Search results for: foreign language teaching and learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11450

Search results for: foreign language teaching and learning

1100 Digital Game Fostering Spatial Abilities for Children with Special Needs

Authors: Pedro Barros, Ana Breda, Eugenio Rocha, M. Isabel Santos

Abstract:

As visual and spatial awareness develops, children apprehension of the concept of direction, (relative) distance and (relative) location materializes. Here we present the educational inclusive digital game ORIESPA, under development by the Thematic Line Geometrix, for children aged between 6 and 10 years old, aiming the improvement of their visual and spatial awareness. Visual-spatial abilities are of crucial importance to succeed in many everyday life tasks. Unavoidable in the technological age we are living in, they are essential in many fields of study as, for instance, mathematics.The game, set on a 2D/3D environment, focusses in tasks/challenges on the following categories (1) static orientation of the subject and object, requiring an understanding of the notions of up–down, left–right, front–back, higher-lower or nearer-farther; (2) interpretation of perspectives of three-dimensional objects, requiring the understanding of 2D and 3D representations of three-dimensional objects; and (3) orientation of the subject in real space, requiring the reading and interpreting of itineraries. In ORIESPA, simpler tasks are based on a quadrangular grid, where the front-back and left-right directions and the rotations of 90º, 180º and 270º play the main requirements. The more complex ones are produced on a cubic grid adding the up and down movements. In the first levels, the game's mechanics regarding the reading and interpreting maps (from point A to point B) is based on map routes, following a given set of instructions. In higher levels, the player must produce a list of instructions taking the game character to the desired destination, avoiding obstacles. Being an inclusive game the user has the possibility to interact through the mouse (point and click with a single button), the keyboard (small set of well recognized keys) or a Kinect device (using simple gesture moves). The character control requires the action on buttons corresponding to movements in 2D and 3D environments. Buttons and instructions are also complemented with text, sound and sign language.

Keywords: digital game, inclusion, itinerary, spatial ability

Procedia PDF Downloads 178
1099 Predicting the Next Offensive Play Types will be Implemented to Maximize the Defense’s Chances of Success in the National Football League

Authors: Chris Schoborg, Morgan C. Wang

Abstract:

In the realm of the National Football League (NFL), substantial dedication of time and effort is invested by both players and coaches in meticulously analyzing the game footage of their opponents. The primary aim is to anticipate the actions of the opposing team. Defensive players and coaches are especially focused on deciphering their adversaries' intentions to effectively counter their strategies. Acquiring insights into the specific play type and its intended direction on the field would confer a significant competitive advantage. This study establishes pre-snap information as the cornerstone for predicting both the play type (e.g., deep pass, short pass, or run) and its spatial trajectory (right, left, or center). The dataset for this research spans the regular NFL season data for all 32 teams from 2013 to 2022. This dataset is acquired using the nflreadr package, which conveniently extracts play-by-play data from NFL games and imports it into the R environment as structured datasets. In this study, we employ a recently developed machine learning algorithm, XGBoost. The final predictive model achieves an impressive lift of 2.61. This signifies that the presented model is 2.61 times more effective than random guessing—a significant improvement. Such a model has the potential to markedly enhance defensive coaches' ability to formulate game plans and adequately prepare their players, thus mitigating the opposing offense's yardage and point gains.

Keywords: lift, NFL, sports analytics, XGBoost

Procedia PDF Downloads 54
1098 Feature Analysis of Predictive Maintenance Models

Authors: Zhaoan Wang

Abstract:

Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.

Keywords: automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation

Procedia PDF Downloads 131
1097 Preservation of Near-Extinct African Culture: The Case of Yoruba Proverbs

Authors: Makinde David Olajide

Abstract:

Proverb is an important aspect of most indigenous culture in Africa including that of the Yoruba people of southwestern Nigeria. As revealed by recent studies, Yoruba proverbs as an important cultural heritage are threatened and near extinct. This fear of proverb extinct in Yoruba cultural growth has been observed and expressed at different fora by many researchers and professionals including Art historians, culture patrons, social critics’ and teachers among others. Investigation revealed that the intangible nature of proverb is largely responsible for its continuous disappearance in the language structure and creative speeches which give the unique identity to the Yoruba people. Some of the factors that are responsible for culture extinct include: absence of moonlight stories by the elderly, the nuclear family system, and total assimilation of western culture, the concept of modernity and urban nature of Yoruba towns among others. Therefore, to preserve this creative heritage (proverb), there is need for a conscious shift of the traditional role of proverbs in speech development to its use as tool for artistic creations and expressions in visual form. The study was carried out between June, 2013 and February, 2015 in three Yoruba towns; Ilorin, Ede and Ogbomoso selected from Kwara, Osun and Oyo states respectively. The data used in this study were collected through oral and structured interviews. Fifteen interviewers were purposively selected in each of the study areas. It also employs the use of electronic and printed media to generate relevant literature on the subject matter. The study revealed that many Yoruba proverbs are preserved or hidden in text books, monograph, home videos, films and pastoral messages. However, this has not stopped the problem of lack of understanding of its usage, meaning and reasons for its extinction that may hinder its preservation for the incoming generations. This study concludes that indigenous culture can be revived and preserved for future generations when there is a conscious attempt to integrate or convert their traditional roles for present day realities and relevance in our social and educational needs.

