Search results for: low energy consumption
81 Low-carbon Footprint Diluents in Solvent Extraction for Lithium-ion Battery Recycling
Authors: Abdoulaye Maihatchi Ahamed, Zubin Arora, Benjamin Swobada, Jean-yves Lansot, Alexandre Chagnes
Abstract:
Lithium-ion battery (LiB) is the technology of choice in the development of electric vehicles. But there are still many challenges, including the development of positive electrode materials exhibiting high cycle ability, high energy density, and low environmental impact. For this latter, LiBs must be manufactured in a circular approach by developing the appropriate strategies to reuse and recycle them. Presently, the recycling of LiBs is carried out by the pyrometallurgical route, but more and more processes implement or will implement the hydrometallurgical route or a combination of pyrometallurgical and hydrometallurgical operations. After producing the black mass by mineral processing, the hydrometallurgical process consists in leaching the black mass in order to uptake the metals contained in the cathodic material. Then, these metals are extracted selectively by liquid-liquid extraction, solid-liquid extraction, and/or precipitation stages. However, liquid-liquid extraction combined with precipitation/crystallization steps is the most implemented operation in the LiB recycling process to selectively extract copper, aluminum, cobalt, nickel, manganese, and lithium from the leaching solution and precipitate these metals as high-grade sulfate or carbonate salts. Liquid-liquid extraction consists in contacting an organic solvent and an aqueous feed solution containing several metals, including the targeted metal(s) to extract. The organic phase is non-miscible with the aqueous phase. It is composed of an extractant to extract the target metals and a diluent, which is usually aliphatic kerosene produced from the petroleum industry. Sometimes, a phase modifier is added in the formulation of the extraction solvent to avoid the third phase formation. The extraction properties of the diluent do not depend only on the chemical structure of the extractant, but it may also depend on the nature of the diluent. Indeed, the interactions between the diluent can influence more or less the interactions between extractant molecules besides the extractant-diluent interactions. Only a few studies in the literature addressed the influence of the diluent on the extraction properties, while many studies focused on the effect of the extractants. Recently, new low-carbon footprint aliphatic diluents were produced by catalytic dearomatisation and distillation of bio-based oil. This study aims at investigating the influence of the nature of the diluent on the extraction properties of three extractants towards cobalt, nickel, manganese, copper, aluminum, and lithium: Cyanex®272 for nickel-cobalt separation, DEHPA for manganese extraction, and Acorga M5640 for copper extraction. The diluents used in the formulation of the extraction solvents are (i) low-odor aliphatic kerosene produced from the petroleum industry (ELIXORE 180, ELIXORE 230, ELIXORE 205, and ISANE IP 175) and (ii) bio-sourced aliphatic diluents (DEV 2138, DEV 2139, DEV 1763, DEV 2160, DEV 2161 and DEV 2063). After discussing the effect of the diluents on the extraction properties, this conference will address the development of a low carbon footprint process based on the use of the best bio-sourced diluent for the production of high-grade cobalt sulfate, nickel sulfate, manganese sulfate, and lithium carbonate, as well as metal copper.Keywords: diluent, hydrometallurgy, lithium-ion battery, recycling
Procedia PDF Downloads 8880 Recycling Biomass of Constructed Wetlands as Precursors of Electrodes for Removing Heavy Metals and Persistent Pollutants
Authors: Álvaro Ramírez Vidal, Martín Muñoz Morales, Francisco Jesús Fernández Morales, Luis Rodríguez Romero, José Villaseñor Camacho, Javier Llanos López
Abstract:
In recent times, environmental problems have led to the extensive use of biological systems to solve them. Among the different types of biological systems, the use of plants such as aquatic macrophytes in constructed wetlands and terrestrial plant species for treating polluted soils and sludge has gained importance. Though the use of constructed wetlands for wastewater treatment is a well-researched domain, the slowness of pollutant degradation and high biomass production pose some challenges. Plants used in CW participate in different mechanisms for the capture and degradation of pollutants that also can retain some pharmaceutical and personal care products (PPCPs) that are very persistent in the environment. Thus, these systems present advantages in line with the guidelines published for the transition towards friendly and ecological procedures as they are environmentally friendly systems, consume low energy, or capture atmospheric CO₂. However, the use of CW presents some drawbacks, as the slowness of pollutant degradation or the production of important amounts of plant biomass, which need to be harvested and managed periodically. Taking this opportunity in mind, it is important to highlight that this residual biomass (of lignocellulosic nature) could be used as the feedstock for the generation of carbonaceous materials using thermochemical transformations such as slow pyrolysis or hydrothermal carbonization to produce high-value biomass-derived carbons through sustainable processes as adsorbents, catalysts…, thereby improving the circular carbon economy. Thus, this work carried out the analysis of some PPCPs commonly found in urban wastewater, as salicylic acid or ibuprofen, to evaluate the remediation carried out for the Phragmites Australis. Then, after the harvesting, this biomass can be used to synthesize electrodes through hydrothermal carbonization (HTC) and produce high-value biomass-derived carbons with electrocatalytic activity to remove heavy metals and persistent pollutants, promoting circular economy concepts. To do this, it was chosen biomass derived from the natural environment in high environmental risk as the Daimiel Wetlands National Park in the center of Spain, and the rest of the biomass developed in a CW specifically designed to remove pollutants. The research emphasizes the impact of the composition of the biomass waste and the synthetic parameters applied during HTC on the electrocatalytic activity. Additionally, this parameter can be related to the physicochemical properties, as porosity, surface functionalization, conductivity, and mass transfer of the electrodes lytic inks. Data revealed that carbon materials synthesized have good surface properties (good conductivities and high specific surface area) that enhance the electro-oxidants generated and promote the removal of PPCPs and the chemical oxygen demand of polluted waters.Keywords: constructed wetlands, carbon materials, heavy metals, pharmaceutical and personal care products, hydrothermal carbonization
