Search results for: sustainable tourism area
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12903

Search results for: sustainable tourism area

2613 Emergency Management and Patient Transportation of Road Traffic Accident Victims Admitted to the District General Hospital, Matale, Sri Lanka

Authors: Asanka U. K. Godamunne

Abstract:

Road traffic accidents (RTA) are a leading cause of death globally as well as in Sri Lanka and results in a large proportion of disability especially among young people. Ninety-percent of world’s road traffic deaths occur in low- and middle-income countries. The gross disparities in injury outcomes relate to immediate post-crash and hospital management. Emergency management, methods of patient transportation following road traffic accidents and safety measures are important factors to reduce mortality and morbidity. Studies in this area are limited in Sri Lanka. The main objective of this research was to assess the emergency management and proper method of transportation of road traffic accident victims. This offers the best way to explore the ways to reduce the mortality and morbidity and raise the public awareness. This study was conducted as a descriptive cross-sectional study. All the consecutive road traffic accident victims admitted to surgical wards at District General Hospital, Matale, Sri Lanka, over a period of three months were included in the study. Data from 387 victims were analyzed. The majority were in the 20-30 year age group. Seventy six percent of the patients were males. Motorcycles and trishaws were most affected. First-aid was given to only 2% of patients and it was given by non-medical persons. A significant proportion of patients (75%) were transported to the hospital by trishaws and only 1% transported by ambulance. About 86% of the patients were seated while transport and 14% were flat. Limbs and head were the most affected areas of the body. As per this study, immediate post-crash management and patient transportation were not satisfactory. There is a need to strengthen certain road safety laws and make sure people follow them.

Keywords: emergency management, patient transportation, road traffic accident victims, Sri Lanka

Procedia PDF Downloads 206
2612 One-Pot Synthesis of 5-Hydroxymethylfurfural from Hexose Sugar over Chromium Impregnated Zeolite Based Catalyst, Cr/H-ZSM-5

Authors: Samuel K. Degife, Kamal K. Pant, Sapna Jain

Abstract:

The world´s population and industrialization of countries continued to grow in an alarming rate irrespective of the security for food, energy supply, and pure water availability. As a result, the global energy consumption is observed to increase significantly. Fossil energy resources that mainly comprised of crude oil, coal, and natural gas have been used by mankind as the main energy source for almost two centuries. However, sufficient evidences are revealing that the consumption of fossil resource as transportation fuel emits environmental pollutants such as CO2, NOx, and SOx. These resources are dwindling rapidly besides enormous amount of problems associated such as fluctuation of oil price and instability of oil-rich regions. Biomass is a promising renewable energy candidate to replace fossil-based transportation fuel and chemical production. The present study aims at valorization of hexose sugars (glucose and fructose) using zeolite based catalysts in imidazolium based ionic liquid (1-butyl-3-methylimidazolium chloride, [BMIM] Cl) reaction media. The catalytic effect chromium impregnated H-ZSM-5 (Cr/H-ZSM-5) was studied for dehydration of hexose sugars. The wet impregnation method was used to prepare Cr/H-ZSM-5 catalyst. The characterization of the prepared catalyst was performed using techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), Temperature-programmed desorption of ammonia (NH3-TPD) and BET-surface area analysis. The dehydration product, 5-hydroxymethylfurfural (5-HMF), was analyzed using high-performance liquid chromatography (HPLC). Cr/H-ZSM-5 was effective in dehydrating fructose with 87% conversion and 55% yield 5-HMF at 180 oC for 30 min of reaction time compared with H-ZSM-5 catalyst which yielded only 31% of 5-HMF at identical reaction condition.

Keywords: chromium, hexose, ionic liquid, , zeolite

Procedia PDF Downloads 149
2611 Genetic Advance versus Environmental Impact toward Sustainable Protein, Wet Gluten and Zeleny Sedimentation in Bread and Durum Wheat

Authors: Gordana Branković, Dejan Dodig, Vesna Pajić, Vesna Kandić, Desimir Knežević, Nenad Đurić

Abstract:

The wheat grain quality properties are influenced by genotype, environmental conditions and genotype × environment interaction (GEI). The increasing request of more nutritious wheat products will direct future breeding programmes. Therefore, the aim of investigation was to determine: i) variability of the protein content (PC), wet gluten content (WG) and Zeleny sedimentation volume (ZS); ii) components of variance, heritability in a broad sense (hb2), and expected genetic advance as percent of mean (GAM) for PC, WG, and ZS; iii) correlations between PC, WG, ZS, and most important agronomic traits; in order to assess expected breeding success versus environmental impact for these quality traits. The plant material consisted of 30 genotypes of bread wheat (Triticum aestivum L. ssp. aestivum) and durum wheat (Triticum durum Desf.). The trials were sown at the three test locations in Serbia: Rimski Šančevi, Zemun Polje and Padinska Skela during 2010-2011 and 2011-2012. The experiments were set as randomized complete block design with four replications. The plot consisted of five rows of 1 m2 (5 × 0.2 m × 1 m). PC, WG and ZS were determined by the use of Near infrared spectrometry (NIRS) with the Infraneo analyser (Chopin Technologies, France). PC, WG and ZS, in bread wheat, were in the range 13.4-16.4%, 22.8-30.3%, and 39.4-67.1 mL, respectively, and in durum wheat, in the range 15.3-18.1%, 28.9-36.3%, 37.4-48.3 mL, respectively. The dominant component of variance for PC, WG, and ZS, in bread wheat, was genotype with the genetic variance/GEI variance (VG/VG × E) relation of 3.2, 2.9 and 1.0, respectively, and in durum wheat was GEI with the VG/VG × E relation of 0.70, 0.69 and 0.49, respectively. hb2 and GAM values for PC, WG and ZS, in bread wheat, were 94.9% and 12.6%, 93.7% and 18.4%, and 86.2% and 28.1%, respectively, and in durum wheat, 80.7% and 7.6%, 79.7% and 10.2%, and 74% and 11.2%, respectively. The most consistent through six environments, statistically significant correlations, for bread wheat, were between PC and spike length (-0.312 to -0.637); PC, WG, ZS and grain number per spike (-0.320 to -0.620; -0.369 to -0.567; -0.301 to -0.378, respectively); PC and grain thickness (0.338 to 0.566), and for durum wheat, were between PC, WG, ZS and yield (-0.290 to -0.690; -0.433 to -0.753; -0.297 to -0.660, respectively); PC and plant height (-0.314 to -0.521); PC, WG and spike length (-0.298 to -0.597; -0.293 to -0.627, respectively); PC, WG and grain thickness (0.260 to 0.575; 0.269 to 0.498, respectively); PC, WG and grain vitreousness (0.278 to 0.665; 0.357 to 0.690, respectively). Breeding success can be anticipated for ZS in bread wheat due to coupled high values for hb2 and GAM, suggesting existence of additive genetic effects, and also for WG in bread wheat, due to very high hb2 and medium high GAM. The small, and medium, negative correlations between PC, WG, ZS, and yield or yield components, indicate difficulties to select simultaneously for high quality and yield, depending on linkage for particular genetic arrangements to be broken by recombination.