Keywords: culture, assimilation, extinct, heritage, preservation

Procedia PDF Downloads 331
1096 Android-Based Edugame Application for Earthquakes Disaster Mitigation Education

Authors: Endina P. Purwandari, Yolanda Hervianti, Feri Noperman, Endang W. Winarni

Abstract:

The earthquakes disaster is an event that can threaten at any moment and cause damage and loss of life. Game earthquake disaster mitigation is a useful educational game to enhance children insight, knowledge, and understanding in the response to the impact of the earthquake. This study aims to build an educational games application on the Android platform as a learning media for earthquake mitigation education and to determine the effect of the application toward children understanding of the earthquake disaster mitigation. The methods were research and development. The development was to develop edugame application for earthquakes mitigation education. The research involved elementary students as a research sample to test the developed application. The research results were valid android-based edugame application, and its the effect of application toward children understanding. The application contains an earthquake simulation video, an earthquake mitigation video, and a game consisting three stages, namely before the earthquake, when the earthquake occur, and after the earthquake. The results of the feasibility test application showed that this application was included in the category of 'Excellent' which the average percentage of the operation of applications by 76%, view application by 67% and contents of application by 74%. The test results of students' responses were 80% that showed that a positive their responses toward the application. The student understanding test results show that the average score of children understanding pretest was 71,33, and post-test was 97,00. T-test result showed that t value by 8,02 more than table t by 2,001. This indicated that the earthquakes disaster mitigation edugame application based on Android platform affects the children understanding about disaster earthquake mitigation.

Keywords: android, edugame, mitigation, earthquakes

Procedia PDF Downloads 362
1095 Non-Linear Assessment of Chromatographic Lipophilicity and Model Ranking of Newly Synthesized Steroid Derivatives

Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Anamarija Mandic, Katarina Penov Gasi, Marija Sakac, Aleksandar Okljesa, Andrea Nikolic

Abstract:

The present paper deals with chromatographic lipophilicity prediction of newly synthesized steroid derivatives. The prediction was achieved using in silico generated molecular descriptors and quantitative structure-retention relationship (QSRR) methodology with the artificial neural networks (ANN) approach. Chromatographic lipophilicity of the investigated compounds was expressed as retention factor value logk. For QSRR modeling, a feedforward back-propagation ANN with gradient descent learning algorithm was applied. Using the novel sum of ranking differences (SRD) method generated ANN models were ranked. The aim was to distinguish the most consistent QSRR model that can be found, and similarity or dissimilarity between the models that could be noticed. In this study, SRD was performed with average values of retention factor value logk as reference values. An excellent correlation between experimentally observed retention factor value logk and values predicted by the ANN was obtained with a correlation coefficient higher than 0.9890. Statistical results show that the established ANN models can be applied for required purpose. This article is based upon work from COST Action (TD1305), supported by COST (European Cooperation in Science and Technology).

Keywords: artificial neural networks, liquid chromatography, molecular descriptors, steroids, sum of ranking differences

Procedia PDF Downloads 319
1094 Evaluating the Benefits of Intelligent Acoustic Technology in Classrooms: A Case Study

Authors: Megan Burfoot, Ali GhaffarianHoseini, Nicola Naismith, Amirhosein GhaffarianHoseini

Abstract:

Intelligent Acoustic Technology (IAT) is a novel architectural device used in buildings to automatically vary the acoustic conditions of space. IAT is realized by integrating two components: Variable Acoustic Technology (VAT) and an intelligent system. The VAT passively alters the RT by changing the total sound absorption in a room. In doing so, the Reverberation Time (RT) is changed and thus, the sound strength and clarity are altered. The intelligent system detects sound waves in real-time to identify the aural situation, and the RT is adjusted accordingly based on pre-programmed algorithms. IAT - the synthesis of these two components - can dramatically improve acoustic comfort, as the acoustic condition is automatically optimized for any detected aural situation. This paper presents an evaluation of the improvements of acoustic comfort in an existing tertiary classroom located at Auckland University of Technology in New Zealand. This is a pilot case study, the first of its’ kind attempting to quantify the benefits of IAT. Naturally, the potential acoustic improvements from IAT can be actualized by only installing the VAT component of IAT and by manually adjusting it rather than utilizing an intelligent system. Such a simplified methodology is adopted for this case study to understand the potential significance of IAT without adopting a time and cost-intensive strategy. For this study, the VAT is built by overlaying reflective, rotating louvers over sound absorption panels. RT's are measured according to international standards before and after installing VAT in the classroom. The louvers are manually rotated in increments by the experimenter and further RT measurements are recorded. The results are compared with recommended guidelines and reference values from national standards for spaces intended for speech and communication. The results obtained from the measurements are used to quantify the potential improvements in classroom acoustic comfort, where IAT to be used. This evaluation reveals the current existence of poor acoustic conditions in the classroom caused by high RT's. The poor acoustics are also largely attributed to the classrooms’ inability to vary acoustic parameters for changing aural situations. The classroom experiences one static acoustic state, neglecting to recognize the nature of classrooms as flexible, dynamic spaces. Evidently, when using VAT the classroom is prescribed with a wide range of RTs it can achieve. Namely, acoustic requirements for varying teaching approaches are satisfied, and acoustic comfort is improved. By quantifying the benefits of using VAT, it can confidently suggest these same benefits are achieved with IAT. Nevertheless, it is encouraged that future studies continue this line of research toward the eventual development of IAT and its’ acceptance into mainstream architecture.