Procedia PDF Downloads 9479 Co2e Sequestration via High Yield Crops and Methane Capture for ZEV Sustainable Aviation Fuel
Authors: Bill Wason
Abstract:
143 Crude Palm Oil Coop mills on Sumatra Island are participating in a program to transfer land from defaulted estates to small farmers while improving the sustainability of palm production to allow for biofuel & food production. GCarbon will be working with farmers to transfer technology, fertilizer, and trees to double the yield from the current baseline of 3.5 tons to at least 7 tons of oil per ha (25 tons of fruit bunches). This will be measured via evaluation of yield comparisons between participant and non-participant farms. We will also capture methane from Palm Oil Mill Effluent (POME)throughbelt press filtering. Residues will be weighed and a formula used to estimate methane emission reductions based on methodologies developed by other researchers. GCarbon will also cover mill ponds with a non-permeable membrane and collect methane for energy or steam production. A system for accelerating methane production involving ozone and electro-flocculation will be tested to intensifymethane generation and reduce the time for wastewater treatment. A meta-analysis of research on sweet potatoes and sorghum as rotation crops will look at work in the Rio Grande do Sul, Brazil where5 ha. oftest plots of industrial sweet potato have achieved yields of 60 tons and 40 tons per ha. from 2 harvests in one year (100 MT/ha./year). Field trials will be duplicated in Bom Jesus Das Selvas, Maranhaothat will test varieties of sweet potatoes to measure yields and evaluate disease risks in a very different soil and climate of NE Brazil. Hog methane will also be captured. GCarbon Brazil, Coop Sisal, and an Australian research partner will plant several varieties of agave and use agronomic procedures to get yields of 880 MT per ha. over 5 years. They will also plant new varieties expected to get 3500 MT of biomass after 5 years (176-700 MT per ha. per year). The goal is to show that the agave can adapt to Brazil’s climate without disease problems. The study will include a field visit to growing sites in Australia where agave is being grown commercially for biofuels production. Researchers will measure the biomass per hectare at various stages in the growing cycle, sugar content at harvest, and other metrics to confirm the yield of sugar per ha. is up to 10 times greater than sugar cane. The study will look at sequestration rates from measuring soil carbon and root accumulation in various plots in Australia to confirm carbon sequestered from 5 years of production. The agave developer estimates that 60-80 MT of sequestration per ha. per year occurs from agave. The three study efforts in 3 different countries will define a feedstock pathway for jet fuel that involves very high yield crops that can produce 2 to 10 times more biomass than current assumptions. This cost-effective and less land intensive strategy will meet global jet fuel demand and produce huge quantities of food for net zero aviation and feeding 9-10 billion people by 2050Keywords: zero emission SAF, methane capture, food-fuel integrated refining, new crops for SAF
Procedia PDF Downloads 10378 Subcontractor Development Practices and Processes: A Conceptual Model for LEED Projects
Authors: Andrea N. Ofori-Boadu
Abstract:
The purpose is to develop a conceptual model of subcontractor development practices and processes that strengthen the integration of subcontractors into construction supply chain systems for improved subcontractor performance on Leadership in Energy and Environmental Design (LEED) certified building projects. The construction management of a LEED project has an important objective of meeting sustainability certification requirements. This is in addition to the typical project management objectives of cost, time, quality, and safety for traditional projects; and, therefore increases the complexity of LEED projects. Considering that construction management organizations rely heavily on subcontractors, poor performance on complex projects such as LEED projects has been largely attributed to the unsatisfactory preparation of subcontractors. Furthermore, the extensive use of unique and non-repetitive short term contracts limits the full integration of subcontractors into construction supply chains and hinders long-term cooperation and benefits that could enhance performance on construction projects. Improved subcontractor development practices are needed to better prepare and manage subcontractors, so that complex objectives can be met or exceeded. While supplier development and supply chain theories and practices for the manufacturing sector have been extensively investigated to address similar challenges, investigations in the construction sector are not that obvious. Consequently, the objective of this research is to investigate effective subcontractor development practices and processes to guide construction management organizations in their development of a strong network of high performing subcontractors. Drawing from foundational supply chain and supplier development theories in the manufacturing sector, a mixed interpretivist and empirical methodology is utilized to assess the body of knowledge within literature for conceptual model development. A self-reporting survey with five-point Likert scale items and open-ended questions is administered to 30 construction professionals to estimate their perceptions of the effectiveness of 37 practices, classified into five subcontractor development categories. Data analysis includes descriptive statistics, weighted means, and t-tests that guide the effectiveness ranking of practices