produced from biomass through specific actions. this technology was designed for as a useful Native Fuel and Technology in Energy disasters Management Due to the sudden interruption of the flow of heat energy One of the problems confronted by mankind in the future is the limitations of fossil energy which necessitates production of new energies such as biomass. In order to produce biomass from the remains of the plants, different methods shall be applied considering factors like cost of production, production technology, area of requirement, speed of work easy utilization, ect. In this article we are focusing on designing a biomass briquetting portable machine. The speed of installation of the machine on a tractor is estimated as 80 MF 258. Screw press is used in designing this machine. The needed power for running this machine which is estimated as 17.4 kW is provided by the power axis of tractor. The pressing speed of the machine is considered to be 375 RPM Finally the physical and mechanical properties of the product were compared with utilized material which resulted in appropriate outcomes. This machine is designed for Gathering Raw materials of the ground by Head Section. During delivering the raw materials to Briquetting section, they Crushed, Milled & Pre Heated in Transmission section. This machine is a Combine Portable Tractor unit machine and can use all type of Agriculture, Forest & Livestock Animals Resides as Raw material to make Bio fuel. The Briquetting Section was manufactured and it successfully made bio fuel of Sawdust. Also this machine made a biofuel with Ethanol of sugarcane Wastes. This Machine is using P.T.O power source for Briquetting and Hydraulic Power Source for Pre Processing of Row Materials.

Keywords: biomass, briquette, screw press, sawdust, animal wastes, portable, tractors

Procedia PDF Downloads 316
7579 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms

Authors: Selim M. Khan

Abstract:

Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.

Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America

Procedia PDF Downloads 98
7578 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments

Authors: Rahul Paul, Peter Mctaggart, Luke Skinner

Abstract:

Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.

Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry

Procedia PDF Downloads 102
7577 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters

Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu

Abstract:

Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.

Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning

Procedia PDF Downloads 205
7576 A Bibliometric Analysis of Research on E-learning in Physics Education: Trends, Patterns, and Future Directions

Authors: Siti Nurjanah, Supahar

Abstract:

E-learning has become an increasingly popular mode of instruction, particularly in the field of physics education, where it offers opportunities for interactive and engaging learning experiences. This research aims to analyze the trends of research that investigated e-learning in physics education. Data was extracted from Scopus's database using the keywords "physics" and "e-learning". Of the 380 articles obtained based on the search criteria, a trend analysis of the research was carried out with the help of RStudio using the biblioshiny package and VosViewer software. Analysis showed that publications on this topic have increased significantly from 2014 to 2021. The publication was dominated by researchers from the United States. The main journal that publishes articles on this topic is Proceedings Frontiers in Education Conference fie. The most widely cited articles generally focus on the effectiveness of Moodle for physics learning. Overall, this research provides an in-depth understanding of the trends and key findings of research related to e-learning in physics.

Keywords: bibliometric analysis, physics education, biblioshiny, E-learning

Procedia PDF Downloads 45
7575 Learning for the Future: Flipping English Language Learning Classrooms for Future

Authors: Natarajan Hema, Tamilarasan Karunakaran

Abstract:

Technology is remodeling the process of teaching and learning. An inflection point is faced where technological interventions are rewiring learning process in formal classrooms. Employment depends on dynamic learning capability. Transforming the functionalities of teaching-learning-assessment through innovation is needed to modify the roles of teacher to enabler and learner to the dynamic learner. This makeover is vital for English language teaching where English is acquired as a skill, exercised as ability and get stabilized as a competence. This reshaping could be achieved through providing autonomy to participants of learning. This paper explores parameters and components aiding such a transformation. The differentiated responsibilities and other critical learning support systems are projected as viable options. New age teaching practices are studied for feasibilities to aid transformation and being put forth an inter-operable teaching-learning system for a learner-centric ELT classrooms. LOTUS model developed by the authors is also studied for its inclusiveness to promote skill acquisition.