Keywords: acoustic comfort, classroom acoustics, intelligent acoustics, variable acoustics

Procedia PDF Downloads 185
1093 Writing Hybridized Narratives to Enact Scientific Literacy and the Myth of the Scientific Method

Authors: Ajaz Shaheen, Jawaid Ahmed Siddqui

Abstract:

This world has purely become scientific and technological, and therefore it demands more from our young learners to be more intellectual in learning sciences. A point of concern that is dragging the attention of educationists is that young learners are gradually detaching from science and scientific theory. To deal with this matter, we must arrange such engaging activities that may improve the imaginative skills of our young learners. Our ongoing research program highlights the effects of such activities that demand the learners to interpret scientific information in the form of text they possess. These mixed stories are also known as what we call BioStories. Learners upload their narratives on different websites to let their peers go through their manuscripts. That, as a result, brings more refinement to their works. Moreover, stories allow the learners to read, understand and learn on a broader spectrum. We have conducted separate studies with learners from Grades 6, 9, and 12 that involve case studies and quasi-experimental designs. The conclusion we drew from the analysis of Grade 6 learners was that the alignment of stories helped them become more familiar with the scientific issue. Not only this but also the learners of the respective grade built up their interest in the subject and also developed a clear understanding of related subject topics. On the other hand, results from the 8th and 9th grades study support the argument that learners reflected a positive attitude toward writing scientific information. Lastly, we concluded from the 12th-grade learners that they took pride in their writing skills and built up their strength, determination, and interest. The students became self-conscious as they wrote hybridized scientific narratives in science.

Keywords: BioStories, hybridized writing, scientific literacy, scientific method

Procedia PDF Downloads 78
1092 Evaluation of Nurse Immunisation Short Course Transitioning to Fully Online

Authors: Joanne Joyce-McCoach

Abstract:

Short courses are an integral part of the higher education sector, providing a pathway into tertiary qualifications. Recently, the Australian government has implemented a range of initiatives to support the development of short courses and micro-credentials designed to upskill the labor market and meet the needs of the healthcare workforce. While short courses have been an ongoing component of Australian nursing continuing professional development, there is an immediate need for more education opportunities as a response to the workforce shortages. However, despite the support for short courses, there are identified challenges for learners undertaking these courses online. As a result of restrictions to face-to-face classes and limited access to health services caused by the pandemic, education providers have had to transition to an online delivery requiring the redesign of skills acquisition. This paper will outline the transition of an immunisation short course to a fully online format, including the redesign of classes, content and assessment. Concurrently the enrolments for the immunisation short course substantially increased in direct response to the demand for nurse immunisers. In addition to providing a description of the curriculum changes implemented, an analysis of learners’ feedback on their experience of the new format will be discussed. Furthermore, it will explore the principles identified in the transition process for improving the short course design and learning activities. Finally, it will propose recommendations to integrate into the delivery of online short courses and to meet the learners' needs.

Keywords: nurse, immunisation, short course, micro-credential, continuing professional development, online design

Procedia PDF Downloads 68
1091 Can the Intervention of SCAMPER Bring about Changes of Neural Activation While Taking Creativity Tasks?

Authors: Yu-Chu Yeh, WeiChin Hsu, Chih-Yen Chang

Abstract:

Substitution, combination, modification, putting to other uses, elimination, and rearrangement (SCAMPER) has been regarded as an effective technique that provides a structured way to help people to produce creative ideas and solutions. Although some neuroscience studies regarding creativity training have been conducted, no study has focused on SCAMPER. This study therefore aimed at examining whether the learning of SCAMPER through video tutorials would result in alternations of neural activation. Thirty college students were randomly assigned to the experimental group or the control group. The experimental group was requested to watch SCAMPER videos, whereas the control group was asked to watch natural-scene videos which were regarded as neutral stimulating materials. Each participant was brain scanned in a Functional magnetic resonance imaging (fMRI) machine while undertaking a creativity test before and after watching the videos. Furthermore, a two-way ANOVA was used to analyze the interaction between groups (the experimental group; the control group) and tasks (C task; M task; X task). The results revealed that the left precuneus significantly activated in the interaction of groups and tasks, as well as in the main effect of group. Furthermore, compared with the control group, the experimental group had greater activation in the default mode network (left precuneus and left inferior parietal cortex) and the motor network (left postcentral gyrus and left supplementary area). The findings suggest that the SCAMPER training may facilitate creativity through the stimulation of the default mode network and the motor network.

Keywords: creativity, default mode network, neural activation, SCAMPER

Procedia PDF Downloads 99
1090 Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network

Authors: Yulin Rao, Zhixuan Li, Burra Venkata Durga Kumar

Abstract:

Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions.