and categories. The results inform the proposed three-phased LEED subcontractor development program model which focuses on preparation, development and implementation, and monitoring. Highly ranked LEED subcontractor pre-qualification, commitment, incentives, evaluation, and feedback practices are perceived as more effective, when compared to practices requiring more direct involvement and linkages between subcontractors and construction management organizations. This is attributed to unfamiliarity, conflicting interests, lack of trust, and resource sharing challenges. With strategic modifications, the recommended practices can be extended to other non-LEED complex projects. Additional research is needed to guide the development of subcontractor development programs that strengthen direct involvement between construction management organizations and their network of high performing subcontractors. Insights from this present research strengthen theoretical foundations to support future research towards more integrated construction supply chains. In the long-term, this would lead to increased performance, profits and client satisfaction.Keywords: construction management, general contractor, supply chain, sustainable construction
Procedia PDF Downloads 11077 Company-Independent Standardization of Timber Construction to Promote Urban Redensification of Housing Stock
Authors: Andreas Schweiger, Matthias Gnigler, Elisabeth Wieder, Michael Grobbauer
Abstract:
Especially in the alpine region, available areas for new residential development are limited. One possible solution is to exploit the potential of existing settlements. Urban redensification, especially the addition of floors to existing buildings, requires efficient, lightweight constructions with short construction times. This topic is being addressed in the five-year Alpine Building Centre. The focus of this cooperation between Salzburg University of Applied Sciences and RSA GH Studio iSPACE is on transdisciplinary research in the fields of building and energy technology, building envelopes and geoinformation, as well as the transfer of research results to industry. One development objective is a system of wood panel system construction with a high degree of prefabrication to optimize the construction quality, the construction time and the applicability for small and medium-sized enterprises. The system serves as a reliable working basis for mastering the complex building task of redensification. The technical solution is the development of an open system in timber frame and solid wood construction, which is suitable for a maximum two-story addition of residential buildings. The applicability of the system is mainly influenced by the existing building stock. Therefore, timber frame and solid timber construction are combined where necessary to bridge large spans of the existing structure while keeping the dead weight as low as possible. Escape routes are usually constructed in reinforced concrete and are located outside the system boundary. Thus, within the framework of the legal and normative requirements of timber construction, a hybrid construction method for redensification created. Component structure, load-bearing structure and detail constructions are developed in accordance with the relevant requirements. The results are directly applicable in individual cases, with the exception of the required verifications. In order to verify the practical suitability of the developed system, stakeholder workshops are held on the one hand, and the system is applied in the planning of a two-storey extension on the other hand. A company-independent construction standard offers the possibility of cooperation and bundling of capacities in order to be able to handle larger construction volumes in collaboration with several companies. Numerous further developments can take place on the basis of the system, which is under open license. The construction system will support planners and contractors from design to execution. In this context, open means publicly published and freely usable and modifiable for own use as long as the authorship and deviations are mentioned. The companies are provided with a system manual, which contains the system description and an application manual. This manual will facilitate the selection of the correct component cross-sections for the specific construction projects by means of all component and detail specifications. This presentation highlights the initial situation, the motivation, the approach, but especially the technical solution as well as the possibilities for the application. After an explanation of the objectives and working methods, the component and detail specifications are presented as work results and their application.Keywords: redensification, SME, urban development, wood building system
Procedia PDF Downloads 11176 The Governance of Net-Zero Emission Urban Bus Transitions in the United Kingdom: Insight from a Transition Visioning Stakeholder Workshop
Authors: Iraklis Argyriou
Abstract:
The transition to net-zero emission urban bus (ZEB) systems is receiving increased attention in research and policymaking throughout the globe. Most studies in this area tend to address techno-economic aspects and the perspectives of a narrow group of stakeholders, while they largely overlook analysis of current bus system dynamics. This offers limited insight into the types of ZEB governance challenges and opportunities that are encountered in real-world contexts, as well as into some of the immediate actions that need to be taken to set off the transition over the longer term. This research offers a multi-stakeholder perspective into both the technical and non-technical factors that influence ZEB transitions within a particular context, the UK. It does so by drawing from a recent transition visioning stakeholder workshop (June 2023) with key public, private and civic actors of the urban bus transportation system. Using NVivo software to qualitatively analyze the workshop discussions, the research examines the key technological and funding aspects, as well as the short-term actions (over the next five years), that need to be addressed for supporting the ZEB transition in UK cities. It finds that ZEB technology has reached a mature stage (i.e., high efficiency of batteries, motors