Keywords: bread and durum wheat, genetic advance, protein and wet gluten content, Zeleny sedimentation volume

Procedia PDF Downloads 227
2610 An Industrial Steady State Sequence Disorder Model for Flow Controlled Multi-Input Single-Output Queues in Manufacturing Systems

Authors: Anthony John Walker, Glen Bright

Abstract:

The challenge faced by manufactures, when producing custom products, is that each product needs exact components. This can cause work-in-process instability due to component matching constraints imposed on assembly cells. Clearing type flow control policies have been used extensively in mediating server access between multiple arrival processes. Although the stability and performance of clearing policies has been well formulated and studied in the literature, the growth in arrival to departure sequence disorder for each arriving job, across a serving resource, is still an area for further analysis. In this paper, a closed form industrial model has been formulated that characterizes arrival-to-departure sequence disorder through stable manufacturing systems under clearing type flow control policy. Specifically addressed are the effects of sequence disorder imposed on a downstream assembly cell in terms of work-in-process instability induced through component matching constraints. Results from a simulated manufacturing system show that steady state average sequence disorder in parallel upstream processing cells can be balanced in order to decrease downstream assembly system instability. Simulation results also show that the closed form model accurately describes the growth and limiting behavior of average sequence disorder between parts arriving and departing from a manufacturing system flow controlled via clearing policy.

Keywords: assembly system constraint, custom products, discrete sequence disorder, flow control

Procedia PDF Downloads 153
2609 The Role and Significance of Mobile Gerdarmarie Battalions in the Canakkale Battles

Authors: Muzaffer Topgül, Ersi̇n Yilmaz

Abstract:

One of the unknown aspects of Çanakkale Battles is that the importance and contributions of Mobile Gendarmarie Battalion have not been fully understood. It was because the battles of the troops which were deployed more in interior parts of Gallipoli Peninsula, and the contributions of battle on level tactical troops were not considered as much as the studies on strategical or operative level troops. When the operation field and battle plans are examined, instead of deploying along the coast to put the forces with a power at zero level landing on the coast out of action, the main battle components are seen to have deployed as strong reserves in the more inner areas. The negative effect of the field on the great trop operation reveals the need for time in order to use the intervention forces. ‘Time’ emerged as the main factor in victory as a result of giving intervention opportunity to the troops. While ordering his soldiers in Conkbayırı to die rather than fight, Liutenant Colonel Mustafa Kemal, the Commander of the 19th division, also emphasized the significance of time. In this respect, the contribution of Mobile Gendarmarie Battalion which saved time for the troops to intervene can be clearly seen. During the study, the memoirs and the works written by military institutions based on the record sources under the light of the notes taken during the trips to the region were used. By preventing the enemies from capturing the area, Mobile Gendarmerie Battalions had an important role in Battles of Kerevizdere, Kireçtepe and Alçıtepe which were of great importance among the battles. The success of these battalions was expressed with compliment by both Turkish and foreign commanders that participated in the war. During the battles the losses of armed forces commissioned to keep the security and order brought about the formation of the regions deficient in state authority.

Keywords: Canakkale battles, mustafa kemal, mobile gerdarmarie, Ottoman empire, time

Procedia PDF Downloads 422
2608 Challenges and Pitfalls of Nutrition Labeling Policy in Iran: A Policy Analysis

Authors: Sareh Edalati, Nasrin Omidvar, Arezoo Haghighian Roudsari, Delaram Ghodsi, Azizollaah Zargaran

Abstract:

Background and aim: Improving consumer’s food choices and providing a healthy food environment by governments is one of the essential approaches to prevent non-communicable diseases and to fulfill the sustainable development goals (SDGs). The present study aimed to provide an analysis of the nutrition labeling policy as one of the main components of the healthy food environment to provide learning lessons for the country and other low and middle-income countries. Methods: Data were collected by reviewing documents and conducting semi-structured interviews with stakeholders. Respondents were selected through purposive and snowball sampling and continued until data saturation. MAXQDA software was used to manage data analysis. A deductive content analysis was used by applying the Kingdon multiple streams and the policy triangulation framework. Results: Iran is the first country in the Middle East and North Africa region, which has implemented nutrition traffic light labeling. The implementation process has gone through two phases: voluntary and mandatory. In the voluntary labeling, volunteer food manufacturers who chose to have the labels would receive an honorary logo and this helped to reduce the food-sector resistance gradually. After this phase, the traffic light labeling became mandatory. Despite these efforts, there has been poor involvement of media for public awareness and sensitization. Also, the inconsistency of nutrition traffic light colors which are based on food standard guidelines, lack of consistency between nutrition traffic light colors, the healthy/unhealthy nature of some food products such as olive oil and diet cola and the absence of a comprehensive evaluation plan were among the pitfalls and policy challenges identified. Conclusions: Strengthening the governance through improving collaboration within health and non-health sectors for implementation, more transparency of truthfulness of nutrition traffic labeling initiating with real ingredients, and applying international and local scientific evidence or any further revision of the program is recommended. Also, developing public awareness campaigns and revising school curriculums to improve students’ skills on nutrition label applications should be highly emphasized.

Keywords: nutrition labeling, policy analysis, food environment, Iran

Procedia PDF Downloads 157
2607 Predicting Stem Borer Density in Maize Using RapidEye Data and Generalized Linear Models

Authors: Elfatih M. Abdel-Rahman, Tobias Landmann, Richard Kyalo, George Ong’amo, Bruno Le Ru

Abstract:

Maize (Zea mays L.) is a major staple food crop in Africa, particularly in the eastern region of the continent. The maize growing area in Africa spans over 25 million ha and 84% of rural households in Africa cultivate maize mainly as a means to generate food and income. Average maize yields in Sub Saharan Africa are 1.4 t/ha as compared to global average of 2.5–3.9 t/ha due to biotic and abiotic constraints. Amongst the biotic production constraints in Africa, stem borers are the most injurious. In East Africa, yield losses due to stem borers are currently estimated between 12% to 40% of the total production. The objective of the present study was therefore to predict stem borer larvae density in maize fields using RapidEye reflectance data and generalized linear models (GLMs). RapidEye images were captured for a test site in Kenya (Machakos) in January and in February 2015. Stem borer larva numbers were modeled using GLMs assuming Poisson (Po) and negative binomial (NB) distributions with error with log arithmetic link. Root mean square error (RMSE) and ratio prediction to deviation (RPD) statistics were employed to assess the models performance using a leave one-out cross-validation approach. Results showed that NB models outperformed Po ones in all study sites. RMSE and RPD ranged between 0.95 and 2.70, and between 2.39 and 6.81, respectively. Overall, all models performed similar when used the January and the February image data. We conclude that reflectance data from RapidEye data can be used to estimate stem borer larvae density. The developed models could to improve decision making regarding controlling maize stem borers using various integrated pest management (IPM) protocols.

