Search results for: coal waste
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3037

Search results for: coal waste

2017 Waste Derived from Refinery and Petrochemical Plants Activities: Processing of Oil Sludge through Thermal Desorption

Authors: Anna Bohers, Emília Hroncová, Juraj Ladomerský

Abstract:

Oil sludge with its main characteristic of high acidity is a waste product generated from the operation of refinery and petrochemical plants. Former refinery and petrochemical plant - Petrochema Dubová is present in Slovakia as well. Its activities was to process the crude oil through sulfonation and adsorption technology for production of lubricating and special oils, synthetic detergents and special white oils for cosmetic and medical purposes. Seventy years ago – period, when this historical acid sludge burden has been created – comparing to the environmental awareness the production was in preference. That is the reason why, as in many countries, also in Slovakia a historical environmental burden is present until now – 229 211 m3 of oil sludge in the middle of the National Park of Nízke Tatry mountain chain. Neither one of tried treatment methods – bio or non-biologic one - was proved as suitable for processing or for recovery in the reason of different factors admission: i.e. strong aggressivity, difficulty with handling because of its sludgy and liquid state et sim. As a potential solution, also incineration was tested, but it was not proven as a suitable method, as the concentration of SO2 in combustion gases was too high, and it was not possible to decrease it under the acceptable value of 2000 mg.mn-3. That is the reason why the operation of incineration plant has been terminated, and the acid sludge landfills are present until nowadays. The objective of this paper is to present a new possibility of processing and valorization of acid sludgy-waste. The processing of oil sludge was performed through the effective separation - thermal desorption technology, through which it is possible to split the sludgy material into the matrix (soil, sediments) and organic contaminants. In order to boost the efficiency in the processing of acid sludge through thermal desorption, the work will present the possibility of application of an original technology – Method of Blowing Decomposition for recovering of organic matter into technological lubricating oil.

Keywords: hazardous waste, oil sludge, remediation, thermal desorption

Procedia PDF Downloads 200
2016 The Influence of Incorporating in the Concrete of Recycled Waste from Shredding Used Tires and Crushed Glass on Their Characteristics and Behavior

Authors: Samiha Ramdani, Abdelhamid Geuttala

Abstract:

There is no doubt that the batteries increasingly used tires create environmental concerns. Algeria generates large amounts of by industrial and household waste, such as used tires and colored glass bottles and dishes, whose valuation in cementitious materials could be an interesting ecological and economical alternative for broadening eliminating cumbersome landfills. This work is a contribution to the promotion of local materials with the use of waste tires and glass bottle in the development of a new cementitious composite having the acceptable compressive strength and a capacity of improved strains. For this purpose, rubber crumb (GC) from shredding used tires were used as partial replacement of quarry sand with 10%, 20%, 40, 60%. In addition, some mixtures also contain glass powder at15% cement replacement by volume. The compressive strength, tensile strength, deformability, the water permeability and penetration Inions chlorides are studied. As results; an acceptable compressive strength was obtained with the substitution rate of 10% and 20% by volume, the deformability of the composite increases with increased replacement rate. The addition of finely ground glass as a partial replacement of cement concrete increases the resistance to penetration of Inions chloride and reduce the water permeability thereof; then increases their durability.

Keywords: crumb rubber, deformability, compressive strength, finely ground glass, durability, behavior law

Procedia PDF Downloads 321
2015 Application of Finite Dynamic Programming to Decision Making in the Use of Industrial Residual Water Treatment Plants

Authors: Oscar Vega Camacho, Andrea Vargas Guevara, Ellery Rowina Ariza

Abstract:

This paper presents the application of finite dynamic programming, specifically the "Markov Chain" model, as part of the decision making process of a company in the cosmetics sector located in the vicinity of Bogota DC. The objective of this process was to decide whether the company should completely reconstruct its wastewater treatment plant or instead optimize the plant through the addition of equipment. The goal of both of these options was to make the required improvements in order to comply with parameters established by national legislation regarding the treatment of waste before it is released into the environment. This technique will allow the company to select the best option and implement a solution for the processing of waste to minimize environmental damage and the acquisition and implementation costs.

Keywords: decision making, Markov chain, optimization, wastewater

Procedia PDF Downloads 487
2014 Treatment of Olive Mill Wastewater by Electrocoagulation Processes and Water Resources Management

Authors: Walid K. M. Bani Salameh, Hesham Ahmad, Mohammad Al-Shannag

Abstract:

In Jordan having deficit atmospheric precipitation, an increase in water demand during summer months . Jordan can be regarded with a relatively high potential for waste water recycling and reuse. The main purpose of this paper was to investigate the removal of Total suspended solids (TSS) and chemical oxygen demand (COD) for olive mill waste water (OMW) by the electrocoagulation (EC) process. In the combination of electrocoagulation by using coupled iron–aluminum electrodes the optimum working pH was found to be in range 6. The efficiency of the electrocoagulation process allowed removal of TSS and COD about 82.5% and 47.5% respectively at 45 mA/cm2 after 70 minutes by using coupled iron–aluminum electrodes. These results showed that the optimum TSS and COD removal was obtained at the optimum experimental parameters such as current density, pH, and reaction time.