and inverters), but important improvements can be pursued through greater control and integration of ZEB technological components and systems. In this regard, telemetry, predictive maintenance and adaptive control strategies pertinent to the performance and operation of ZEB vehicles have a key role to play in the techno-economic advancement of the transition. Yet, more pressing gaps were identified in the current ZEB funding regime. Whereas the UK central government supports greater ZEB adoption through a series of grants and subsidies, the scale of the funding and its fragmented nature do not match the needs for a UK-wide transition. Funding devolution arrangements (i.e., stable funding settlement deals between the central government and the devolved administrations/local authorities), as well as locally-driven schemes (i.e., congestion charging/workplace parking levy), could then enhance the financial prospects of the transition. As for short-term action, three areas were identified as critical: (1) the creation of whole value chains around the supply, use and recycling of ZEB components; (2) the ZEB retrofitting of existing fleets; and (3) integrated transportation that prioritizes buses as a first-choice, convenient and reliable mode while it simultaneously reduces car dependency in urban areas. Taken together, the findings point to the need for place-based transition approaches that create a viable techno-economic ecosystem for ZEB development but at the same time adopt a broader governance perspective beyond a ‘net-zero’ and ‘bus sectoral’ focus. As such, multi-actor collaborations and the coordination of wider resources and agency, both vertically across institutional scales and horizontally across transport, energy and urban planning, become fundamental features of comprehensive ZEB responses. The lessons from the UK case can inform a broader body of empirical contextual knowledge of ZEB transition governance within domestic political economies of public transportation.Keywords: net-zero emission transition, stakeholders, transition governance, UK, urban bus transportation
Procedia PDF Downloads 7575 Electrochemical Activity of NiCo-GDC Cermet Anode for Solid Oxide Fuel Cells Operated in Methane
Authors: Kamolvara Sirisuksakulchai, Soamwadee Chaianansutcharit, Kazunori Sato
Abstract:
Solid Oxide Fuel Cells (SOFCs) have been considered as one of the most efficient large unit power generators for household and industrial applications. The efficiency of an electronic cell depends mainly on the electrochemical reactions in the anode. The development of anode materials has been intensely studied to achieve higher kinetic rates of redox reactions and lower internal resistance. Recent studies have introduced an efficient cermet (ceramic-metallic) material for its ability in fuel oxidation and oxide conduction. This could expand the reactive site, also known as the triple-phase boundary (TPB), thus increasing the overall performance. In this study, a bimetallic catalyst Ni₀.₇₅Co₀.₂₅Oₓ was combined with Gd₀.₁Ce₀.₉O₁.₉₅ (GDC) to be used as a cermet anode (NiCo-GDC) for an anode-supported type SOFC. The synthesis of Ni₀.₇₅Co₀.₂₅Oₓ was carried out by ball milling NiO and Co3O4 powders in ethanol and calcined at 1000 °C. The Gd₀.₁Ce₀.₉O₁.₉₅ was prepared by a urea co-precipitation method. Precursors of Gd(NO₃)₃·6H₂O and Ce(NO₃)₃·6H₂O were dissolved in distilled water with the addition of urea and were heated subsequently. The heated mixture product was filtered and rinsed thoroughly, then dried and calcined at 800 °C and 1500 °C, respectively. The two powders were combined followed by pelletization and sintering at 1100 °C to form an anode support layer. The fabrications of an electrolyte layer and cathode layer were conducted. The electrochemical performance in H₂ was measured from 800 °C to 600 °C while for CH₄ was from 750 °C to 600 °C. The maximum power density at 750 °C in H₂ was 13% higher than in CH₄. The difference in performance was due to higher polarization resistances confirmed by the impedance spectra. According to the standard enthalpy, the dissociation energy of C-H bonds in CH₄ is slightly higher than the H-H bond H₂. The dissociation of CH₄ could be the cause of resistance within the anode material. The results from lower temperatures showed a descending trend of power density in relevance to the increased polarization resistance. This was due to lowering conductivity when the temperature decreases. The long-term stability was measured at 750 °C in CH₄ monitoring at 12-hour intervals. The maximum power density tends to increase gradually with time while the resistances were maintained. This suggests the enhanced stability from charge transfer activities in doped ceria due to the transition of Ce⁴⁺ ↔ Ce³⁺ at low oxygen partial pressure and high-temperature atmosphere. However, the power density started to drop after 60 h, and the cell potential also dropped from 0.3249 V to 0.2850 V. These phenomena was confirmed by a shifted impedance spectra indicating a higher ohmic resistance. The observation by FESEM and EDX-mapping suggests the degradation due to mass transport of ions in the electrolyte while the anode microstructure was still maintained. In summary, the electrochemical test and stability test for 60 h was achieved by NiCo-GDC cermet anode. Coke deposition was not detected after operation in CH₄, hence this confirms the superior properties of the bimetallic cermet anode over typical Ni-GDC.Keywords: bimetallic catalyst, ceria-based SOFCs, methane oxidation, solid oxide fuel cell
Procedia PDF Downloads 15474 Solid Polymer Electrolyte Membranes Based on Siloxane Matrix
Authors: Natia Jalagonia, Tinatin Kuchukhidze
Abstract:
Polymer electrolytes (PE) play an important part in electrochemical devices such as batteries and fuel cells. To achieve optimal performance, the PE must maintain a high ionic conductivity and mechanical stability at both high and low relative humidity. The polymer electrolyte also needs to have excellent chemical stability for long and robustness. According to the prevailing theory, ionic conduction in polymer electrolytes is facilitated by the large-scale segmental motion of the polymer backbone, and primarily occurs in the amorphous regions of the polymer electrolyte. Crystallinity restricts polymer backbone segmental motion and significantly reduces conductivity. Consequently, polymer electrolytes with high conductivity at room temperature have been sought through polymers which have highly flexible backbones and have largely amorphous morphology. The interest in polymer electrolytes was increased also by potential applications of solid polymer electrolytes in high energy density solid state batteries, gas sensors and electrochromic windows. Conductivity of 10-3 S/cm is commonly regarded as a necessary minimum value for practical applications in batteries. At present, polyethylene oxide (PEO)-based systems are most thoroughly investigated, reaching room temperature conductivities of 10-7 S/cm in some cross-linked salt in polymer systems based on amorphous PEO-polypropylene oxide copolymers.. It is widely accepted that amorphous polymers with low glass transition temperatures Tg and a high segmental mobility are important prerequisites for high ionic conductivities. Another necessary condition for high ionic conductivity is a high salt solubility in the polymer, which is most often achieved by donors such as ether oxygen or imide groups on the main chain or on the side groups of the PE. It is well established also that lithium ion coordination takes place predominantly in the amorphous domain, and that the segmental mobility of the polymer is an important factor in determining the ionic mobility. Great attention was pointed to PEO-based amorphous electrolyte obtained by synthesis of comb-like polymers, by attaching short ethylene oxide unit sequences to an existing amorphous polymer backbone. The aim of presented work is to obtain of solid polymer electrolyte membranes using PMHS as a matrix. For this purpose the hydrosilylation reactions of α,ω-bis(trimethylsiloxy)methyl¬hydrosiloxane with allyl triethylene-glycol mo¬nomethyl ether and vinyltriethoxysilane at 1:28:7 ratio of initial com¬pounds in the presence of Karstedt’s catalyst, platinum hydrochloric acid (0.1 M solution in THF) and platinum on the carbon catalyst in 50% solution of anhydrous toluene have been studied. The synthesized olygomers are vitreous liquid products, which are well soluble in organic solvents with specific viscosity ηsp ≈ 0.05 - 0.06. The synthesized olygomers were analysed with FTIR, 1H, 13C, 29Si NMR spectroscopy. Synthesized polysiloxanes were investigated with wide-angle X-ray, gel-permeation chromatography, and DSC analyses. Via sol-gel processes of doped with lithium trifluoromethylsulfonate (triflate) or lithium bis¬(trifluoromethylsulfonyl)¬imide polymer systems solid polymer electrolyte membranes have been obtained. The dependence of ionic conductivity as a function of temperature and salt concentration was investigated and the activation energies of conductivity for all obtained compounds are calculatedKeywords: synthesis, PMHS, membrane, electrolyte
Procedia PDF Downloads 25773 Simple Finite-Element Procedure for Modeling Crack Propagation in Reinforced Concrete Bridge Deck under Repetitive Moving Truck Wheel Loads
Authors: Rajwanlop Kumpoopong, Sukit Yindeesuk, Pornchai Silarom
Abstract:
Modeling cracks in concrete is complicated by its strain-softening behavior which requires the use of sophisticated energy criteria of fracture mechanics to assure stable and convergent solutions in the finite-element (FE) analysis particularly for relatively large structures. However, for small-scale structures such as beams and slabs, a simpler approach relies on retaining some shear stiffness in the cracking plane has been adopted in literature to model the strain-softening behavior of concrete under monotonically increased loading. According to the shear retaining approach, each element is assumed to be an isotropic material prior to cracking of concrete. Once an element is cracked, the isotropic element is replaced with an orthotropic element in which the new orthotropic stiffness matrix is formulated with respect to the crack orientation. The shear transfer factor of 0.5 is used in parallel to the crack plane. The shear retaining approach is adopted in this research to model cracks in RC bridge deck with some modifications to take into account the effect of repetitive moving truck wheel loads as they cause fatigue cracking of concrete. First modification is the introduction of fatigue tests of concrete and reinforcing steel and the Palmgren-Miner linear criterion of cumulative damage in the conventional FE analysis. For a certain loading, the number of cycles to failure of each concrete or RC element can be calculated from the fatigue or S-N curves of concrete and reinforcing steel. The elements with the minimum number of cycles to failure are the failed elements. For the elements that do not fail, the damage is accumulated according to Palmgren-Miner linear criterion of cumulative damage. The stiffness of the failed element is modified and the procedure is repeated until the deck slab fails. The total number of load cycles to failure of the deck slab can then be obtained from which the S-N curve of the deck slab can be simulated. Second modification is the modification in shear transfer factor. Moving loading causes continuous rubbing of crack interfaces which greatly reduces shear transfer mechanism. It is therefore conservatively assumed in this study that the analysis is conducted with shear transfer factor of zero for the case of moving loading. A customized FE program has been developed using the MATLAB software to accomodate such modifications. The developed procedure has been validated with the fatigue test of the 1/6.6-scale AASHTO bridge deck under the applications of both fixed-point repetitive loading and moving loading presented in the literature. Results are in good agreement both experimental vs. simulated S-N curves and observed vs. simulated crack patterns. Significant contribution of the developed procedure is a series of S-N relations which can now be simulated at any desired levels of cracking in addition to the experimentally derived S-N relation at the failure of the deck slab. This permits the systematic investigation of crack propagation or deterioration of RC bridge deck which is appeared to be useful information for highway agencies to prolong the life of their bridge decks.Keywords: bridge deck, cracking, deterioration, fatigue, finite-element, moving truck, reinforced concrete