Keywords: maize, stem borers, density, RapidEye, GLM

Procedia PDF Downloads 467
2606 Measurement of Sarcopenia Associated with the Extent of Gastrointestinal Oncological Disease

Authors: Adrian Hang Yue Siu, Matthew Holyland, Sharon Carey, Daniel Steffens, Nabila Ansari, Cherry E. Koh

Abstract:

Introduction: Peritoneal malignancies are challenging cancers to manage. While cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS and HIPEC) may offer a cure, it’s considered radical and morbid. Pre-emptive identification of deconditioned patients for optimization may mitigate the risks of surgery. However, the difficulty lies in the scarcity of validated predictive tools to identify high-risk patients. In recent times, there has been growing interest in sarcopenia, which can occur as a result of malnutrition and malignancies. Therefore, the purpose of this study was to assess the utility of sarcopenia in predicting post-operative outcomes. Methods: A single quaternary-center retrospective study of CRS and HIPEC patients between 2017-2020 was conducted to determine the association between pre-operative sarcopenia and post-operative outcomes. Lumbar CT images were analyzed using Slice-o-matic® to measure sarcopenia. Results : Cohort (n=94) analysis found that 40% had sarcopenia, with a majority being female (53.2%) and a mean age of 55 years. Sarcopenia was statistically associated with decreased weight compared to non-sarcopenia patients, 72.7kg vs. 82.2kg (p=0.014) and shorter overall survival, 1.4 years vs. 2.1 years (p=0.032). Post-operatively, patients with sarcopenia experienced more post-operative complications (p=0.001). Conclusion: Complex procedures often require optimization to prevent complications and improve survival. While patient biomarkers – BMI and weight – are used for optimization, this research advocates for the identification of sarcopenia status for pre-operative planning. Sarcopenia may be an indicator of advanced disease requiring further treatment and is an emerging area of research. Larger studies are required to confirm these findings and to assess the reversibility of sarcopenia after surgery.

Keywords: sarcopaenia, cytoreductive surgery, hyperthermic intraperitoneal chemotherapy, surgical oncology

Procedia PDF Downloads 55
2605 Spatial and Time Variability of Ambient Vibration H/V Frequency Peak

Authors: N. Benkaci, E. Oubaiche, J.-L. Chatelain, R. Bensalem, K. Abbes

Abstract:

The ambient vibration H/V technique is widely used nowadays in microzonation studies, because of its easy field handling and its low cost, compared to other geophysical methods. However, in presence of complex geology or lateral heterogeneity evidenced by more than one peak frequency in the H/V curve, it is difficult to interpret the results, especially when soil information is lacking. In this work, we focus on the construction site of the Baraki 40000=place stadium, located in the north-east side of the Mitidja basin (Algeria), to identify the seismic wave amplification zones. H/V curve analysis leads to the observation of spatial and time variability of the H/V frequency peaks. The spatial variability allows dividing the studied area into three main zones: (1) one with a predominant frequency around 1,5 Hz showing an important amplification level, (2) the second exhibits two peaks at 1,5 Hz and in the 4 Hz – 10 Hz range, and (3) the third zone is characterized by a plateau between 2 Hz and 3 Hz. These H/V curve categories reveal a consequent lateral heterogeneity dividing the stadium site roughly in the middle. Furthermore, a continuous ambient vibration recording during several weeks allows showing that the first peak at 1,5 Hz in the second zone, completely disappears between 2 am and 4 am, and reaching its maximum amplitude around 12 am. Consequently, the anthropogenic noise source generating these important variations could be the Algiers Rocade Sud highway, located in the maximum amplification azimuth direction of the H/V curves. This work points out that the H/V method is an important tool to perform nano-zonation studies prior to geotechnical and geophysical investigations, and that, in some cases, the H/V technique fails to reveal the resonance frequency in the absence of strong anthropogenic source.

Keywords: ambient vibrations, amplification, fundamental frequency, lateral heterogeneity, site effect

Procedia PDF Downloads 221
2604 Damage Identification in Reinforced Concrete Beams Using Modal Parameters and Their Formulation

Authors: Ali Al-Ghalib, Fouad Mohammad

Abstract:

The identification of damage in reinforced concrete structures subjected to incremental cracking performance exploiting vibration data is recognized as a challenging topic in the published and heavily cited literature. Therefore, this paper attempts to shine light on the extent of dynamic methods when applied to reinforced concrete beams simulated with various scenarios of defects. For this purpose, three different reinforced concrete beams are tested through the course of the study. The three beams are loaded statically to failure in incremental successive load cycles and later rehabilitated. After each static load stage, the beams are tested under free-free support condition using experimental modal analysis. The beams were all of the same length and cross-sectional area (2.0x0.14x0.09)m, but they were different in concrete compressive strength and the type of damage presented. The experimental modal parameters as damage identification parameters were showed computationally expensive, time consuming and require substantial inputs and considerable expertise. Nonetheless, they were proved plausible for the condition monitoring of the current case study as well as structural changes in the course of progressive loads. It was accentuated that a satisfactory localization and quantification for structural changes (Level 2 and Level 3 of damage identification problem) can only be achieved reasonably through considering frequencies and mode shapes of a system in a proper analytical model. A convenient post analysis process for various datasets of vibration measurements for the three beams is conducted in order to extract, check and correlate the basic modal parameters; namely, natural frequency, modal damping and mode shapes. The results of the extracted modal parameters and their combination are utilized and discussed in this research as quantification parameters.

Keywords: experimental modal analysis, damage identification, structural health monitoring, reinforced concrete beam

Procedia PDF Downloads 239
2603 Feasibility of BioMass Power Generation in Punjab Province of Pakistan

Authors: Muhammad Ghaffar Doggar, Farah

Abstract:

The primary objective of this feasibility study is to conduct a techno-financial assessment for installation of biomass based power plant in Faisalabad division. The study involves identification of best site for power plant followed by an assessment of biomass resource potential in the area and propose power plant of suitable size. The study also entailed comprehensive supply chain analysis to determine biomass fuel pricing, transportation and storage. Further technical and financial analyses have been done for selection of appropriate technology for the power plant and its financial viability, respectively. The assessment of biomass resources and the subsequent technical analysis revealed that 20 MW biomass power plant could be implemented at one of the locations near Faisalabad city i.e. AARI Site, Near Chak Jhumra district Faisalabad, Punjab province. Three options for steam pressure; namely, 70 bar, 90 bar and 100 bar boilers have been considered. Using international experience and prices on power plant technology and local prices on locally available equipment, the study concludes biomass fuel price of around 50 US dollars (USD) per ton when delivered to power plant site. The electricity prices used for feasibility calculations were 0.13 USD per KWh for electricity from a locally financed project and 0.11 USD per KWh for internationally financed power plant. For local financing the most viable choice is the 70 bar solution and with international financing, the most feasible solution is using a 90 bar boiler. Between the two options, the internationally financed 90 bar boiler setup gives better financial results than the locally financed 70 bar boiler project. It has been concluded that 20 MW with 90 bar power plant and internationally financed would have an equity IRR of 23% and a payback period of 7 years. This will be a cheap option for installation of power plants.