Keywords: olive mill wastewater, electrode, electrocoagulation (EC), TSS, COD

Procedia PDF Downloads 394
2013 Concentrations of Some Metallic Trace Elements in Twelve Sludge Incineration Ashes

Authors: Lotfi Khiari, Antoine Karam, Claude-Alla Joseph, Marc Hébert

Abstract:

The main objective of incineration of sludge generated from municipal or agri-food waste treatment plant is to reduce the volume of sludge to be disposed of as a solid or liquid waste, whilst concentrating or destroying potentially harmful volatile substances. In some cities in Canada and United States of America (USA), a large amount of sludge is incinerated, which entails a loss of organic matter and water leading to phosphorus, potassium and some metallic trace element (MTE) accumulation in ashes. The purpose of this study was to evaluate the concentration of potentially hazardous MTE such as cadmium (Cd), lead (Pb) and mercury (Hg) in twelve sludge incineration ash samples obtained from municipal wastewater and other food processing waste treatments from Canada and USA. The average, maximum, and minimum values of MTE in ashes were calculated for each city individually and all together. The trace metal concentration values were compared to the literature reported values. The concentrations of MTE in ashes vary widely depending on the sludge origins and treatment options. The concentrations of MTE in ashes were found the range of 0.1-6.4 mg/kg for Cd; 13-286 mg/kg for Pb and 0.1-0.5 mg/kg for Hg. On average, the following order of metal concentration in ashes was observed: Pb > Cd > Hg. Results show that metal contents in most ashes were similar to MTE levels in synthetic inorganic fertilizers and many fertilizing residual materials. Consequently, the environmental effects of MTE content of these ashes would be low.

Keywords: biosolids, heavy metals, recycling, sewage sludge

Procedia PDF Downloads 381
2012 Spent Paint Solvent Recoveries by Ionic Liquids: Potential for Industrial Application

Authors: Mbongeni Mabaso, Kandasamy Moodley, Gan Redhi

Abstract:

The recovery of industrially valuable organic solvents from liquid waste, generated in chemical processes, is economically crucial to countries which need to import organic solvents. In view of this, the main objective of this study was to determine the ability of selected ionic liquids, namely, 1-ethyl-3-methylimidazolium ethylsulphate, [EMIM] [ESO4] and 1-ethyl-3-methylpyridinium ethylsulphate, [EMpy][ESO4] to recover aromatic components from spent paint solvents. Preliminary studies done on the liquid waste, received from a paint manufacturing company, showed that the aromatic components were present in the range 6 - 21 % by volume. The separation of the aromatic components was performed with the ionic liquids listed above. The phases, resulting from the separation of the mixtures, were analysed with a Gas Chromatograph (GC) coupled to a FID detector. Chromatograms illustrate that the chosen ZB-Wax-Plus column gave excellent separation of all components of interest from the mixtures, including the isomers of xylene. The concentrations of aromatics recovered from the spent solvents were found to be the % ranges 13-33 and 23-49 respectively for imidazolium and pyridinium ionic liquids. These results also show that there is a significant correlation between π-character of ionic liquids and the level of extraction. It is therefore concluded that ionic liquids have the potential for macro-scale recovery of re-useable solvents present in liquid waste emanating from paint manufacture.

Keywords: synthesis, ionic liquid, imidazolium, pyridinium, extraction, aromatic solvents, spent paint organic solvents

Procedia PDF Downloads 337
2011 Phytotechnologies for Use and Reconstitution of Contaminated Sites

Authors: Olga Shuvaeva, Tamara Romanova, Sergey Volynkin, Valentina Podolinnaya

Abstract:

Green chemistry concept is focused on the prevention of environmental pollution caused by human activity. However, there are a lot of contaminated areas in the world which pose a serious threat to ecosystems in terms of their conservation. Therefore in accordance with the principles of green chemistry, it should not be forgotten about the need to clean these areas. Furthermore, the waste material often contains the valuable components, the extraction of which by traditional wet chemical technologies is inefficient both from the economic and environmental protection standpoint. Wherein, the plants may be successfully used to ‘scavenge’ a range of metals from polluted land sites in an approach allowing to carry out both of these processes – phytoremediation and phytomining in conjunction. The goal of the present work was to study bioaccumulation ability of floating macrophytes such as water hyacinth and pondweed toward Hg, Ba, Cd, Mo and Pb as pollutants in aquatic medium and terrestrial plants (birch, reed, and cane) towards gold and silver as valuable components. The peculiarity of ongoing research was that the plants grew under extreme conditions (pH of drainage and pore waters was about 2.5). The study was conducted at the territory of Ursk tailings (Southwestern Siberia, Russia) formed as a result of primary polymetallic ores cyanidation. The waste material is mainly presented (~80%) by pyrite (FeS₂) and barite (BaSO₄), the raw minerals included FeAsS, HgS, PbS, Ag₂S as minor ones. It has been shown that water hyacinth demonstrates high ability to accumulate different metals, and what is especially important – to remove mercury from polluted waters with BCF value more than 1000. As for the gold, its concentrations in reed and cane growing near the waste material were estimated as 500 and 900 μg∙kg⁻¹ respectively. It was also found that the plants can survive under extreme conditions of acidic environment and hence we can assume that there is a principal opportunity to use them for the valuable substances extraction from an area of the mining waste dumps burial.

Keywords: bioaccumulation, gold, heavy metals, mine tailing

Procedia PDF Downloads 173
2010 Satellite Data to Understand Changes in Carbon Dioxide for Surface Mining and Green Zone

Authors: Carla Palencia-Aguilar

Abstract:

In order to attain the 2050’s zero emissions goal, it is necessary to know the carbon dioxide changes over time either from pollution to attenuations in the mining industry versus at green zones to establish real goals and redirect efforts to reduce greenhouse effects. Two methods were used to compute the amount of CO2 tons in specific mining zones in Colombia. The former by means of NPP with MODIS MOD17A3HGF from years 2000 to 2021. The latter by using MODIS MYD021KM bands 33 to 36 with maximum values of 644 data points distributed in 7 sites corresponding to surface mineral mining of: coal, nickel, iron and limestone. The green zones selected were located at the proximities of the studied sites, but further than 1 km to avoid information overlapping. Year 2012 was selected for method 2 to compare the results with data provided by the Colombian government to determine range of values. Some data was compared with 2022 MODIS energy values and converted to kton of CO2 by using the Greenhouse Gas Equivalencies Calculator by EPA. The results showed that Nickel mining was the least pollutant with 81 kton of CO2 e.q on average and maximum of 102 kton of CO2 e.q. per year, with green zones attenuating carbon dioxide in 103 kton of CO2 on average and 125 kton maximum per year in the last 22 years. Following Nickel, there was Coal with average kton of CO2 per year of 152 and maximum of 188, values very similar to the subjacent green zones with average and maximum kton of CO2 of 157 and 190 respectively. Iron had similar results with respect to 3 Limestone sites with average values of 287 kton of CO2 for mining and 310 kton for green zones, and maximum values of 310 kton for iron mining and 356 kton for green zones. One of the limestone sites exceeded the other sites with an average value of 441 kton per year and maximum of 490 kton per year, eventhough it had higher attenuation by green zones than a close Limestore site (3.5 Km apart): 371 kton versus 281 kton on average and maximum 416 kton versus 323 kton, such vegetation contribution is not enough, meaning that manufacturing process should be improved for the most pollutant site. By comparing bands 33 to 36 for years 2012 and 2022 from January to August, it can be seen that on average the kton of CO2 were similar for mining sites and green zones; showing an average yearly balance of carbon dioxide emissions and attenuation. However, efforts on improving manufacturing process are needed to overcome the carbon dioxide effects specially during emissions’ peaks because surrounding vegetation cannot fully attenuate it.