Procedia PDF Downloads 25772 Backward-Facing Step Measurements at Different Reynolds Numbers Using Acoustic Doppler Velocimetry
Authors: Maria Amelia V. C. Araujo, Billy J. Araujo, Brian Greenwood
Abstract:
The flow over a backward-facing step is characterized by the presence of flow separation, recirculation and reattachment, for a simple geometry. This type of fluid behaviour takes place in many practical engineering applications, hence the reason for being investigated. Historically, fluid flows over a backward-facing step have been examined in many experiments using a variety of measuring techniques such as laser Doppler velocimetry (LDV), hot-wire anemometry, particle image velocimetry or hot-film sensors. However, some of these techniques cannot conveniently be used in separated flows or are too complicated and expensive. In this work, the applicability of the acoustic Doppler velocimetry (ADV) technique is investigated to such type of flows, at various Reynolds numbers corresponding to different flow regimes. The use of this measuring technique in separated flows is very difficult to find in literature. Besides, most of the situations where the Reynolds number effect is evaluated in separated flows are in numerical modelling. The ADV technique has the advantage in providing nearly non-invasive measurements, which is important in resolving turbulence. The ADV Nortek Vectrino+ was used to characterize the flow, in a recirculating laboratory flume, at various Reynolds Numbers (Reh = 3738, 5452, 7908 and 17388) based on the step height (h), in order to capture different flow regimes, and the results compared to those obtained using other measuring techniques. To compare results with other researchers, the step height, expansion ratio and the positions upstream and downstream the step were reproduced. The post-processing of the AVD records was performed using a customized numerical code, which implements several filtering techniques. Subsequently, the Vectrino noise level was evaluated by computing the power spectral density for the stream-wise horizontal velocity component. The normalized mean stream-wise velocity profiles, skin-friction coefficients and reattachment lengths were obtained for each Reh. Turbulent kinetic energy, Reynolds shear stresses and normal Reynolds stresses were determined for Reh = 7908. An uncertainty analysis was carried out, for the measured variables, using the moving block bootstrap technique. Low noise levels were obtained after implementing the post-processing techniques, showing their effectiveness. Besides, the errors obtained in the uncertainty analysis were relatively low, in general. For Reh = 7908, the normalized mean stream-wise velocity and turbulence profiles were compared directly with those acquired by other researchers using the LDV technique and a good agreement was found. The ADV technique proved to be able to characterize the flow properly over a backward-facing step, although additional caution should be taken for measurements very close to the bottom. The ADV measurements showed reliable results regarding: a) the stream-wise velocity profiles; b) the turbulent shear stress; c) the reattachment length; d) the identification of the transition from transitional to turbulent flows. Despite being a relatively inexpensive technique, acoustic Doppler velocimetry can be used with confidence in separated flows and thus very useful for numerical model validation. However, it is very important to perform adequate post-processing of the acquired data, to obtain low noise levels, thus decreasing the uncertainty.Keywords: ADV, experimental data, multiple Reynolds number, post-processing
Procedia PDF Downloads 14871 Application of Alumina-Aerogel in Post-Combustion CO₂ Capture: Optimization by Response Surface Methodology
Authors: S. Toufigh Bararpour, Davood Karami, Nader Mahinpey
Abstract:
Dependence of global economics on fossil fuels has led to a large growth in the emission of greenhouse gases (GHGs). Among the various GHGs, carbon dioxide is the main contributor to the greenhouse effect due to its huge emission amount. To mitigate the threatening effect of CO₂, carbon capture and sequestration (CCS) technologies have been studied widely in recent years. For the combustion processes, three main CO₂ capture techniques have been proposed such as post-combustion, pre-combustion and oxyfuel combustion. Post-combustion is the most commonly used CO₂ capture process as it can be readily retrofit into the existing power plants. Multiple advantages have been reported for the post-combustion by solid sorbents such as high CO₂ selectivity, high adsorption capacity, and low required regeneration energy. Chemical adsorption of CO₂ over alkali-metal-based solid sorbents such as K₂CO₃ is a promising method for the selective capture of diluted CO₂ from the huge amount of nitrogen existing in the flue gas. To improve the CO₂ capture performance, K₂CO₃ is supported by a stable and porous material. Al₂O₃ has been employed commonly as the support and enhanced the cyclic CO₂ capture efficiency of K₂CO₃. Different phases of alumina can be obtained by setting the calcination temperature of boehmite at 300, 600 (γ-alumina), 950 (δ-alumina) and 1200 °C (α-alumina). By increasing the calcination temperature, the regeneration capacity of alumina increases, while the surface area reduces. However, sorbents with lower surface areas have lower CO₂ capture capacity as well (except for the sorbents prepared by hydrophilic support materials). To resolve this issue, a highly efficient alumina-aerogel support was synthesized with a BET surface area of over 2000 m²/g and then calcined at a high temperature. The synthesized alumina-aerogel was impregnated on K₂CO₃ based on 50 wt% support/K₂CO₃, which resulted in the preparation of a sorbent with remarkable CO₂ capture performance. The effect of synthesis conditions such as types of alcohols, solvent-to-co-solvent ratios, and aging times was investigated on the performance of the support. The best support was synthesized using methanol as the solvent, after five days of aging time, and at a solvent-to-co-solvent (methanol-to-toluene) ratio (v/v) of 1/5. Response surface methodology was used to investigate the effect of operating parameters such as carbonation temperature and H₂O-to-CO₂ flowrate ratio on the CO₂ capture capacity. The maximum CO₂ capture capacity, at the optimum amounts of operating parameters, was 7.2 mmol CO₂ per gram K₂CO₃. Cyclic behavior of the sorbent was examined over 20 carbonation and regenerations cycles. The alumina-aerogel-supported K₂CO₃ showed a great performance compared to unsupported K₂CO₃ and γ-alumina-supported K₂CO₃. Fundamental performance analyses and long-term thermal and chemical stability test will be performed on the sorbent in the future. The applicability of the sorbent for a bench-scale process will be evaluated, and a corresponding process model will be established. The fundamental material knowledge and respective process development will be delivered to industrial partners for the design of a pilot-scale testing unit, thereby facilitating the industrial application of alumina-aerogel.Keywords: alumina-aerogel, CO₂ capture, K₂CO₃, optimization