Keywords: AARI, Ayub agriculture research institute, biomass - crops residue, KWh - electricity Units, MG - Muhammad Ghaffar

Procedia PDF Downloads 318
2602 Managing Crowds at Sports Mega Events: Examining the Impact of ‘Fan Parks’ at International Football Tournaments between 2002 and 2016

Authors: Joel Rookwood

Abstract:

Sports mega events have become increasingly significant in sporting, political and economic terms, with analysis often focusing on issues including resource expenditure, development, legacy and sustainability. Transnational tournaments can inspire interest from a variety of demographics, and the operational management of such events can involve contributions from a range of personnel. In addition to television audiences events also attract attending spectators, and in football contexts the temporary migration of fans from potentially rival nations and teams can present event organising committees and security personnel with various challenges in relation to crowd management. The behaviour, interaction and control of supporters has previously led to incidents of disorder and hooliganism, with damage to property as well as injuries and deaths proving significant consequences. The Heysel tragedy at the 1985 European Cup final in Brussels is a notable example, where 39 fans died following crowd disorder and mismanagement. Football disasters and disorder, particularly in the context of international competition, have inspired responses from police, law makers, event organisers, clubs and associations, including stadium improvements, legislative developments and crowd management practice to improve the effectiveness of spectator safety. The growth and internationalisation of fandom and developments in event management and tourism have seen various responses to the evolving challenges associated with hosting large numbers of visiting spectators at mega events. In football contexts ‘fan parks’ are a notable example. Since the first widespread introduction in European football competitions at the 2006 World Cup finals in Germany, these facilities have become a staple element of such mega events. This qualitative, longitudinal, multi-continent research draws on extensive semi-structured interview and observation data. As a frame of reference, this work considers football events staged before and after the development of fan parks. Research was undertaken at four World Cup finals (Japan 2002, Germany 2006, South Africa 2010 and Brazil 2014), four European Championships (Portugal 2004, Switzerland/Austria 2008, Poland/Ukraine 2012 and France 2016), four other confederation tournaments (Ghana 2008, Qatar 2011, USA 2011 and Chile 2015), and four European club finals (Istanbul 2005, Athens 2007, Rome 2009 and Basle 2016). This work found that these parks are typically temporarily erected, specifically located zones where supporters congregate together irrespective of allegiances to watch matches on large screens, and partake in other forms of organised on-site entertainment. Such facilities can also allow organisers to control the behaviour, confine the movement and monitor the alcohol consumption of supporters. This represents a notable shift in policy from previous football tournaments, when the widely assumed causal link between alcohol and hooliganism which frequently shaped legislative and police responses to disorder, also dissuaded some authorities from permitting fans to consume alcohol in and around stadia. It also reflects changing attitudes towards modern football fans. The work also found that in certain contexts supporters have increasingly engaged with such provision which impacts fan behaviour, but that this is relative to factors including location, facilities, management and security.

Keywords: event, facility, fan, management, park

Procedia PDF Downloads 292
2601 Application of Ultrasonic Assisted Machining Technique for Glass-Ceramic Milling

Authors: S. Y. Lin, C. H. Kuan, C. H. She, W. T. Wang

Abstract:

In this study, ultrasonic assisted machining (UAM) technique is applied in side-surface milling experiment for glass-ceramic workpiece material. The tungsten carbide cutting-tool with diamond coating is used in conjunction with two kinds of cooling/lubrication mediums such as water-soluble (WS) cutting fluid and minimum quantity lubricant (MQL). Full factorial process parameter combinations on the milling experiments are planned to investigate the effect of process parameters on cutting performance. From the experimental results, it tries to search for the better process parameter combination which the edge-indentation and the surface roughness are acceptable. In the machining experiments, ultrasonic oscillator was used to excite a cutting-tool along the radial direction producing a very small amplitude of vibration frequency of 20KHz to assist the machining process. After processing, toolmaker microscope was used to detect the side-surface morphology, edge-indentation and cutting tool wear under different combination of cutting parameters, and analysis and discussion were also conducted for experimental results. The results show that the main leading parameters to edge-indentation of glass ceramic are cutting depth and feed rate. In order to reduce edge-indentation, it needs to use lower cutting depth and feed rate. Water-soluble cutting fluid provides a better cooling effect in the primary cutting area; it may effectively reduce the edge-indentation and improve the surface morphology of the glass ceramic. The use of ultrasonic assisted technique can effectively enhance the surface finish cleanness and reduce cutting tool wear and edge-indentation.

Keywords: glass-ceramic, ultrasonic assisted machining, cutting performance, edge-indentation

Procedia PDF Downloads 262
2600 Multiscale Modelling of Textile Reinforced Concrete: A Literature Review

Authors: Anicet Dansou

Abstract:

Textile reinforced concrete (TRC)is increasingly used nowadays in various fields, in particular civil engineering, where it is mainly used for the reinforcement of damaged reinforced concrete structures. TRC is a composite material composed of multi- or uni-axial textile reinforcements coupled with a fine-grained cementitious matrix. The TRC composite is an alternative solution to the traditional Fiber Reinforcement Polymer (FRP) composite. It has good mechanical performance and better temperature stability but also, it makes it possible to meet the criteria of sustainable development better.TRCs are highly anisotropic composite materials with nonlinear hardening behavior; their macroscopic behavior depends on multi-scale mechanisms. The characterization of these materials through numerical simulation has been the subject of many studies. Since TRCs are multiscale material by definition, numerical multi-scale approaches have emerged as one of the most suitable methods for the simulation of TRCs. They aim to incorporate information pertaining to microscale constitute behavior, mesoscale behavior, and macro-scale structure response within a unified model that enables rapid simulation of structures. The computational costs are hence significantly reduced compared to standard simulation at a fine scale. The fine scale information can be implicitly introduced in the macro scale model: approaches of this type are called non-classical. A representative volume element is defined, and the fine scale information are homogenized over it. Analytical and computational homogenization and nested mesh methods belong to these approaches. On the other hand, in classical approaches, the fine scale information are explicitly introduced in the macro scale model. Such approaches pertain to adaptive mesh refinement strategies, sub-modelling, domain decomposition, and multigrid methods This research presents the main principles of numerical multiscale approaches. Advantages and limitations are identified according to several criteria: the assumptions made (fidelity), the number of input parameters required, the calculation costs (efficiency), etc. A bibliographic study of recent results and advances and of the scientific obstacles to be overcome in order to achieve an effective simulation of textile reinforced concrete in civil engineering is presented. A comparative study is further carried out between several methods for the simulation of TRCs used for the structural reinforcement of reinforced concrete structures.