Keywords: carbon dioxide, MODIS, surface mining, vegetation

Procedia PDF Downloads 101
2009 Recycling Waste Product for Metal Removal from Water

Authors: Saidur R. Chowdhury, Mamme K. Addai, Ernest K. Yanful

Abstract:

The research was performed to assess the potential of nickel smelter slag, an industrial waste, as an adsorbent in the removal of metals from aqueous solution. An investigation was carried out for Arsenic (As), Copper (Cu), lead (Pb) and Cadmium (Cd) adsorption from aqueous solution. Smelter slag was obtain from Ni ore at the Vale Inco Ni smelter in Sudbury, Ontario, Canada. The batch experimental studies were conducted to evaluate the removal efficiencies of smelter slag. The slag was characterized by surface analytical techniques. The slag contained different iron oxides and iron silicate bearing compounds. In this study, the effect of pH, contact time, particle size, competition by other ions, slag dose and distribution coefficient were evaluated to measure the optimum adsorption conditions of the slag as an adsorbent for As, Cu, Pb and Cd. The results showed 95-99% removal of As, Cu, Pb, and almost 50-60% removal of Cd, while batch experimental studies were conducted at 5-10 mg/L of initial concentration of metals, 10 g/L of slag doses, 10 hours of contact time and 170 rpm of shaking speed and 25oC condition. The maximum removal of Arsenic (As), Copper (Cu), lead (Pb) was achieved at pH 5 while the maximum removal of Cd was found after pH 7. The column experiment was also conducted to evaluate adsorption depth and service time for metal removal. This study also determined adsorption capacity, adsorption rate and mass transfer rate. The maximum adsorption capacity was found to be 3.84 mg/g for As, 4 mg/g for Pb, and 3.86 mg/g for Cu. The adsorption capacity of nickel slag for the four test metals were in decreasing order of Pb > Cu > As > Cd. Modelling of experimental data with Visual MINTEQ revealed that saturation indices of < 0 were recorded in all cases suggesting that the metals at this pH were under- saturated and thus in their aqueous forms. This confirms the absence of precipitation in the removal of these metals at the pHs. The experimental results also showed that Fe and Ni leaching from the slag during the adsorption process was found to be very minimal, ranging from 0.01 to 0.022 mg/L indicating the potential adsorbent in the treatment industry. The study also revealed that waste product (Ni smelter slag) can be used about five times more before disposal in a landfill or as a stabilization material. It also highlighted the recycled slags as a potential reactive adsorbent in the field of remediation engineering. It also explored the benefits of using renewable waste products for the water treatment industry.

Keywords: adsorption, industrial waste, recycling, slag, treatment

Procedia PDF Downloads 146
2008 Exploring Closed-Loop Business Systems Which Eliminates Solid Waste in the Textile and Fashion Industry: A Systematic Literature Review Covering the Developments Occurred in the Last Decade

Authors: Bukra Kalayci, Geraldine Brennan

Abstract:

Introduction: Over the last decade, a proliferation of literature related to textile and fashion business in the context of sustainable production and consumption has emerged. However, the economic and environmental benefits of solid waste recovery have not been comprehensively searched. Therefore at the end-of-life or end-of-use textile waste management remains a gap. Solid textile waste reuse and recycling principles of the circular economy need to be developed to close the disposal stage of the textile supply chain. The environmental problems associated with the over-production and –consumption of textile products arise. Together with growing population and fast fashion culture the share of solid textile waste in municipal waste is increasing. Focusing on post-consumer textile waste literature, this research explores the opportunities, obstacles and enablers or success factors associated with closed-loop textile business systems. Methodology: A systematic literature review was conducted in order to identify best practices and gaps from the existing body of knowledge related to closed-loop post-consumer textile waste initiatives over the last decade. Selected keywords namely: ‘cradle-to-cradle ‘, ‘circular* economy* ‘, ‘closed-loop* ‘, ‘end-of-life* ‘, ‘reverse* logistic* ‘, ‘take-back* ‘, ‘remanufacture* ‘, ‘upcycle* ‘ with the combination of (and) ‘fashion* ‘, ‘garment* ‘, ‘textile* ‘, ‘apparel* ‘, clothing* ‘ were used and the time frame of the review was set between 2005 to 2017. In order to obtain a broad coverage, Web of Knowledge and Science Direct databases were used, and peer-reviewed journal articles were chosen. The keyword search identified 299 number of papers which was further refined into 54 relevant papers that form the basis of the in-depth thematic analysis. Preliminary findings: A key finding was that the existing literature is predominantly conceptual rather than applied or empirical work. Moreover, the enablers or success factors, obstacles and opportunities to implement closed-loop systems in the textile industry were not clearly articulated and the following considerations were also largely overlooked in the literature. While the circular economy suggests multiple cycles of discarded products, components or materials, most research has to date tended to focus on a single cycle. Thus the calculations of environmental and economic benefits of closed-loop systems are limited to one cycle which does not adequately explore the feasibility or potential benefits of multiple cycles. Additionally, the time period textile products spend between point of sale, and end-of-use/end-of-life return is a crucial factor. Despite past efforts to study closed-loop textile systems a clear gap in the literature is the lack of a clear evaluation framework which enables manufacturers to clarify the reusability potential of textile products through consideration of indicators related too: quality, design, lifetime, length of time between manufacture and product return, volume of collected disposed products, material properties, and brand segment considerations (e.g. fast fashion versus luxury brands).