Procedia PDF Downloads 11670 Development of Cost Effective Ultra High Performance Concrete by Using Locally Available Materials
Authors: Mohamed Sifan, Brabha Nagaratnam, Julian Thamboo, Keerthan Poologanathan
Abstract:
Ultra high performance concrete (UHPC) is a type of cementitious material known for its exceptional strength, ductility, and durability. However, its production is often associated with high costs due to the significant amount of cementitious materials required and the use of fine powders to achieve the desired strength. The aim of this research is to explore the feasibility of developing cost-effective UHPC mixes using locally available materials. Specifically, the study aims to investigate the use of coarse limestone sand along with other sand types, namely, basalt sand, dolomite sand, and river sand for developing UHPC mixes and evaluating its performances. The study utilises the particle packing model to develop various UHPC mixes. The particle packing model involves optimising the combination of coarse limestone sand, basalt sand, dolomite sand, and river sand to achieve the desired properties of UHPC. The developed UHPC mixes are then evaluated based on their workability (measured through slump flow and mini slump value), compressive strength (at 7, 28, and 90 days), splitting tensile strength, and microstructural characteristics analysed through scanning electron microscope (SEM) analysis. The results of this study demonstrate that cost-effective UHPC mixes can be developed using locally available materials without the need for silica fume or fly ash. The UHPC mixes achieved impressive compressive strengths of up to 149 MPa at 28 days with a cement content of approximately 750 kg/m³. The mixes also exhibited varying levels of workability, with slump flow values ranging from 550 to 850 mm. Additionally, the inclusion of coarse limestone sand in the mixes effectively reduced the demand for superplasticizer and served as a filler material. By exploring the use of coarse limestone sand and other sand types, this study provides valuable insights into optimising the particle packing model for UHPC production. The findings highlight the potential to reduce costs associated with UHPC production without compromising its strength and durability. The study collected data on the workability, compressive strength, splitting tensile strength, and microstructural characteristics of the developed UHPC mixes. Workability was measured using slump flow and mini slump tests, while compressive strength and splitting tensile strength were assessed at different curing periods. Microstructural characteristics were analysed through SEM and energy dispersive X-ray spectroscopy (EDS) analysis. The collected data were then analysed and interpreted to evaluate the performance and properties of the UHPC mixes. The research successfully demonstrates the feasibility of developing cost-effective UHPC mixes using locally available materials. The inclusion of coarse limestone sand, in combination with other sand types, shows promising results in achieving high compressive strengths and satisfactory workability. The findings suggest that the use of the particle packing model can optimise the combination of materials and reduce the reliance on expensive additives such as silica fume and fly ash. This research provides valuable insights for researchers and construction practitioners aiming to develop cost-effective UHPC mixes using readily available materials and an optimised particle packing approach.Keywords: cost-effective, limestone powder, particle packing model, ultra high performance concrete
Procedia PDF Downloads 10969 Selective Immobilization of Fructosyltransferase onto Glutaraldehyde Modified Support and Its Application in the Production of Fructo-Oligosaccharides
Authors: Milica B. Veljković, Milica B. Simović, Marija M. Ćorović, Ana D. Milivojević, Anja I. Petrov, Katarina M. Banjanac, Dejan I. Bezbradica
Abstract:
In recent decades, the scientific community has recognized the growing importance of prebiotics, and therefore, numerous studies are focused on their economic production due to their low presence in natural resources. It has been confirmed that prebiotics is a source of energy for probiotics in the gastrointestinal tract (GIT) and enable their proliferation, consequently leading to the normal functioning of the intestinal microbiota. Also, products of their fermentation are short-chain fatty acids (SCFA), which play a key role in maintaining and improving the health not only of the GIT but also of the whole organism. Among several confirmed prebiotics, fructooligosaccharides (FOS) are considered interesting candidates for use in a wide range of products in the food industry. They are characterized as low-calorie and non-cariogenic substances that represent an adequate sugar substitute and can be considered suitable for use in products intended for diabetics. The subject of this research will be the production of FOS by transforming sucrose using a fructosyltransferase (FTase) present in commercial preparation Pectinex® Ultra SP-L, with special emphasis on the development of adequate FTase immobilization method that would enable selective isolation of the enzyme responsible for the synthesis of FOS from the complex enzymatic mixture. This would lead to considerable enzyme purification and allow its direct incorporation