Keywords: composites structures, multiscale methods, numerical modeling, textile reinforced concrete

Procedia PDF Downloads 82
2599 The Development, Validation, and Evaluation of the Code Blue Simulation Module in Improving the Code Blue Response Time among Nurses

Authors: Siti Rajaah Binti Sayed Sultan

Abstract:

Managing the code blue event is stressful for nurses, the patient, and the patient's families. The rapid response from the first and second responders in the code blue event will improve patient outcomes and prevent tissue hypoxia that leads to brain injury and other organ failures. Providing 1 minute for the cardiac massage and 2 minutes for defibrillation will significantly improve patient outcomes. As we know, the American Heart Association came out with guidelines for managing cardiac arrest patients. The hospital must provide competent staff to manage this situation. It can be achieved when the staff is well equipped with the skill, attitude, and knowledge to manage this situation with well-planned strategies, i.e., clear guidelines for managing the code blue event, competent staff, and functional equipment. The code blue simulation (CBS) was chosen in the training program for code blue management because it can mimic real scenarios. Having the code blue simulation module will allow the staff to appreciate what they will face during the code blue event, especially since it rarely happens in that area. This CBS module training will help the staff familiarize themselves with the activities that happened during actual events and be able to operate the equipment accordingly. Being challenged and independent in managing the code blue in the early phase gives the patient a better outcome. The CBS module will help the assessor and the hospital management team with the proper tools and guidelines for managing the code blue drill accordingly. As we know, prompt action will benefit the patient and their family. It also indirectly increases the confidence and job satisfaction among the nurses, increasing the standard of care, reducing the complication and hospital burden, and enhancing cost-effective care.

Keywords: code blue simulation module, development of code blue simulation module, code blue response time, code blue drill, cardiorespiratory arrest, managing code blue

Procedia PDF Downloads 34
2598 Comparative Study of Conventional and Satellite Based Agriculture Information System

Authors: Rafia Hassan, Ali Rizwan, Sadaf Farhan, Bushra Sabir

Abstract:

The purpose of this study is to compare the conventional crop monitoring system with the satellite based crop monitoring system in Pakistan. This study is conducted for SUPARCO (Space and Upper Atmosphere Research Commission). The study focused on the wheat crop, as it is the main cash crop of Pakistan and province of Punjab. This study will answer the following: Which system is better in terms of cost, time and man power? The man power calculated for Punjab CRS is: 1,418 personnel and for SUPARCO: 26 personnel. The total cost calculated for SUPARCO is almost 13.35 million and CRS is 47.705 million. The man hours calculated for CRS (Crop Reporting Service) are 1,543,200 hrs (136 days) and man hours for SUPARCO are 8, 320hrs (40 days). It means that SUPARCO workers finish their work 96 days earlier than CRS workers. The results show that the satellite based crop monitoring system is efficient in terms of manpower, cost and time as compared to the conventional system, and also generates early crop forecasts and estimations. The research instruments used included: Interviews, physical visits, group discussions, questionnaires, study of reports and work flows. A total of 93 employees were selected using Yamane’s formula for data collection, which is done with the help questionnaires and interviews. Comparative graphing is used for the analysis of data to formulate the results of the research. The research findings also demonstrate that although conventional methods have a strong impact still in Pakistan (for crop monitoring) but it is the time to bring a change through technology, so that our agriculture will also be developed along modern lines.

Keywords: area frame, crop reporting service, CRS, sample frame, SRS/GIS, satellite remote sensing/ geographic information system

Procedia PDF Downloads 267
2597 Performance Analysis of Modified Solar Water Heating System for Climatic Condition of Allahabad, India

Authors: Kirti Tewari, Rahul Dev

Abstract:

Solar water heating is a thermodynamic process of heating water using sunlight with the help of solar water heater. Thus, solar water heater is a device used to harness solar energy. In this paper, a modified solar water heating system (MSWHS) has been proposed over flat plate collector (FPC) and Evacuated tube collector (ETC). The modifications include selection of materials other than glass, and glass wool which are conventionally used for fabricating FPC and ETC. Some modifications in design have also been proposed. Its collector is made of double layer of semi-cylindrical acrylic tubes and fibre reinforced plastic (FRP) insulation base. Water tank is made of double layer of acrylic sheet except base and north wall. FRP is used in base and north wall of the water tank. A concept of equivalent thickness has been utilised for calculating the dimensions of collector plate, acrylic tube and tank. A thermal model for the proposed design of MSWHS is developed and simulation is carried out on MATLAB for the capacity of 200L MSWHS having collector area of 1.6 m2, length of acrylic tubes of 2m at an inclination angle 25° which is taken nearly equal to the latitude of the given location. Latitude of Allahabad is 24.45° N. The results show that the maximum temperature of water in tank and tube has been found to be 71.2°C and 73.3°C at 17:00hr and 16:00hr respectively in March for the climatic data of Allahabad. Theoretical performance analysis has been carried out by varying number of tubes of collector, the tank capacity and climatic data for given months of winter and summer.

Keywords: acrylic, fibre reinforced plastic, solar water heating, thermal model, conventional water heaters

Procedia PDF Downloads 316
2596 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification

Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine

Abstract:

Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.

Keywords: convolution, feature extraction, image analysis, validation, precision agriculture

Procedia PDF Downloads 293
2595 Food Security Model and the Role of Community Empowerment: The Case of a Marginalized Village in Mexico, Tatoxcac, Puebla

Authors: Marco Antonio Lara De la Calleja, María Catalina Ovando Chico, Eduardo Lopez Ruiz

Abstract:

Community empowerment has been proved to be a key element in the solution of the food security problem. As a result of a conceptual analysis, it was found that agricultural production, economic development and governance, are the traditional basis of food security models. Although the literature points to social inclusion as an important factor for food security, no model has considered it as the basis of it. The aim of this research is to identify different dimensions that make an integral model for food security, with emphasis on community empowerment. A diagnosis was made in the study community (Tatoxcac, Zacapoaxtla, Puebla), to know the aspects that impact the level of food insecurity. With a statistical sample integrated by 200 families, the Latin American and Caribbean Food Security Scale (ELCSA) was applied, finding that: in households composed by adults and children, have moderated food insecurity, (ELCSA scale has three levels, low, moderated and high); that result is produced mainly by the economic income capacity and the diversity of the diet on its food. With that being said, a model was developed to promote food security through five dimensions: 1. Regional context of the community; 2. Structure and system of local food; 3. Health and nutrition; 4. Information and technology access; and 5. Self-awareness and empowerment. The specific actions on each axis of the model, allowed a systemic approach needed to attend food security in the community, through the empowerment of society. It is concluded that the self-awareness of local communities is an area of extreme importance, which must be taken into account for participatory schemes to improve food security. In the long term, the model requires the integrated participation of different actors, such as government, companies and universities, to solve something such vital as food security.