Keywords: circular fashion, closed loop business, product service systems, solid textile waste elimination

Procedia PDF Downloads 204
2007 Build Information Systems Environment Clean Through the Sms Gateway

Authors: Lutpi Ginanjar

Abstract:

Environmental hygiene is indispensable for people to live healthy, safe and peaceful. In a small environment, the cleanliness of the environment is very easy to overcome, but on the larger environment requires a more complicated management and considerable investments. In general environmental hygiene are managed by the Department of Hygiene and Landscaper. Found a good management, but much less good management. The difficulties that are often encountered on waste management also caused public awareness itself. In addition, communities have difficulty in making a report about the rubbish because not dibangunnyasistem good information. Essai aims to build information systems environment clean especially the handling of waste in the city of Bandung, West Java province. The system was built with PHP software. Expected results obtained after the construction of the information system of environmental hygiene can be demonstrated to the community will be the health of the environment.

Keywords: information systems, SMS gateway, management, software, PHP

Procedia PDF Downloads 490
2006 Experimental Investigation of Sisal Fiber Reinforced Recycled Low-Density Polyethylene Composite Filled with Egg Shell Powder for Wall Tile Application

Authors: Natnan Adelahu Dagne

Abstract:

This paper focuses on an experimental investigation into the development of wall tiles made of a composite material consisting of egg shell powder (ESP), waste recycled low-density polyethylene (LDPE), and sisal fiber. Although waste plastic has been a popular material for packaging in recent years, its nonbiodegradability is generating contamination in the environment. Waste LDPE is a common material that is used extensively and discarded egg shell powder contributes to environmental contamination. By recycling them into usable items and reinforcing them with natural textile fibers to create composite materials, these waste plastics and egg shell powder can be eliminated from the environment. Natural fiber-based composites are ecofriendly, with better properties and low cost. The sisal fibers were treated with 6% NaOH in 24 hr., to improve the fiber-matrix interaction. The composites were manufactured by the melt-mixing method followed by compression molding. The effects of mixing time, egg shell powder content and fiber length and on the composite properties were investigated using tensile, flexural, impact, compressive, flame retardant and water absorption tests. The investigation showed that the optimum mixing time, ESP and fiber length for the optimal properties of the composite were achieved at 15.766 min, 1.668% and 10.096 mm respectively. The maximum optimized tensile strength of 57.572 Mpa, flexural strength of 59.262 Mpa, impact strength of 24.200 Mpa, compressive strength 120.307 Mpa, flame retardant of LOI values of 28.692 % of were obtained. Water absorption of the tiles increased with increase in the fiber length. Overall, the experimental findings demonstrate the possibility of using sisal reinforced LDPE filled with ESP composite as a sustainable substitute material to create wall tiles that are better for the environment, within low cost and have enhanced mechanical, physical, and chemical properties of composite.

Keywords: composite, sisal, ESP, LDPE

Procedia PDF Downloads 7
2005 Experimental and Numerical Studies on Hydrogen Behavior in a Small-Scale Container with Passive Autocatalytic Recombiner

Authors: Kazuyuki Takase, Yoshihisa Hiraki, Gaku Takase, Isamu Kudo

Abstract:

One of the most important issue is to ensure the safety of long-term waste storage containers in which fuel debris and radioactive materials are accumulated. In this case, hydrogen generated by water decomposition by radiation is accumulated in the container for a long period of time, so it is necessary to reduce the concentration of hydrogen in the container. In addition, a condition that any power supplies from the outside of the container are unnecessary is requested. Then, radioactive waste storage containers with the passive autocatalytic recombiner (PAR) would be effective. The radioactive waste storage container with PAR was used for moving the fuel debris of the Three Mile Island Unit 2 to the storage location. However, the effect of PAR is not described in detail. Moreover, the reduction of hydrogen concentration during the long-term storage period was performed by the venting system, which was installed on the top of the container. Therefore, development of a long-term storage container with PAR was started with the aim of safely storing fuel debris picked up at the Fukushima Daiichi Nuclear Power Plant for a long period of time. A fundamental experiment for reducing the concentration of hydrogen which generates in a nuclear waste long-term storage container was carried out using a small-scale container with PAR. Moreover, the circulation flow behavior of hydrogen in the small-scale container resulting from the natural convection by the decay heat was clarified. In addition, preliminary numerical analyses were performed to predict the experimental results regarding the circulation flow behavior and the reduction of hydrogen concentration in the small-scale container. From the results of the present study, the validity of the container with PAR was experimentally confirmed on the reduction of hydrogen concentration. In addition, it was predicted numerically that the circulation flow behavior of hydrogen in the small-scale container is blocked by steam which generates by chemical reaction of hydrogen and oxygen.

Keywords: hydrogen behavior, reduction of concentration, long-term storage container, small-scale, PAR, experiment, analysis

Procedia PDF Downloads 165
2004 Effect of Using Crumb Rubber with Warm-Mix-Asphalt Additive in Laboratory and Field Aging

Authors: Mustafa Akpolat, Baha Vural Kök

Abstract:

Using a waste material such as crumb rubber (CR) obtained by waste tires has become an important issue in respect to sustainability. However, the CR modified mixture also requires high manufacture temperature as a polymer modified mixture. For this reason in this study, it is intended to produce a CR modified mixture with warm mix asphalt additives in the same mixture. Asphalt mixtures produced by pure, 10%CR, 10%CR+3% Sasobit and 10%CR+0.7% Evotherm were subjected to aging procedure in the laboratory and the field. The indirect tensile repeated tests were applied to aged and original specimens. It was concluded that the fatigue life of the mixtures increased significantly with the increase of aging time. CR+Sasobit modified mixture aged at the both field and laboratory gave the highest load cycle among the mixtures.