Keywords: ELT methodology, communicative competence, skill acquisition , new age teaching

Procedia PDF Downloads 360
7574 A Knowledge-As-A-Service Support Framework for Ambient Learning in Kenya

Authors: Lucy W. Mburu, Richard Karanja, Simon N. Mwendia

Abstract:

Over recent years, learners have experienced a constant need to access on demand knowledge that is fully aligned with the paradigm of cloud computing. As motivated by the global sustainable development goal to ensure inclusive and equitable learning opportunities, this research has developed a framework hinged on the knowledge-as-a-service architecture that utilizes knowledge from ambient learning systems. Through statistical analysis and decision tree modeling, the study discovers influential variables for ambient learning among university students. The main aim is to generate a platform for disseminating and exploiting the available knowledge to aid the learning process and, thus, to improve educational support on the ambient learning system. The research further explores how collaborative effort can be used to form a knowledge network that allows access to heterogeneous sources of knowledge, which benefits knowledge consumers, such as the developers of ambient learning systems.

Keywords: actionable knowledge, ambient learning, cloud computing, decision trees, knowledge as a service

Procedia PDF Downloads 163
7573 A West Coast Estuarine Case Study: A Predictive Approach to Monitor Estuarine Eutrophication

Authors: Vedant Janapaty

Abstract:

Estuaries are wetlands where fresh water from streams mixes with salt water from the sea. Also known as “kidneys of our planet”- they are extremely productive environments that filter pollutants, absorb floods from sea level rise, and shelter a unique ecosystem. However, eutrophication and loss of native species are ailing our wetlands. There is a lack of uniform data collection and sparse research on correlations between satellite data and in situ measurements. Remote sensing (RS) has shown great promise in environmental monitoring. This project attempts to use satellite data and correlate metrics with in situ observations collected at five estuaries. Images for satellite data were processed to calculate 7 bands (SIs) using Python. Average SI values were calculated per month for 23 years. Publicly available data from 6 sites at ELK was used to obtain 10 parameters (OPs). Average OP values were calculated per month for 23 years. Linear correlations between the 7 SIs and 10 OPs were made and found to be inadequate (correlation = 1 to 64%). Fourier transform analysis on 7 SIs was performed. Dominant frequencies and amplitudes were extracted for 7 SIs, and a machine learning(ML) model was trained, validated, and tested for 10 OPs. Better correlations were observed between SIs and OPs, with certain time delays (0, 3, 4, 6 month delay), and ML was again performed. The OPs saw improved R² values in the range of 0.2 to 0.93. This approach can be used to get periodic analyses of overall wetland health with satellite indices. It proves that remote sensing can be used to develop correlations with critical parameters that measure eutrophication in situ data and can be used by practitioners to easily monitor wetland health.

Keywords: estuary, remote sensing, machine learning, Fourier transform

Procedia PDF Downloads 108
7572 Student Diversity in Higher Education: The Impact of Digital Elements on Student Learning Behavior and Subject-Specific Preferences

Authors: Pia Kastl

Abstract:

By combining face-to-face sessions with digital selflearning units, the learning process can be enhanced and learning success improved. Potentials of blended learning are the flexibility and possibility to get in touch with lecturers and fellow students face-toface. It also offers the opportunity to individualize and self-regulate the learning process. Aim of this article is to analyse how different learning environments affect students’ learning behavior and how digital tools can be used effectively. The analysis also considers the extent to which the field of study affects the students’ preferences. Semi-structured interviews were conducted with students from different disciplines at two German universities (N= 60). The questions addressed satisfaction and perception of online, faceto-face and blended learning courses. In addition, suggestions for improving learning experience and the use of digital tools in the different learning environments were surveyed. The results show that being present on campus has a positive impact on learning success and online teaching facilitates flexible learning. Blended learning can combine the respective benefits, although one challenge is to keep the time investment within reasonable limits. The use of digital tools differs depending on the subject. Medical students are willing to use digital tools to improve their learning success and voluntarily invest more time. Students of the humanities and social sciences, on the other hand, are reluctant to invest additional time. They do not see extra study material as an additional benefit their learning success. This study illustrates how these heterogenous demands on learning environments can be met. In addition, potential for improvement will be identified in order to foster both learning process and learning success. Learning environments can be meaningfully enriched with digital elements to address student diversity in higher education.

Keywords: blended learning, higher education, diversity, learning styles

Procedia PDF Downloads 73
7571 Bridging the Digital Divide in India: Issus and Challenges

Authors: Parveen Kumar

Abstract:

The cope the rapid change of technology and to control the ephemeral rate of information generation, librarians along with their professional colleagues need to equip themselves as per the requirement of the electronic information society. E-learning is purely based on computer and communication technologies. The terminologies like computer based learning. It is the delivery of content via all electronic media through internet, internet, Extranets television broadcast, CD-Rom documents, etc. E-learning poses lot of issues in the transformation of literature or knowledge from the conventional medium to ICT based format and web based services.