Keywords: community empowerment, food security, model, systemic approach

Procedia PDF Downloads 348
2594 Multifunctional β-Cyclodextrin-EDTA-Chitosan Polymer Adsorbent Synthesis for Simultaneous Removal of Heavy Metals and Organic Dyes from Wastewater

Authors: Monu Verma, Hyunook Kim

Abstract:

Heavy metals and organic dyes are the major sources of water pollution. Herein, a trifunctional β−cyclodextrin−ethylenediaminetetraacetic acid−chitosan (β−CD−EDTA−CS) polymer was synthesized using an easy and simple chemical route by the reaction of activated β−CD with CS through EDTA as a cross-linker (amidation reaction) for the removal of inorganic and organic pollutants from aqueous solution under different parameters such as pH, time effect, initial concentration, reusability, etc. The synthesized adsorbent was characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, field scanning electron microscopy, energy dispersive spectroscopy, Brunauer-Emmett-Teller (BET), thermogravimetric analyzer techniques to investigate their structural, functional, morphological, elemental compositions, surface area, and thermal properties, respectively. Two types of heavy metals, i.e., mercury (Hg²⁺) and cadmium (Cd²⁺), and three organic dyes, i.e., methylene blue (MB), crystal violet (CV), and safranin O (SO), were chosen as inorganic and organic pollutants, respectively, to study the adsorption capacity of β-CD-EDTA-CS in aqueous solution. The β-CD-EDTA-CS shows a monolayer adsorption capacity of 346.30 ± 14.0 and 202.90 ± 13.90 mg g−¹ for Hg²⁺ and Cd²⁺, respectively, and a heterogeneous adsorption capacity of 107.20 ± 5.70, 77.40 ± 5.30 and 55.30 ± 3.60 mg g−¹ for MB, CV and SO, respectively. Kinetics results followed pseudo-second order (PSO) kinetics behavior for both metal ions and dyes, and higher rate constants values (0.00161–0.00368 g mg−¹ min−¹) for dyes confirmed the cavitation of organic dyes (physisorption). In addition, we have also demonstrated the performance of β-CD-EDTA-CS for the four heavy metals, Hg²⁺, Cd²⁺, Ni²⁺, and Cu²⁺, and three dyes MB, CV, and SO in secondary treated wastewater. The findings of this study indicate that β-CD-EDTA-CS is simple and easy to synthesize and can be used in wastewater treatment.

Keywords: adsorption isotherms, adsorption mechanism, amino-β-cyclodextrin, heavy metal ions, organic dyes

Procedia PDF Downloads 82
2593 High Sensitivity Crack Detection and Locating with Optimized Spatial Wavelet Analysis

Authors: A. Ghanbari Mardasi, N. Wu, C. Wu

Abstract:

In this study, a spatial wavelet-based crack localization technique for a thick beam is presented. Wavelet scale in spatial wavelet transformation is optimized to enhance crack detection sensitivity. A windowing function is also employed to erase the edge effect of the wavelet transformation, which enables the method to detect and localize cracks near the beam/measurement boundaries. Theoretical model and vibration analysis considering the crack effect are first proposed and performed in MATLAB based on the Timoshenko beam model. Gabor wavelet family is applied to the beam vibration mode shapes derived from the theoretical beam model to magnify the crack effect so as to locate the crack. Relative wavelet coefficient is obtained for sensitivity analysis by comparing the coefficient values at different positions of the beam with the lowest value in the intact area of the beam. Afterward, the optimal wavelet scale corresponding to the highest relative wavelet coefficient at the crack position is obtained for each vibration mode, through numerical simulations. The same procedure is performed for cracks with different sizes and positions in order to find the optimal scale range for the Gabor wavelet family. Finally, Hanning window is applied to different vibration mode shapes in order to overcome the edge effect problem of wavelet transformation and its effect on the localization of crack close to the measurement boundaries. Comparison of the wavelet coefficients distribution of windowed and initial mode shapes demonstrates that window function eases the identification of the cracks close to the boundaries.

Keywords: edge effect, scale optimization, small crack locating, spatial wavelet

Procedia PDF Downloads 337
2592 Development of Solar Energy Resources for Land along the Transportation Infrastructure: Taking the Lan-Xin Railway in the Silk Road Economic Belt as an Example

Authors: Dan Han, Yukun Zhang, Jie Zheng, Rui Zhang

Abstract:

Making full use of space along transportation infrastructure to develop renewable energy sources, especially solar energy resources, has become a research focus in relevant fields. In recent years, relevant international researches can be classified into three stages of theoretical and technical exploration, exploratory practice as well as planning implementation. Compared with traditional solar energy development mode, the development of solar energy resources in places along the transportation infrastructure has special advantages, which can also bring forth new opportunities for the development of green transportation. 'Road Integrated Photovoltaic', a development model of combining transport and new energy, has been actively studied and applied in developed countries, but it was still in its infancy in China. 'New Silk Road Economic Belt' has great advantage to carry out the 'Road Integrated Photovoltaic' because of the rich solar energy resources in its path, the shortages of renewable energy, the constraints of agricultural land and other reasons. Especially the massive amount of construction of transportation infrastructure brought by Silk Road Economic Belt, large area of developable land along the transportation line will be generated. Abundant solar energy recourses along the Silk Road will provide extremely superb practical opportunities to the land development along transportation infrastructure. We take PVsyst, GIS and Google map software for simulation of its potential by taking Lan-Xin Railway as an example, so potential electrical energy generation can be quantified and further analyzed. Research of 'New Silk Road Economic Belt' combined with 'Road Integrated Photovoltaic' is a creative development for the along transport and energy infrastructure. It not only can make full use of solar radiation and land in its path, but also bring more long-term advantages and benefits.

Keywords: land use, silk road economic belt, solar energy, transportation infrastructure

Procedia PDF Downloads 210
2591 MOVIDA.polis: Physical Activity mHealth Based Platform

Authors: Rui Fonseca-Pinto, Emanuel Silva, Rui Rijo, Ricardo Martinho, Bruno Carreira

Abstract:

The sedentary lifestyle is associated to the development of chronic noncommunicable diseases (obesity, hypertension, Diabetes Mellitus Type 2) and the World Health Organization, given the evidence that physical activity is determinant for individual and collective health, defined the Physical Activity Level (PAL) as a vital signal. Strategies for increasing the practice of physical activity in all age groups have emerged from the various social organizations (municipalities, universities, health organizations, companies, social groups) by increasingly developing innovative strategies to promote motivation strategies and conditions to the practice of physical activity. The adaptation of cities to the new paradigms of sustainable mobility has provided the adaptation of urban training circles and mobilized citizens to combat sedentarism. This adaptation has accompanied the technological evolution and makes possible the use of mobile technology to monitor outdoor training programs and also, through the network connection (IoT), use the training data to make personalized recommendations. This work presents a physical activity counseling platform to be used in the physical maintenance circuits of urban centers, the MOVIDA.polis. The platform consists of a back office for the management of circuits and training stations, and for a mobile application for monitoring the user performance during workouts. Using a QRcode, each training station is recognized by the App and based on the individual performance records (effort perception, heart rate variation) artificial intelligence algorithms are used to make a new personalized recommendation. The results presented in this work were obtained during the proof of concept phase, which was carried out in the PolisLeiria training circuit in the city of Leiria (Portugal). It was possible to verify the increase in adherence to the practice of physical activity, as well as to decrease the interval between training days. Moreover, the AI-based recommendation acts as a partner in the training and an additional challenging factor. The platform is ready to be used by other municipalities in order to reduce the levels of sedentarism and approach the weekly goal of 150 minutes of moderate physical activity. Acknowledgments: This work was supported by Fundação para a Ciência e Tecnologia FCT- Portugal and CENTRO2020 under the scope of MOVIDA project: 02/SAICT/2016 – 23878.