Keywords: crumb rubber, warm mix asphalt, aging, fatigue

Procedia PDF Downloads 404
2003 Converting Urban Organic Waste into Aquaculture Feeds: A Two-Step Bioconversion Approach

Authors: Aditi Chitharanjan Parmar, Marco Gottardo, Giulia Adele Tuci, Francesco Valentino

Abstract:

The generation of urban organic waste is a significant environmental problem due to the potential release of leachate and/or methane into the environment. This contributes to climate change, discharging a valuable resource that could be used in various ways. This research addresses this issue by proposing a two-step approach by linking biowaste management to aquaculture industry via single cell proteins (SCP) production. A mixture of food waste and municipal sewage sludge (FW-MSS) was firstly subjected to a mesophilic (37°C) anaerobic fermentation to produce a liquid stream rich in short-chain fatty acids (SCFAs), which are important building blocks for the following microbial biomass growth. In the frame of stable fermentation activity (after 1 week of operation), the average value of SCFAs was 21.3  0.4 g COD/L, with a CODSCFA/CODSOL ratio of 0.77 COD/COD. This indicated the successful strategy to accumulate SCFAs from the biowaste mixture by applying short hydraulic retention time (HRT; 4 days) and medium organic loading rate (OLR; 7 – 12 g VS/L d) in the lab-scale (V = 4 L) continuous stirred tank reactor (CSTR). The SCFA-rich effluent was then utilized as feedstock for the growth of a mixed microbial consortium able to store polyhydroxyalkanoates (PHA), a class of biopolymers completely biodegradable in nature and produced as intracellular carbon/energy source. Given the demonstrated properties of the intracellular PHA as antimicrobial and immunomodulatory effect on various fish species, the PHA-producing culture was intended to be utilized as SCP in aquaculture. The growth of PHA-storing biomass was obtained in a 2-L sequencing batch reactor (SBR), fully aerobic and set at 25°C; to stimulate a certain storage response (PHA production) in the cells, the feast-famine conditions were adopted, consisting in an alternation of cycles during which the biomass was exposed to an initial abundance of substrate (feast phase) followed by a starvation period (famine phase). To avoid the proliferation of other bacteria not able to store PHA, the SBR was maintained at low HRT (2 days). Along the stable growth of the mixed microbial consortium (the growth yield was estimated to be 0.47 COD/COD), the feast-famine strategy enhanced the PHA production capacity, leading to a final PHA content in the biomass equal to 16.5 wt%, which is suitable for the use as SCP. In fact, by incorporating the waste-derived PHA-rich biomass into fish feed at 20 wt%, the final feed could contain a PHA content around 3.0 wt%, within the recommended range (0.2–5.0 wt%) for promoting fish health. Proximate analysis of the PHA-rich biomass revealed a good crude proteins level (around 51 wt%) and the presence of all the essential amino acids (EAA), together accounting for 31% of the SCP total amino acid composition. This suggested that the waste-derived SCP was a source of good quality proteins with a good nutritional value. This approach offers a sustainable solution for urban waste management, potentially establishing a sustainable waste-to-value conversion route by connecting waste management to the growing aquaculture and fish feed production sectors.

Keywords: feed supplement, nutritional value, polyhydroxyalkanoates (PHA), single cell protein (SCP), urban organic waste.

Procedia PDF Downloads 43
2002 Production of Buttermilk as a Bio-Active Functional Food by Utilizing Dairy Waste

Authors: Hafsa Tahir, Sanaullah Iqbal

Abstract:

Glactooligosaccharide (GOS) is a type of prebiotic which is mainly found in human milk. GOS belongs to those bacteria which stimulates the growth of beneficial bacteria in human intestines. The aim of the present study was to develop a value-added product by producing prebiotic (GOS) in buttermilk through trans galactosylation. Buttermilk is considered as an industrial waste which is discarded after the production of butter and cream. It contains protein, minerals, vitamins and a smaller amount of fat. Raw milk was pasteurized at 100º C for butter production and then trans galactosylation process was induced in the butter milk thus obtained to produce prebiotic GOS. Results showed that the enzyme (which was obtained from bacterial strain of Esecrshia coli and has a gene of Lactobacillus reuteri L103) concentration between 400-600µl/5ml can produce GOS in 30 minutes. Chemical analysis and sensory evaluation of plain and GOS containing buttermilk showed no remarkable difference in their composition. Furthermore, the shelf-life study showed that there was non-significant (P>0.05) difference in glass and pouch packaging of buttermilk. Buttermilk in pouch packaging maintained its stability for 6 days without the addition of preservatives. Therefore it is recommended that GOS enriched buttermilk which is generally considered as a processing waste in dairy manufacturing can be turned into a cost-effective nutritional functional food product. This will not only enhance the production efficiency of butter processing but also will create a new market opportunity for dairy manufacturers all over the world.

Keywords: buttermilk, galactooligosaccharide, shelf Life, transgalactosylation

Procedia PDF Downloads 292
2001 Impact of Disposed Drinking Water Sachets in Damaturu Town, Yobe State, Nigeria

Authors: Meeta Ratawa Tiwary

Abstract:

Damaturu is the capital of Yobe State in northeastern Nigeria where civic amenities and facilities are not adequate even after 24 years of its existence. The volatile security and political situations are most significant causes for the same. The basic facility for the citizens in terms of drinking water and electricity are not available. For the drinking water, they have to rely on personal bore holes or the filtered borehole waters available in packaged sachets in the market. The present study is concerned with the environmental impact of indiscriminate disposal of drinking synthetic polythene water sachets in Damaturu. The sachet water is popularly called as ‘pure water’, but its purity is questionable. Increased production and consumption of sachet water has led to indiscriminate dumping and disposal of empty sachets leading to a serious environmental threat. The evidence of this is seen in the amount of disposed sachets littering the streets and also the drainages blocked by ‘blocks’ of water sachet waste. Sachet water gained much popularity in Nigeria because the product is convenient for use, affordable and economically viable. The present study aims to find out the solution to this environmental problem. The field-based study has found some significant factors that cause environmental and socio-economic effect due to this. Some recommendations have been made based on research findings regarding sustainable waste management, recycling and re-use of the non-biodegradable products in society.