Keywords: e-learning, digital libraries, online learning, electronic information society

Procedia PDF Downloads 511
7570 Enhancing Organizational Performance through Adaptive Learning: A Case Study of ASML

Authors: Ramin Shadani

Abstract:

This study introduces adaptive performance as a key organizational performance dimension and explores the relationship between the dimensions of a learning organization and adaptive performance. A survey was therefore conducted using the dimensions of the Learning Organization Questionnaire (DLOQ), followed by factor analysis and structural equation modeling in order to investigate the dynamics between learning organization practices and adaptive performance. Results confirm that adaptive performance is indeed one important dimension of organizational performance. The study also shows that perceived knowledge and adaptive performance mediate the positive relationship between the practices of a learning organization with perceived financial performance. We extend existing DLOQ research by demonstrating that adaptive performance, as a nonfinancial organizational learning outcome, has a significant impact on financial performance. Our study also provides additional validation of the measures of DLOQ's performance. Indeed, organizations need to take a glance at how the activities of learning and development can provide better overall improvement in performance, especially in enhancing adaptive capability. The study has provided requisite empirical support that activities of learning and development within organizations allow much-improved intangible performance outcomes, especially through adaptive performance.

Keywords: adaptive performance, continuous learning, financial performance, leadership style, organizational learning, organizational performance

Procedia PDF Downloads 37
7569 The Impact of Blended Learning on the Perception of High School Learners Towards Entrepreneurship

Authors: Rylyne Mande Nchu, Robertson Tengeh, Chux Iwu

Abstract:

Blended learning is a global phenomenon and is essential to many institutes of learning as an additional method of teaching that complements more traditional methods of learning. In this paper, the lack of practice of a blended learning approach to entrepreneurship education and how it impacts learners' perception of being entrepreneurial. E-learning is in its infancy within the secondary and high school sectors in South Africa. The conceptual framework of the study is based on theoretical aspects of systemic-constructivist learning implemented in an interactive online learning environment in an entrepreneurship education subject. The formative evaluation research was conducted implementing mixed methods of research (quantitative and qualitative) and it comprised a survey of high school learners and informant interviewing with entrepreneurs. Theoretical analysis of literature provides features necessary for creating interactive blended learning environments to be used in entrepreneurship education subject. Findings of the study show that learners do not always objectively evaluate their capacities. Special attention has to be paid to the development of learners’ computer literacy as well as to the activities that would bring online learning to practical training. Needs analysis shows that incorporating blended learning in entrepreneurship education may have a positive perception of entrepreneurship.

Keywords: blended learning, entrepreneurship education, entrepreneurship intention, entrepreneurial skills

Procedia PDF Downloads 114
7568 Perceived Benefits of Technology Enhanced Learning by Learners in Uganda: Three Band Benefits

Authors: Kafuko M. Maria, Namisango Fatuma, Byomire Gorretti

Abstract:

Mobile learning (m-learning) is steadily growing and has undoubtedly derived benefits to learners and tutors in different learning environments. This paper investigates the variation in benefits derived from enhanced classroom learning through use of m-learning platforms in the context of a developing country owing to the fact that it is still in its initial stages. The study focused on how basic technology-enhanced pedagogic innovation like cell phone-based learning is enhancing classroom learning from the learners’ perspective. The paper explicitly indicates the opportunities presented by enhanced learning to a conventional learning environment like a physical classroom. The findings were obtained through a survey of two universities in Uganda in which data was quantitatively collected, analyzed and presented in a three banded diagram depicting the variation in the obtainable benefits. Learners indicated that a smartphone is the most commonly used device. Learners also indicate that straight lectures, student to student plus student to lecturer communication, accessing learning material and assignments are core activities. In a TEL environment support by smartphones, learners indicated that they conveniently achieve the prior activities plus discussions and group work. Learners seemed not attracted to the possibility of using TEL environment to take lectures, as well as make class presentations. The less attractiveness of these two factors may be due to the teacher centered approach commonly applied in the country’s education system.

Keywords: technology enhanced learning, m-learning, classroom learning, perceived benefits

Procedia PDF Downloads 233