Keywords: artificial immune system, distributed artificial intelligence, multi-agent, intrusion detection system, neural network

Procedia PDF Downloads 107
1089 Convolutional Neural Networks-Optimized Text Recognition with Binary Embeddings for Arabic Expiry Date Recognition

Authors: Mohamed Lotfy, Ghada Soliman

Abstract:

Recognizing Arabic dot-matrix digits is a challenging problem due to the unique characteristics of dot-matrix fonts, such as irregular dot spacing and varying dot sizes. This paper presents an approach for recognizing Arabic digits printed in dot matrix format. The proposed model is based on Convolutional Neural Networks (CNN) that take the dot matrix as input and generate embeddings that are rounded to generate binary representations of the digits. The binary embeddings are then used to perform Optical Character Recognition (OCR) on the digit images. To overcome the challenge of the limited availability of dotted Arabic expiration date images, we developed a True Type Font (TTF) for generating synthetic images of Arabic dot-matrix characters. The model was trained on a synthetic dataset of 3287 images and 658 synthetic images for testing, representing realistic expiration dates from 2019 to 2027 in the format of yyyy/mm/dd. Our model achieved an accuracy of 98.94% on the expiry date recognition with Arabic dot matrix format using fewer parameters and less computational resources than traditional CNN-based models. By investigating and presenting our findings comprehensively, we aim to contribute substantially to the field of OCR and pave the way for advancements in Arabic dot-matrix character recognition. Our proposed approach is not limited to Arabic dot matrix digit recognition but can also be extended to text recognition tasks, such as text classification and sentiment analysis.

Keywords: computer vision, pattern recognition, optical character recognition, deep learning

Procedia PDF Downloads 92
1088 Identification of Flooding Attack (Zero Day Attack) at Application Layer Using Mathematical Model and Detection Using Correlations

Authors: Hamsini Pulugurtha, V.S. Lakshmi Jagadmaba Paluri

Abstract:

Distributed denial of service attack (DDoS) is one altogether the top-rated cyber threats presently. It runs down the victim server resources like a system of measurement and buffer size by obstructing the server to supply resources to legitimate shoppers. Throughout this text, we tend to tend to propose a mathematical model of DDoS attack; we discuss its relevancy to the choices like inter-arrival time or rate of arrival of the assault customers accessing the server. We tend to tend to further analyze the attack model in context to the exhausting system of measurement and buffer size of the victim server. The projected technique uses an associate in nursing unattended learning technique, self-organizing map, to make the clusters of identical choices. Lastly, the abstract applies mathematical correlation and so the standard likelihood distribution on the clusters and analyses their behaviors to look at a DDoS attack. These systems not exclusively interconnect very little devices exchanging personal data, but to boot essential infrastructures news standing of nuclear facilities. Although this interconnection brings many edges and blessings, it to boot creates new vulnerabilities and threats which might be conversant in mount attacks. In such sophisticated interconnected systems, the power to look at attacks as early as accomplishable is of paramount importance.

Keywords: application attack, bandwidth, buffer correlation, DDoS distribution flooding intrusion layer, normal prevention probability size

Procedia PDF Downloads 223
1087 A Study on the Disclosure Experience of Adoptees

Authors: Tsung Chieh Ma, I-Ling Chen

Abstract:

Disclosing family origins to adoptees is an important topic in the adoption process. Adoption agencies usually educate adoptive parents on how to disclose to adoptees, but many adoptive parents worry that the disclosure will affect the parent–child relationship. Thus, how adoptees would like to receive the disclosure and whether they subjectively feel that the parent–child relationship is affected are both topics worthy of further discussion. This research takes a qualitative approach and connects with adoption agencies to interview six adoptees who are now adults. The purpose of the interviews is to learn about their experience receiving disclosures and their subjective feelings after learning of their family origins. The aim is to reveal the changes disclosure brought to the parent–child relationship and whether common concerns are raised due to the adoptive status. We also want to know about factors that affect their identification with their adopted status so that we can consequently give advice to other adoptive families. in this study finds that adoptees see disclosure as a process rather than an isolated event. The majority want to be told their family origin as early and proactively as possible and expect to learn the reasons they were given up for adoption and taken in as adoptees. The disclosure does not necessarily influence the parent–child relationship, and adoptees care more about the positive experiences they had with adoptive parents in their childhood. Moreover, adopted children seek contact with their original family mostly to understand why they were given up for adoption. The effects of disclosure depend on how the adoptive parents or other significant people in the lives of adoptees interpret the identity of the adoptees. That is, their response and attitude toward the identity have a lasting impact on the adoptees. The study suggests that early disclosure gives adoptees a chance to internalize the experience in the process and find self-identification.