Keywords: civic amenities, non-biodegradable, pure water, sustainable environment, waste disposal

Procedia PDF Downloads 422
2000 Laboratory Investigation on the Waste Road Construction Material Using Conventional and Chemical Additives

Authors: Paulos Meles Yihdego

Abstract:

To address the environmental impact of the cement industry and road building waste, the use of chemical stabilizers in conjunction with recycled asphalt and cement components was investigated. The silica-based chemical stabilizers and their potential effects on the base layer stabilized by cement are discussed in this paper. Strength, moisture compaction interaction, and microstructural characteristics are all examined. According to the outcome, using this stabilizer has improved the mechanical properties. The inclusion of chemical stabilizers in the combination, which is responsible for the mixture's improved strength, raised the intensity of the C-S-H (Calcium Silicate Hydrate) gel, according to a microstructural study. The design was demonstrated to be durable by the little ettringites found in the later phases. The application of this stabilizer ensures a strong, eco-friendly, durable base layer.

Keywords: ettringites, microstructure analysis, durability properties, cement stabilized base

Procedia PDF Downloads 61
1999 Expert Based System Design for Integrated Waste Management

Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy

Abstract:

Recently, an increasing number of researchers have been focusing on working out realistic solutions to sustainability problems. As sustainability issues gain higher importance for organisations, the management of such decisions becomes critical. Knowledge representation is a fundamental issue of complex knowledge based systems. Many types of sustainability problems would benefit from models based on experts’ knowledge. Cognitive maps have been used for analyzing and aiding decision making. A cognitive map can be made of almost any system or problem. A fuzzy cognitive map (FCM) can successfully represent knowledge and human experience, introducing concepts to represent the essential elements and the cause and effect relationships among the concepts to model the behavior of any system. Integrated waste management systems (IWMS) are complex systems that can be decomposed to non-related and related subsystems and elements, where many factors have to be taken into consideration that may be complementary, contradictory, and competitive; these factors influence each other and determine the overall decision process of the system. The goal of the present paper is to construct an efficient IWMS which considers various factors. The authors’ intention is to propose an expert based system design approach for implementing expert decision support in the area of IWMSs and introduces an appropriate methodology for the development and analysis of group FCM. A framework for such a methodology consisting of the development and application phases is presented.

Keywords: factors, fuzzy cognitive map, group decision, integrated waste management system

Procedia PDF Downloads 277
1998 Retrospective Reconstruction of Time Series Data for Integrated Waste Management

Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy

Abstract:

The development, operation and maintenance of Integrated Waste Management Systems (IWMS) affects essentially the sustainable concern of every region. The features of such systems have great influence on all of the components of sustainability. In order to reach the optimal way of processes, a comprehensive mapping of the variables affecting the future efficiency of the system is needed such as analysis of the interconnections among the components and modelling of their interactions. The planning of a IWMS is based fundamentally on technical and economical opportunities and the legal framework. Modelling the sustainability and operation effectiveness of a certain IWMS is not in the scope of the present research. The complexity of the systems and the large number of the variables require the utilization of a complex approach to model the outcomes and future risks. This complex method should be able to evaluate the logical framework of the factors composing the system and the interconnections between them. The authors of this paper studied the usability of the Fuzzy Cognitive Map (FCM) approach modelling the future operation of IWMS’s. The approach requires two input data set. One is the connection matrix containing all the factors affecting the system in focus with all the interconnections. The other input data set is the time series, a retrospective reconstruction of the weights and roles of the factors. This paper introduces a novel method to develop time series by content analysis.

Keywords: content analysis, factors, integrated waste management system, time series

Procedia PDF Downloads 329
1997 Ecodesign of Bioplastic Films for Food Packaging and Shelf-life Extension

Authors: Sónia Ribeiro, Diana Farinha, Elsa Pereira, Hélia Sales, Filipa Figueiredo, Rita Pontes, João Nunes

Abstract:

Conventional plastic impacts on Planet, natural resources contamination, human health as well as animals are the most attractive environmental and health attention. The lack of treatment in the end-of-life (EOL) phase and uncontrolled discard allows plastic to be found everywhere in the world. Food waste is increasing significantly, with a final destination to landfills. To face these difficulties, new packaging solutions are needed with the objective of prolonging the shelf-life of products as well as equipment solutions for the development of the mentioned packaging. FLUI project thus presents relevance and innovation to reach a new level of knowledge and industrial development focused in Ecodesign. Industrial equipment field for the manufacture of new packaging solutions based on biodegradable plastics films to apply in the food sector. With lesser environmental impacts and new solutions that make it possible to prevent food waste, reduce the production e consequent poor disposal of plastic of fossil origin. It will be a paradigm shift at different levels, from industry to waste treatment stations, passing through commercial agents and consumers. It can be achieved through the life cycle assessment (LCA) and ecodesign of the products, which integrates the environmental concerns in the design of the product as well as through the entire life cycle. The FLUI project aims to build a piece of new bio-PLA extrusion equipment with the incorporation of bioactive extracts through the production of flexible mono- and multi-layer functional films (FLUI systems). The biofunctional and biodegradable films will prompt the extension of packaged products’ shelf-life, reduce food waste and contribute to reducing the consumption of non-degradable fossil plastics, as well as the use of raw material from renewable sources.