Keywords: physical activity, mHealth, urban training circuits, health promotion

Procedia PDF Downloads 146
2590 Secondary Radiation in Laser-Accelerated Proton Beamline (LAP)

Authors: Seyed Ali Mahdipour, Maryam Shafeei Sarvestani

Abstract:

Radiation pressure acceleration (RPA) and target normal sheath acceleration (TNSA) are the most important methods of Laser-accelerated proton beams (LAP) planning systems.LAP has inspired novel applications that can benefit from proton bunch properties different from conventionally accelerated proton beams. The secondary neutron and photon produced in the collision of protons with beamline components are of the important concern in proton therapy. Various published Monte Carlo researches evaluated the beamline and shielding considerations for TNSA method, but there is no studies directly address secondary neutron and photon production from RPA method in LAP. The purpose of this study is to calculate the flux distribution of neutron and photon secondary radiations on the first area ofLAP and to determine the optimize thickness and radius of the energyselector in a LAP planning system based on RPA method. Also, we present the Monte Carlo calculations to determine the appropriate beam pipe for shielding a LAP planning system. The GEANT4 Monte Carlo toolkit has been used to simulate a secondary radiation production in LAP. A section of new multifunctional LAP beamlinehas been proposed, based on the pulsed power solenoid scheme as a GEANT4 toolkit. The results show that the energy selector is the most important source of neutron and photon secondary particles in LAP beamline. According to the calculations, the pure Tungsten energy selector not be the proper case, and using of Tungsten+Polyethylene or Tungsten+Graphitecomposite selectors will reduce the production of neutron and photon intensities by approximately ~10% and ~25%, respectively. Also the optimal radiuses of energy selectors were found to be ~4 cm and ~6 cm for a 3 degree and 5 degree proton deviation angles, respectively.

Keywords: neutron, photon, flux distribution, energy selector, GEANT4 toolkit

Procedia PDF Downloads 79
2589 A Study of Impact of Changing Fuel Practices on Organic Carbon and Elemental Carbon Levels in Indoor Air in Two States of India

Authors: Kopal Verma, Umesh C. Kulshrestha

Abstract:

India is a rural major country and majority of rural population is dependent on burning of biomass as fuel for domestic cooking on traditional stoves (Chullahs) and heating purposes. This results into indoor air pollution and ultimately affects health of the residents. Still, a very small fraction of rural population has been benefitted by the facilities of Liquefied Petroleum Gas (LPG) cylinders. Different regions of country follow different methods and use different type of biomass for cooking. So in order to study the differences in cooking practices and resulting indoor air pollution, this study was carried out in two rural areas of India viz. Budhwada, Madhya Pradesh and Baggi, Himachal Pradesh. Both the regions have significant differences in terms of topography, culture and daily practices. Budhwada lies in plain area and Baggi belongs to hilly terrain. The study of carbonaceous aerosols was carried out in four different houses of each village. The residents were asked to bring slight change in their practices by cooking only with biomass (BB) then with a mix of biomass and LPG (BL) and then finally only with LPG (LP). It was found that in BB, average values of organic carbon (OC) and elemental carbon (EC) were 28% and 44% lower in Budhwada than in Baggi whereas a reverse trend was found where OC and EC was respectively more by 56% and 26% with BL and by 54% and 29% with LP in Budhwada than in Baggi. Although, a significant reduction was found both in Budhwada (OC by 49% and EC by 34%) as well as in Baggi (OC by 84% and EC by 73%) when cooking was shifted from BB to LP. The OC/EC ratio was much higher for Budhwada (BB=9.9; BL=2.5; LP=6.1) than for Baggi (BB=1.7; BL=1.6; LP=1.3). The correlation in OC and EC was found to be excellent in Baggi (r²=0.93) and relatively poor in Budhwada (r²=0.65). A questionnaire filled by the residents suggested that they agree to the health benefits of using LPG over biomass burning but the challenges of supply of LPG and changing the prevailing tradition of cooking on Chullah are making it difficult for them to make this shift.

Keywords: biomass burning, elemental carbon, liquefied petroluem gas, organic carbon

Procedia PDF Downloads 167
2588 Precipitation Intensity: Duration Based Threshold Analysis for Initiation of Landslides in Upper Alaknanda Valley

Authors: Soumiya Bhattacharjee, P. K. Champati Ray, Shovan L. Chattoraj, Mrinmoy Dhara

Abstract:

The entire Himalayan range is globally renowned for rainfall-induced landslides. The prime focus of the study is to determine rainfall based threshold for initiation of landslides that can be used as an important component of an early warning system for alerting stake holders. This research deals with temporal dimension of slope failures due to extreme rainfall events along the National Highway-58 from Karanprayag to Badrinath in the Garhwal Himalaya, India. Post processed 3-hourly rainfall intensity data and its corresponding duration from daily rainfall data available from Tropical Rainfall Measuring Mission (TRMM) were used as the prime source of rainfall data. Landslide event records from Border Road Organization (BRO) and some ancillary landslide inventory data for 2013 and 2014 have been used to determine Intensity Duration (ID) based rainfall threshold. The derived governing threshold equation, I= 4.738D-0.025, has been considered for prediction of landslides of the study region. This equation was validated with an accuracy of 70% landslides during August and September 2014. The derived equation was considered for further prediction of landslides of the study region. From the obtained results and validation, it can be inferred that this equation can be used for initiation of landslides in the study area to work as a part of an early warning system. Results can significantly improve with ground based rainfall estimates and better database on landslide records. Thus, the study has demonstrated a very low cost method to get first-hand information on possibility of impending landslide in any region, thereby providing alert and better preparedness for landslide disaster mitigation.