Keywords: adoption, adoptees, disclosure of family origins, parent–child relationship, self-identity

Procedia PDF Downloads 67
1086 Information Overload, Information Literacy and Use of Technology by Students

Authors: Elena Krelja Kurelović, Jasminka Tomljanović, Vlatka Davidović

Abstract:

The development of web technologies and mobile devices makes creating, accessing, using and sharing information or communicating with each other simpler every day. However, while the amount of information constantly increasing it is becoming harder to effectively organize and find quality information despite the availability of web search engines, filtering and indexing tools. Although digital technologies have overall positive impact on students’ lives, frequent use of these technologies and digital media enriched with dynamic hypertext and hypermedia content, as well as multitasking, distractions caused by notifications, calls or messages; can decrease the attention span, make thinking, memorizing and learning more difficult, which can lead to stress and mental exhaustion. This is referred to as “information overload”, “information glut” or “information anxiety”. Objective of this study is to determine whether students show signs of information overload and to identify the possible predictors. Research was conducted using a questionnaire developed for the purpose of this study. The results show that students frequently use technology (computers, gadgets and digital media), while they show moderate level of information literacy. They have sometimes experienced symptoms of information overload. According to the statistical analysis, higher frequency of technology use and lower level of information literacy are correlated with larger information overload. The multiple regression analysis has confirmed that the combination of these two independent variables has statistically significant predictive capacity for information overload. Therefore, the information science teachers should pay attention to improving the level of students’ information literacy and educate them about the risks of excessive technology use.

Keywords: information overload, computers, mobile devices, digital media, information literacy, students

Procedia PDF Downloads 276
1085 Cognitive Model of Analogy Based on Operation of the Brain Cells: Glial, Axons and Neurons

Authors: Ozgu Hafizoglu

Abstract:

Analogy is an essential tool of human cognition that enables connecting diffuse and diverse systems with attributional, deep structural, casual relations that are essential to learning, to innovation in artificial worlds, and to discovery in science. Cognitive Model of Analogy (CMA) leads and creates information pattern transfer within and between domains and disciplines in science. This paper demonstrates the Cognitive Model of Analogy (CMA) as an evolutionary approach to scientific research. The model puts forward the challenges of deep uncertainty about the future, emphasizing the need for flexibility of the system in order to enable reasoning methodology to adapt to changing conditions. In this paper, the model of analogical reasoning is created based on brain cells, their fractal, and operational forms within the system itself. Visualization techniques are used to show correspondences. Distinct phases of the problem-solving processes are divided thusly: encoding, mapping, inference, and response. The system is revealed relevant to brain activation considering each of these phases with an emphasis on achieving a better visualization of the brain cells: glial cells, axons, axon terminals, and neurons, relative to matching conditions of analogical reasoning and relational information. It’s found that encoding, mapping, inference, and response processes in four-term analogical reasoning are corresponding with the fractal and operational forms of brain cells: glial, axons, and neurons.

Keywords: analogy, analogical reasoning, cognitive model, brain and glials

Procedia PDF Downloads 184
1084 Global Low Carbon Transitions in the Power Sector: A Machine Learning Archetypical Clustering Approach

Authors: Abdullah Alotaiq, David Wallom, Malcolm McCulloch

Abstract:

This study presents an archetype-based approach to designing effective strategies for low-carbon transitions in the power sector. To achieve global energy transition goals, a renewable energy transition is critical, and understanding diverse energy landscapes across different countries is essential to design effective renewable energy policies and strategies. Using a clustering approach, this study identifies 12 energy archetypes based on the electricity mix, socio-economic indicators, and renewable energy contribution potential of 187 UN countries. Each archetype is characterized by distinct challenges and opportunities, ranging from high dependence on fossil fuels to low electricity access, low economic growth, and insufficient contribution potential of renewables. Archetype A, for instance, consists of countries with low electricity access, high poverty rates, and limited power infrastructure, while Archetype J comprises developed countries with high electricity demand and installed renewables. The study findings have significant implications for renewable energy policymaking and investment decisions, with policymakers and investors able to use the archetype approach to identify suitable renewable energy policies and measures and assess renewable energy potential and risks. Overall, the archetype approach provides a comprehensive framework for understanding diverse energy landscapes and accelerating decarbonisation of the power sector.

Keywords: fossil fuels, power plants, energy transition, renewable energy, archetypes

Procedia PDF Downloads 49
1083 Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image

Authors: Hilal Naimi, Amelbahahouda Adamou-Mitiche, Lahcene Mitiche

Abstract:

The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function.

Keywords: lifting wavelet transform, image denoising, dual tree complex wavelet transform, wavelet shrinkage, wiener filter

Procedia PDF Downloads 162
1082 Variations in Breast Aesthetic Reconstruction Rates between Asian and Caucasian Patients Post Mastectomy in a UK Tertiary Breast Referral Centre: A Five-Year Institutional Review

Authors: Wisam Ismail, Chole Wright, Elizabeth Baker, Cathy Tait, Mohamed Salhab, Richard Linforth

Abstract:

Background: Post-mastectomy breast reconstruction is an important treatment option for women with breast cancer with psychosocial, emotional and quality of life benefits. Despite this, Asian patients are one-fifth as likely as Caucasian patients to undergo reconstruction after mastectomy. Aim: This study aimed to assess the difference in breast reconstruction rates between Asian and Caucasian patients treated at Bradford Teaching Hospitals between May 2011 – December 2015.The long-term goal is to equip healthcare professionals to improve breast cancer treatment outcome by increasing breast reconstruction rates in this sub-population. Methods: All patients undergoing mastectomy were identified using a prospectively collected departmental database. Further data was obtained via retrospective electronic case note review. Bradford city population is about 530.000 by the end of 2015, with 67.44% of the city's population was White ethnic groups and 26.83% Asian Ethnic Groups (UK population consensus). The majority of Asian population speaks Urdu, hence an Urdu speaking breast care nurse was appointed to facilitate communications and deliver a better understanding of the reconstruction options and pathways. Statistical analysis was undertaken using the SAS program. Patients were stratified by age, self-reported ethnicity, axillary surgery and reconstruction. Relative odds were calculated using univariate and multivariate logistic regression analyses with adjustment for known confounders. An Urdu speaking breast care nurse was employed throughout this period to facilitate communication and patient decision making. Results: 506 patients underwent Mastectomy over 5 years. 72 (14%) Asian v. 434 (85%) Caucasian. Overall median age is 64 years (SD1.1). Asian median age is 62 (SD0.9), versus Caucasian 65 (SD1.2). Total axillary clearance rate was 30% (42% Asian v.30% Caucasian). Overall reconstruction rate was 126 patients (28.9%).Only 6 of 72 Asian patients (<1%) underwent breast reconstruction versus 121of 434 Caucasian (28%) (p < 0.04), Odds ratio 0.68, (95% confidence interval 0.57-0.79). Conclusions: There is a significant difference in post-mastectomy reconstruction rates between Asian and Caucasian patients. This difference is likely to be multi-factorial. Higher rates of axillary clearance in Asian patients might suggest later disease presentation and/or higher rates of subsequent adjuvant therapy, both of which, can impact on the suitability of breast reconstruction. Strategies aimed at reducing racial disparities in breast reconstruction should include symptom awareness to enable earlier presentation and facilitated communication to ensure informed decision-making.

Keywords: aesthetic, Asian, breast, reconstruction

Procedia PDF Downloads 275
1081 Using Wearable Device with Neuron Network to Classify Severity of Sleep Disorder

Authors: Ru-Yin Yang, Chi Wu, Cheng-Yu Tsai, Yin-Tzu Lin, Wen-Te Liu

Abstract:

Background: Sleep breathing disorder (SDB) is a condition demonstrated by recurrent episodes of the airway obstruction leading to intermittent hypoxia and quality fragmentation during sleep time. However, the procedures for SDB severity examination remain complicated and costly. Objective: The objective of this study is to establish a simplified examination method for SDB by the respiratory impendence pattern sensor combining the signal processing and machine learning model. Methodologies: We records heart rate variability by the electrocardiogram and respiratory pattern by impendence. After the polysomnography (PSG) been done with the diagnosis of SDB by the apnea and hypopnea index (AHI), we calculate the episodes with the absence of flow and arousal index (AI) from device record. Subjects were divided into training and testing groups. Neuron network was used to establish a prediction model to classify the severity of the SDB by the AI, episodes, and body profiles. The performance was evaluated by classification in the testing group compared with PSG. Results: In this study, we enrolled 66 subjects (Male/Female: 37/29; Age:49.9±13.2) with the diagnosis of SDB in a sleep center in Taipei city, Taiwan, from 2015 to 2016. The accuracy from the confusion matrix on the test group by NN is 71.94 %. Conclusion: Based on the models, we established a prediction model for SDB by means of the wearable sensor. With more cases incoming and training, this system may be used to rapidly and automatically screen the risk of SDB in the future.

Keywords: sleep breathing disorder, apnea and hypopnea index, body parameters, neuron network

Procedia PDF Downloads 148
1080 Acute Severe Hyponatremia in Patient with Psychogenic Polydipsia, Learning Disability and Epilepsy

Authors: Anisa Suraya Ab Razak, Izza Hayat

Abstract:

Introduction: The diagnosis and management of severe hyponatremia in neuropsychiatric patients present a significant challenge to physicians. Several factors contribute, including diagnostic shadowing and attributing abnormal behavior to intellectual disability or psychiatric conditions. Hyponatraemia is the commonest electrolyte abnormality in the inpatient population, ranging from mild/asymptomatic, moderate to severe levels with life-threatening symptoms such as seizures, coma and death. There are several documented fatal case reports in the literature of severe hyponatremia secondary to psychogenic polydipsia, often diagnosed only in autopsy. This paper presents a case study of acute severe hyponatremia in a neuropsychiatric patient with early diagnosis and admission to intensive care. Case study: A 21-year old Caucasian male with known epilepsy and learning disability was admitted from residential living with generalized tonic-clonic self-terminating seizures after refusing medications for several weeks. Evidence of superficial head injury was detected on physical examination. His laboratory data demonstrated mild hyponatremia (125 mmol/L). Computed tomography imaging of his brain demonstrated no acute bleed or space-occupying lesion. He exhibited abnormal behavior - restlessness, drinking water from bathroom taps, inability to engage, paranoia, and hypersexuality. No collateral history was available to establish his baseline behavior. He was loaded with intravenous sodium valproate and leveritircaetam. Three hours later, he developed vomiting and a generalized tonic-clonic seizure lasting forty seconds. He remained drowsy for several hours and regained minimal recovery of consciousness. A repeat set of blood tests demonstrated profound hyponatremia (117 mmol/L). Outcomes: He was referred to intensive care for peripheral intravenous infusion of 2.7% sodium chloride solution with two-hourly laboratory monitoring of sodium concentration. Laboratory monitoring identified dangerously rapid correction of serum sodium concentration, and hypertonic saline was switched to a 5% dextrose solution to reduce the risk of acute large-volume fluid shifts from the cerebral intracellular compartment to the extracellular compartment. He underwent urethral catheterization and produced 8 liters of urine over 24 hours. Serum sodium concentration remained stable after 24 hours of correction fluids. His GCS recovered to baseline after 48 hours with improvement in behavior -he engaged with healthcare professionals, understood the importance of taking medications, admitted to illicit drug use and drinking massive amounts of water. He was transferred from high-dependency care to ward level and was initiated on multiple trials of anti-epileptics before achieving seizure-free days two weeks after resolution of acute hyponatremia. Conclusion: Psychogenic polydipsia is often found in young patients with intellectual disability or psychiatric disorders. Patients drink large volumes of water daily ranging from ten to forty liters, resulting in acute severe hyponatremia with mortality rates as high as 20%. Poor outcomes are due to challenges faced by physicians in making an early diagnosis and treating acute hyponatremia safely. A low index of suspicion of water intoxication is required in this population, including patients with known epilepsy. Monitoring urine output proved to be clinically effective in aiding diagnosis. Early referral and admission to intensive care should be considered for safe correction of sodium concentration while minimizing risk of fatal complications e.g. central pontine myelinolysis.