Keywords: food packing, bioplastics, ecodesign, circular economy

Procedia PDF Downloads 96
1996 Power Plants between Environmental Pollution and Eco-Sustainable Recycling of Industrial Wastes

Authors: Liliana Crăc, Nicolae Giorgi, Gheorghe Fometescu, Mihai Cruceru

Abstract:

Power plants represent the main source of air pollution, through combustion processes, both by releasing large amounts of dust, greenhouse gases and acidifying, and large quantities of waste, slag and ash disposed in landfills covering significant areas. SC Turceni S.A. is one of the largest power generating unit from Romania. Their policy is focused on the production and delivery of electricity in order to increase energy efficiency and to reduce the environmental impact. The paper presents environmental impact produced by slag and ash storage, while pointing out that the recovery of this waste significant improves the air quality in the area. An important aspect is the proprieties of the ash and slag evacuated by Turceni power plant in order to use them for building materials manufacturing.

Keywords: ash and slag properties, air pollution, building materials industry, power plants

Procedia PDF Downloads 330
1995 An Efficient Hybrid Feedstock Pretreatment Technique for the Release of Fermentable Sugar from Cassava Peels for Biofuel Production

Authors: Gabriel Sanjo Aruwajoye, E. B. Gueguim Kana

Abstract:

Agricultural residues present a low-cost feedstock for bioenergy production around the world. Cassava peels waste are rich in organic molecules that can be readily converted to value added products such as biomaterials and biofuels. However, due to the presence of high proportion of structural carbohydrates and lignin, the hydrolysis of this feedstock is imperative to achieve maximum substrate utilization and energy yield. This study model and optimises the release of Fermentable Sugar (FS) from cassava peels waste using the Response Surface Methodology. The investigated pretreatment input parameters consisted of soaking temperature (oC), soaking time (hours), autoclave duration (minutes), acid concentration (% v/v), substrate solid loading (% w/v) within the range of 30 to 70, 0 to 24, 5 to 20, 0 to 5 and 2 to 10 respectively. The Box-Behnken design was used to generate 46 experimental runs which were investigated for FS release. The obtained data were used to fit a quadratic model. A coefficient of determination of 0.87 and F value of 8.73 was obtained indicating the good fitness of the model. The predicted optimum pretreatment conditions were 69.62 oC soaking temperature, 2.57 hours soaking duration, 5 minutes autoclave duration, 3.68 % v/v HCl and 9.65 % w/v solid loading corresponding to FS yield of 91.83g/l (0.92 g/g cassava peels) thus 58% improvement on the non-optimised pretreatment. Our findings demonstrate an efficient pretreatment model for fermentable sugar release from cassava peels waste for various bioprocesses.

Keywords: feedstock pretreatment, cassava peels, fermentable sugar, response surface methodology

Procedia PDF Downloads 368
1994 Acidic Dye Removal From Aqueous Solution Using Heat Treated and Polymer Modified Waste Containing Boron Impurity

Authors: Asim Olgun, Ali Kara, Vural Butun, Pelin Sevinc, Merve Gungor, Orhan Ornek

Abstract:

In this study, we investigated the possibility of using waste containing boron impurity (BW) as an adsorbent for the removal of Orange 16 from aqueous solution. Surface properties of the BW, heat treated BW, and diblock copolymer coated BW were examined by using Zeta Meter and scanning electron microscopy (SEM). The polymer modified sample having the highest positive zeta potential was used as an adsorbent. Batch adsorption studies were carried out. The operating variables studied were the initial dye concentration, contact time, solution pH, and adsorbent dosage. It was found that the dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 3. The adsorption followed pseudo-second-order kinetics and the isotherm fit well to the Langmuir model.

Keywords: zeta potential, adsorption, Orange 16, isotherms

Procedia PDF Downloads 198
1993 Sustainable Food Systems and the Importance of Food Safety in Ensuring Sustainability

Authors: Özlem Turan, Şule Turhan

Abstract:

About 1 billion people in the world are suffering from hunger. Approximately 1.3 billion tons of produced food is wasted each year as well. While the waste of industrialized countries is 670 million tons per year, the waste per year in developing countries is estimated as 630 million tons. When evaluated in this respect, the importance of sustainability and food security can be seen clearly. Food safety is defined as taking the necessary measures and eliminating all risk arising from food. The goal of sustainable food security is, protection of consumer health, development of safe food and beverages trade nationally and internationally and to ensure reliable fair trade schemes. In this study, this study will focus on sustainable food systems and food security, by examining the food wastage and losses from environmental and economic point of views and the precautions that need to be taken will be discussed.

Keywords: food, food safety, food systems, sustainability

Procedia PDF Downloads 386
1992 Waste-based Porous Geopolymers to Regulate the Temperature and Humidity Fluctuations Inside Buildings

Authors: Joao A. Labrincha, Rui M. Novais, L. Senff, J. Carvalheiras

Abstract:

The development of multifunctional materials to tackle the energy consumption and improve the hygrothermal performance of buildings is very relevant. This work reports the development of porous geopolymers or bi-layered composites, composed by a highly porous top-layer and a dense bottom-layer, showing high ability to reduce the temperature swings inside buildings and simultaneously buffer the humidity levels. The use of phase change materials (PCM) strongly reduces the indoor thermal fluctuation (up to 5 °C). The potential to modulate indoor humidity is demonstrated by the very high practical MBV (2.71 g/m2 Δ%HR). Since geopolymer matrixes are produced from wastes (biomass fly ash, red mud) the developed solutions contribute to sustainable and energy efficient and healthy building.