Keywords: landslide, intensity-duration, rainfall threshold, TRMM, slope, inventory, early warning system

Procedia PDF Downloads 241
2587 The Culex Pipiens Niche: Assessment with Climatic and Physiographic Variables via a Geographic Information System

Authors: Maria C. Proença, Maria T. Rebelo, Marília Antunes, Maria J. Alves, Hugo Osório, Sofia Cunha, João Casaca

Abstract:

Using a geographic information system (GIS), the relations between a georeferenced data set of Culex pipiens sl. mosquitoes collected in Portugal mainland during seven years (2006-2012) and meteorological and physiographic parameters such as: air relative humidity, air temperature (minima, maxima and mean daily temperatures), daily total rainfall, altitude, land use/land cover and proximity to water bodies are evaluated. Focus is on the mosquito females; the characterization of its habitat is the key for the planning of chirurgical non-aggressive prophylactic countermeasures to avoid ambient degradation. The GIS allow for the spatial determination of the zones were the mosquito mean captures has been above average; using the meteorological values at these coordinates, the limits of each parameter are identified/computed. The meteorological parameters measured at the net of weather stations all over the country are averaged by month and interpolated to produce raster maps that can be segmented according to the thresholds obtained for each parameter. The intersection of the maps obtained for each month show the evolution of the area favorable to the species through the mosquito season, which is from May to October at these latitudes. In parallel, mean and above average captures were related to the physiographic parameters. Three levels of risk could be identified for each parameter, using above average captures as an index. The results were applied to the suitability meteorological maps of each month. The Culex pipiens critical niche is delimited, reflecting the critical areas and the level of risk for transmission of the pathogens to which they are competent vectors (West Nile virus, iridoviruses, rheoviruses and parvoviruses).

Keywords: Culex pipiens, ecological niche, risk assessment, risk management

Procedia PDF Downloads 515
2586 Analysis of the Demographic Variable Associated with Common Pregnancy Related Illnesses among Pregnant Mothers in Anambra

Authors: Nkiru Nnaemezie, J. O. Okafor

Abstract:

The high mortality as a result of pregnancy related illnesses is a global public health problem and a source of concern to most countries including Nigeria. This study was therefore designed to determine the Demographic Variables associated with common pregnancy related illnesses among pregnant mothers in Awka South Local Government Area of Anambra State. The design of the study was an expost-facto research design. All the folders of the pregnant mothers that were studied from 2010-2014 formed the population of the study which included 10,250 folders. Based on the content of the folders, a researcher developed pro-forma (RDP) was used for data collection. Five research questions and five hypotheses were postulated for the study. Research questions postulated were answered using simple percentage. Hypotheses stated were analyzed at 0.05 level of significance using chi-square (X²) statistics. The result among others showed that pregnant mothers within 15-29 years had the most pregnancy related illnesses than mothers on other age brackets. Pregnant mothers with 0-1 parity level experienced the most pregnancy related illnesses than mothers on other parity levels. Public servants experienced the most pregnancy related illnesses than mothers in other occupations. Married pregnant mothers experienced the most pregnancy related illnesses than single mothers. Pregnant mothers with secondary education had the most pregnancy related illnesses than mothers in other education levels. There were significant differences in the common pregnancy related illnesses among the pregnant mothers of the study in relation to the demographic variables of the study which included age, parity, occupation, marital status and educational level. Based on the findings, conclusions were drawn, and the following recommendations among others were made: there is need for health education in terms of educating those pregnant mothers during antenatal clinics; single mothers should be advised to register for antenatal early enough.

Keywords: analysis, demographic variables, pregnancy related illnesses, pregnant mothers

Procedia PDF Downloads 226
2585 Monitoring of Cannabis Cultivation with High-Resolution Images

Authors: Levent Basayigit, Sinan Demir, Burhan Kara, Yusuf Ucar

Abstract:

Cannabis is mostly used for drug production. In some countries, an excessive amount of illegal cannabis is cultivated and sold. Most of the illegal cannabis cultivation occurs on the lands far from settlements. In farmlands, it is cultivated with other crops. In this method, cannabis is surrounded by tall plants like corn and sunflower. It is also cultivated with tall crops as the mixed culture. The common method of the determination of the illegal cultivation areas is to investigate the information obtained from people. This method is not sufficient for the determination of illegal cultivation in remote areas. For this reason, more effective methods are needed for the determination of illegal cultivation. Remote Sensing is one of the most important technologies to monitor the plant growth on the land. The aim of this study is to monitor cannabis cultivation area using satellite imagery. The main purpose of this study was to develop an applicable method for monitoring the cannabis cultivation. For this purpose, cannabis was grown as single or surrounded by the corn and sunflower in plots. The morphological characteristics of cannabis were recorded two times per month during the vegetation period. The spectral signature library was created with the spectroradiometer. The parcels were monitored with high-resolution satellite imagery. With the processing of satellite imagery, the cultivation areas of cannabis were classified. To separate the Cannabis plots from the other plants, the multiresolution segmentation algorithm was found to be the most successful for classification. WorldView Improved Vegetative Index (WV-VI) classification was the most accurate method for monitoring the plant density. As a result, an object-based classification method and vegetation indices were sufficient for monitoring the cannabis cultivation in multi-temporal Earthwiev images.

Keywords: Cannabis, drug, remote sensing, object-based classification

Procedia PDF Downloads 250
2584 Development, Testing, and Application of a Low-Cost Technology Sulphur Dioxide Monitor as a Tool for use in a Volcanic Emissions Monitoring Network

Authors: Viveka Jackson, Erouscilla Joseph, Denise Beckles, Thomas Christopher

Abstract:

Sulphur Dioxide (SO2) has been defined as a non-flammable, non-explosive, colourless gas, having a pungent, irritating odour, and is one of the main gases emitted from volcanoes. Sulphur dioxide has been recorded in concentrations hazardous to humans (0.25 – 0.5 ppm (~650 – 1300 μg/m3), downwind of many volcanoes and hence warrants constant air-quality monitoring around these sites. It has been linked to an increase in chronic respiratory disease attributed to long-term exposures and alteration in lung and other physiological functions attributed to short-term exposures. Sulphur Springs in Saint Lucia is a highly active geothermal area, located within the Soufrière Volcanic Centre, and is a park widely visited by tourists and locals. It is also a current source of continuous volcanic emissions via its many fumaroles and bubbling pools, warranting concern by residents and visitors to the park regarding the effects of exposure to these gases. In this study, we introduce a novel SO2 measurement system for the monitoring and quantification of ambient levels of airborne volcanic SO2 using low-cost technology. This work involves the extensive production of low-cost SO2 monitors/samplers, as well as field examination in tandem with standard commercial samplers (SO2 diffusion tubes). It also incorporates community involvement in the volcanic monitoring process as non-professional users of the instrument. We intend to present the preliminary monitoring results obtained from the low-cost samplers, to identify the areas in the Park exposed to high concentrations of ambient SO2, and to assess the feasibility of the instrument for non-professional use and application in volcanic settings

Keywords: ambient SO2, community-based monitoring, risk-reduction, sulphur springs, low-cost

Procedia PDF Downloads 446