Keywords: epilepsy, psychogenic polydipsia, seizure, severe hyponatremia

Procedia PDF Downloads 121
1079 From Dissection to Diagnosis: Integrating Radiology into Anatomy Labs for Medical Students

Authors: Julia Wimmers-Klick

Abstract:

At the Canadian University of British Columbia's Faculty of Medicine, anatomy has traditionally been taught through a combination of lectures and dissection labs in the first two years, with radiology taught separately through lectures and online modules. However, this separation may leave students underprepared for medical practice, as medical imaging is essential for diagnosing anatomical and pathological conditions. To address this, a pilot project was initiated aimed at integrating radiological imaging into anatomy dissection labs from day one of medical school. The incorporated radiological images correlated with the current dissection areas. Additional stations were added within the lab, tailored to the specific content being covered. These stations focused on bones, and quiz questions, along with light-box exercises using radiographs, CT scans, and MRIs provided by the radiology department. The images used were free of pathologies. Examples of these will be presented in the poster. Feedback from short interviews with students and instructors has been positive, particularly among second-year students who appreciated the integration compared to their first-year experience. This low-budget approach was easy to implement but faced challenges, as lab instructors were not radiologists and occasionally struggled to answer students' questions. Instructors expressed a desire for basic training or a refresher course in radiology image reading, particularly focused on identifying healthy landmarks. Overall, all participants agreed that integrating radiology with anatomy reinforces learning during dissection, enhancing students' understanding and preparation for clinical practice.

Keywords: quality improvement, radiology education, anatomy education, integration

Procedia PDF Downloads 6
1078 The Effect of Bilingualism on Prospective Memory

Authors: Aslı Yörük, Mevla Yahya, Banu Tavat

Abstract:

It is well established that bilinguals outperform monolinguals on executive function tasks. However, the effects of bilingualism on prospective memory (PM), which also requires executive functions, have not been investigated vastly. This study aimed to compare bi and monolingual participants' PM performance in focal and non-focal PM tasks. Considering that bilinguals have greater executive function abilities than monolinguals, we predict that bilinguals’ PM performance would be higher than monolinguals on the non-focal PM task, which requires controlled monitoring processes. To investigate these predictions, we administered the focal and non-focal PM task and measured the PM and ongoing task performance. Forty-eight Turkish-English bilinguals residing in North Macedonia and forty-eight Turkish monolinguals living in Turkey between the ages of 18-30 participated in the study. They were instructed to remember responding to rarely appearing PM cues while engaged in an ongoing task, i.e., spatial working memory task. The focality of the task was manipulated by giving different instructions for PM cues. In the focal PM task, participants were asked to remember to press an enter key whenever a particular target stimulus appeared in the working memory task; in the non-focal PM task, instead of responding to a specific target shape, participants were asked to remember to press the enter key whenever the background color of the working memory trials changes to a specific color (yellow). To analyze data, we performed a 2 × 2 mixed factorial ANOVA with the task (focal versus non-focal) as a within-subject variable and language group (bilinguals versus monolinguals) as a between-subject variable. The results showed no direct evidence for a bilingual advantage in PM. That is, the group’s performance did not differ in PM accuracy and ongoing task accuracy. However, bilinguals were overall faster in the ongoing task, yet this was not specific to PM cue’s focality. Moreover, the results showed a reversed effect of PM cue's focality on the ongoing task performance. That is, both bi and monolinguals showed enhanced performance in the non-focal PM cue task. These findings raise skepticism about the literature's prevalent findings and theoretical explanations. Future studies should investigate possible alternative explanations.