Keywords: waste-based geopolymers, thermal insulation, temperature regulation, moisture buffer

Procedia PDF Downloads 63
1991 Concentration of Waste Waters by Enzyme-Assisted Low-Temperature Evaporation

Authors: Ahokas Mikko, Taskila Sanna, Varrio Kalle, Tanskanen Juha

Abstract:

The present research aimed at the development of an energy efficient process for the concentration of starchy waste waters. The selected principle is mechanical vapor recompression evaporation (MVR) which leads to concentrated solid material and evaporated water phase. Evaporation removes water until a certain viscosity limit is reached. Materials with high viscosity cannot be concentrated using standard evaporators due to limitations of pumps and other constraints, such as wetting. Control of viscosity is thus essential for efficient evaporation. This applies especially to fluids in which due starch or other compounds the viscosity tends to increase via removal of water. In the present research, the effect of enzymes on evaporation of highly viscous starch industry waste waters was investigated. Wastewater samples were received from starch industry at pH of 4.8. Response surface methodology (RSM) was applied for the investigation of factor effects on the behaviour of concentrate during evaporation. The RSM was prepared using quadratic face-centered central composite design (CCF). The evaporation performance was evaluated by monitoring the viscosity of fluid during processing. Based on viscosity curves, the addition of glucoamylase reduced the viscosity during evaporation. This assumption was confirmed by CCF, suggesting that the use of starch decomposing glucoamylase allowed evaporation of the starchy wastewater to a relatively high total solid concentration without a detrimental increase in the viscosity. The results suggest that use of enzymes for reduction of viscosity during the evaporation allows more effective concentration of the wastewater and thereby recovery of potable water.

Keywords: viscous, wastewater, treatment, evaporation, concentration

Procedia PDF Downloads 244
1990 Investigating the Properties of Asphalt Concrete Containing Recycled Fillers

Authors: Hasan Taherkhani

Abstract:

Increasingly accumulation of the solid waste materials has become a major environmental problem of communities. In addition to the protection of environment, the recycling and reusing of the waste materials are financially beneficial. Waste materials can be used in highway construction. This study aimed to investigate the applicability of recycled concrete, asphalt and steel slag powder, as a replacement of the primary mineral filler in asphalt concrete has been investigated. The primary natural siliceous aggregate filler, as control, has been replaced with the secondary recycled concrete, asphalt and steel slag powders, and some engineering properties of the mixtures have been evaluated. Marshal Stability, flow, indirect tensile strength, moisture damage, static creep and volumetric properties of the mixtures have been evaluated. The results show that, the Marshal Stability of the mixtures containing recycled powders is higher than that of the control mixture. The flow of the mixtures containing recycled steel slag is lower, and that of the mixtures containing recycled asphalt and cement concrete powder is found to be higher than that of the control mixture. It is also found that the resistance against moisture damage and permanent deformation of the mixture can be improved by replacing the natural filler with the recycled powders. The volumetric properties of the mixtures are not significantly influenced by replacing the natural filler with the recycled powders.

Keywords: filler, steel slag, recycled concrete, recycled asphalt concrete, tensile strength, moisture damage, creep

Procedia PDF Downloads 278
1989 Experimental Analysis of Electrical Energy Producing Using the Waste Heat of Exhaust Gas by the Help of Thermoelectric Generator

Authors: Dilek Ozlem Esen, Mesut Kaya

Abstract:

The focus of this study is to analyse the results of heat recovery from exhaust gas which is produced by an internal combustion engine (ICE). To obtain a small amount of energy, an exhaust system which is suitable for recovery waste heat has been constructed. Totally 27 TEGs have been used to convert from the heat to electric energy. By producing a small amount of this energy by the help of thermoelectric generators can reduce engine loads thus decreasing pollutant emissions, fuel consumption, and CO2. This case study is conducted in an effort to better understand and improve the performance of thermoelectric heat recovery systems for automotive use. As a result of this study, 0,45 A averaged current rate, 13,02 V averaged voltage rate and 5,8 W averaged electrical energy have been produced in a five hours operation time.

Keywords: thermoelectric, peltier, thermoelectric generator (TEG), exhaust, cogeneration

Procedia PDF Downloads 655
1988 Accelerating Personalization Using Digital Tools to Drive Circular Fashion

Authors: Shamini Dhana, G. Subrahmanya VRK Rao

Abstract:

The fashion industry is advancing towards a mindset of zero waste, personalization, creativity, and circularity. The trend of upcycling clothing and materials into personalized fashion is being demanded by the next generation. There is a need for a digital tool to accelerate the process towards mass customization. Dhana’s D/Sphere fashion technology platform uses digital tools to accelerate upcycling. In essence, advanced fashion garments can be designed and developed via reuse, repurposing, recreating activities, and using existing fabric and circulating materials. The D/Sphere platform has the following objectives: to provide (1) An opportunity to develop modern fashion using existing, finished materials and clothing without chemicals or water consumption; (2) The potential for an everyday customer and designer to use the medium of fashion for creative expression; (3) A solution to address the global textile waste generated by pre- and post-consumer fashion; (4) A solution to reduce carbon emissions, water, and energy consumption with the participation of all stakeholders; (5) An opportunity for brands, manufacturers, retailers to work towards zero-waste designs and as an alternative revenue stream. Other benefits of this alternative approach include sustainability metrics, trend prediction, facilitation of disassembly and remanufacture deep learning, and hyperheuristics for high accuracy. A design tool for mass personalization and customization utilizing existing circulating materials and deadstock, targeted to fashion stakeholders will lower environmental costs, increase revenues through up to date upcycled apparel, produce less textile waste during the cut-sew-stitch process, and provide a real design solution for the end customer to be part of circular fashion. The broader impact of this technology will result in a different mindset to circular fashion, increase the value of the product through multiple life cycles, find alternatives towards zero waste, and reduce the textile waste that ends up in landfills. This technology platform will be of interest to brands and companies that have the responsibility to reduce their environmental impact and contribution to climate change as it pertains to the fashion and apparel industry. Today, over 70% of the $3 trillion fashion and apparel industry ends up in landfills. To this extent, the industry needs such alternative techniques to both address global textile waste as well as provide an opportunity to include all stakeholders and drive circular fashion with new personalized products. This type of modern systems thinking is currently being explored around the world by the private sector, organizations, research institutions, and governments. This technological innovation using digital tools has the potential to revolutionize the way we look at communication, capabilities, and collaborative opportunities amongst stakeholders in the development of new personalized and customized products, as well as its positive impacts on society, our environment, and global climate change.

Keywords: circular fashion, deep learning, digital technology platform, personalization

Procedia PDF Downloads 66