Keywords: bilingualism, executive functions, focality, prospective memory

Procedia PDF Downloads 113
1077 Revolutionizing Legal Drafting: Leveraging Artificial Intelligence for Efficient Legal Work

Authors: Shreya Poddar

Abstract:

Legal drafting and revising are recognized as highly demanding tasks for legal professionals. This paper introduces an approach to automate and refine these processes through the use of advanced Artificial Intelligence (AI). The method employs Large Language Models (LLMs), with a specific focus on 'Chain of Thoughts' (CoT) and knowledge injection via prompt engineering. This approach differs from conventional methods that depend on comprehensive training or fine-tuning of models with extensive legal knowledge bases, which are often expensive and time-consuming. The proposed method incorporates knowledge injection directly into prompts, thereby enabling the AI to generate more accurate and contextually appropriate legal texts. This approach substantially decreases the necessity for thorough model training while preserving high accuracy and relevance in drafting. Additionally, the concept of guardrails is introduced. These are predefined parameters or rules established within the AI system to ensure that the generated content adheres to legal standards and ethical guidelines. The practical implications of this method for legal work are considerable. It has the potential to markedly lessen the time lawyers allocate to document drafting and revision, freeing them to concentrate on more intricate and strategic facets of legal work. Furthermore, this method makes high-quality legal drafting more accessible, possibly reducing costs and expanding the availability of legal services. This paper will elucidate the methodology, providing specific examples and case studies to demonstrate the effectiveness of 'Chain of Thoughts' and knowledge injection in legal drafting. The potential challenges and limitations of this approach will also be discussed, along with future prospects and enhancements that could further advance legal work. The impact of this research on the legal industry is substantial. The adoption of AI-driven methods by legal professionals can lead to enhanced efficiency, precision, and consistency in legal drafting, thereby altering the landscape of legal work. This research adds to the expanding field of AI in law, introducing a method that could significantly alter the nature of legal drafting and practice.

Keywords: AI-driven legal drafting, legal automation, futureoflegalwork, largelanguagemodels

Procedia PDF Downloads 61
1076 Improving Medication Understanding, Use and Self-Efficacy among Stroke Patients: A Randomised Controlled Trial; Study Protocol

Authors: Jamunarani Appalasamy, Tha Kyi Kyi, Quek Kia Fatt, Joyce Pauline Joseph, Anuar Zaini M. Zain

Abstract:

Background: The Health Belief Theory had always been associated with chronic disease management. Various health behaviour concepts and perception branching from this Health Belief Theory had involved with medication understanding, use, and self-efficacy which directly link to medication adherence. In a previous quantitative and qualitative study, stroke patients in Malaysia were found to be strongly believing information obtained by various sources such as the internet and social communication. This action leads to lower perception of their stroke preventative medication benefit which in long-term creates non-adherence. Hence, this study intends to pilot an intervention which uses audio-visual concept incorporated with mHealth service to enhance learning and self-reflection among stroke patients to manage their disease. Methods/Design: Twenty patients will be allocated to a proposed intervention whereas another twenty patients are allocated to the usual treatment. The intervention involves a series of developed audio-visual videos sent via mobile phone which later await for responses and feedback from the receiver (patient) via SMS or recorded calls. The primary outcome would be the medication understanding, use and self-efficacy measured over two months pre and post intervention. Secondary outcome is measured from changes of blood parameters and other self-reported questionnaires. Discussion: This study shall also assess uptake/attrition, feasibility, and acceptability of this intervention. Trial Registration: NMRR-15-851-24737 (IIR)

Keywords: health belief, medication understanding, medication use, self-efficacy

Procedia PDF Downloads 218
1075 Exclusive Value Adding by iCenter Analytics on Transient Condition

Authors: Zhu Weimin, Allegorico Carmine, Ruggiero Gionata

Abstract:

During decades of Baker Hughes (BH) iCenter experience, it is demonstrated that in addition to conventional insights on equipment steady operation conditions, insights on transient conditions can add significant and exclusive value for anomaly detection, downtime saving, and predictive maintenance. Our work shows examples from the BH iCenter experience to introduce the advantages and features of using transient condition analytics: (i) Operation under critical engine conditions: e.g., high level or high change rate of temperature, pressure, flow, vibration, etc., that would not be reachable in normal operation, (ii) Management of dedicated sub-systems or components, many of which are often bottlenecks for reliability and maintenance, (iii) Indirect detection of anomalies in the absence of instrumentation, (iv) Repetitive sequences: if data is properly processed, the engineering features of transients provide not only anomaly detection but also problem characterization and prognostic indicators for predictive maintenance, (v) Engine variables accounting for fatigue analysis. iCenter has been developing and deploying a series of analytics based on transient conditions. They are contributing to exclusive value adding in the following areas: (i) Reliability improvement, (ii) Startup reliability improvement, (iii) Predictive maintenance, (iv) Repair/overhaul cost down. Illustrative examples for each of the above areas are presented in our study, focusing on challenges and adopted techniques ranging from purely statistical approaches to the implementation of machine learning algorithms. The obtained results demonstrate how the value is obtained using transient condition analytics in the BH iCenter experience.

Keywords: analytics, diagnostics, monitoring, turbomachinery

Procedia PDF Downloads 72
1074 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks

Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas

Abstract:

Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.

Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model

Procedia PDF Downloads 55
1073 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets

Authors: Kothuri Sriraman, Mattupalli Komal Teja

Abstract:

In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).

Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm

Procedia PDF Downloads 347
1072 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification

Authors: Jianhong Xiang, Rui Sun, Linyu Wang

Abstract:

In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.

Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification

Procedia PDF Downloads 77
1071 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics

Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo

Abstract:

Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.

Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model

Procedia PDF Downloads 153