into different sucrose-based products without the fear that the action of the other hydrolytic enzymes may adversely affect the products' functional characteristics. Accordingly, the possibility of selective immobilization of the enzyme using support with primary amino groups, Purolite® A109, which was previously activated and modified using glutaraldehyde (GA), was investigated. In the initial phase of the research, the effects of individual immobilization parameters such as pH, enzyme concentration, and immobilization time were investigated to optimize the process using support chemically activated with 15% and 0.5% GA to form dimers and monomers, respectively. It was determined that highly active immobilized preparations (371.8 IU/g of support - dimer and 213.8 IU/g of support – monomer) were achieved under acidic conditions (pH 4) provided that an enzyme concentration was 50 mg/g of support after 7 h and 3 h, respectively. Bearing in mind the obtained results of the expressed activity, it is noticeable that the formation of dimers showed higher reactivity compared to the form of monomers. Also, in the case of support modification using 15% GA, the value of the ratio of FTase and pectinase (as dominant enzyme mixture component) activity immobilization yields was 16.45, indicating the high feasibility of selective immobilization of FTase on modified polystyrene resin. After obtaining immobilized preparations of satisfactory features, they were tested in a reaction of FOS synthesis under determined optimal conditions. The maximum FOS yields of approximately 50% of total carbohydrates in the reaction mixture were recorded after 21 h. Finally, it can be concluded that the examined immobilization method yielded highly active, stable and, more importantly, refined enzyme preparation that can be further utilized on a larger scale for the development of continual processes for FOS synthesis, as well as for modification of different sucrose-based mediums.Keywords: chemical modification, fructooligosaccharides, glutaraldehyde, immobilization of fructosyltransferase
Procedia PDF Downloads 18668 Climate Change Adaptation Success in a Low Income Country Setting, Bangladesh
Authors: Tanveer Ahmed Choudhury
Abstract:
Background: Bangladesh is one of the largest deltas in the world, with high population density and high rates of poverty and illiteracy. 80% of the country is on low-lying floodplains, leaving the country one of the most vulnerable to the adverse effects of climate change: sea level rise, cyclones and storms, salinity intrusion, rising temperatures and heavy monsoon downpours. Such climatic events already limit Economic Development in the country. Although Bangladesh has had little responsibility in contributing to global climatic change, it is vulnerable to both its direct and indirect impacts. Real threats include reduced agricultural production, worsening food security, increased incidence of flooding and drought, spreading disease and an increased risk of conflict over scarce land and water resources. Currently, 8.3 million Bangladeshis live in cyclone high risk areas. However, by 2050 this is expected to grow to 20.3 million people, if proper adaptive actions are not taken. Under a high emissions scenario, an additional 7.6 million people will be exposed to very high salinity by 2050 compared to current levels. It is also projected that, an average of 7.2 million people will be affected by flooding due to sea level rise every year between 2070-2100 and If global emissions decrease rapidly and adaptation interventions are taken, the population affected by flooding could be limited to only about 14,000 people. To combat the climate change adverse effects, Bangladesh government has initiated many adaptive measures specially in infrastructure and renewable energy sector. Government is investing huge money and initiated many projects which have been proved very success full. Objectives: The objective of this paper is to describe some successful measures initiated by Bangladesh government in its effort to make the country a Climate Resilient. Methodology: Review of operation plan and activities of different relevant Ministries of Bangladesh government. Result: The following initiative projects, programs and activities are considered as best practices for Climate Change adaptation successes for Bangladesh: 1. The Infrastructure Development Company Limited (IDCOL); 2. Climate Change and Health Promotion Unit (CCHPU); 3. The Climate Change Trust Fund (CCTF); 4. Community Climate Change Project (CCCP); 5. Health, Population, Nutrition Sector Development Program (HPNSDP, 2011-2016)- "Climate Change and Environmental Issues"; 6. Ministry of Health and Family Welfare, Bangladesh and WHO Collaboration; - National Adaptation Plan. -"Building adaptation to climate change in health in least developed countries through resilient WASH". 7. COP-21 “Climate and health country profile -2015 Bangladesh. Conclusion: Due to a vast coastline, low-lying land and abundance of rivers, Bangladesh is highly vulnerable to climate change. Having extensive experience with facing natural disasters, Bangladesh has developed a successful adaptation program, which led to a significant reduction in casualties from extreme weather events. In a low income country setting, Bangladesh had successfully adapted various projects and initiatives to combat future Climate Change challenges.Keywords: climate, change, success, Bangladesh
Procedia PDF Downloads 24967 Molecular Characterization and Arsenic Mobilization Properties of a Novel Strain IIIJ3-1 Isolated from Arsenic Contaminated Aquifers of Brahmaputra River Basin, India
Authors: Soma Ghosh, Balaram Mohapatra, Pinaki Sar, Abhijeet Mukherjee
Abstract:
Microbial role in arsenic (As) mobilization in the groundwater aquifers of Brahmaputra river basin (BRB) in India, severely threatened by high concentrations of As, remains largely unknown. The present study, therefore, is a molecular and ecophysiological characterization of an indigenous bacterium strain IIIJ3-1 isolated from As contaminated groundwater of BRB and application of this strain in several microcosm set ups differing in their organic carbon (OC) source and terminal electron acceptors (TEA), to understand its role in As dissolution under aerobic and anaerobic conditions. Strain IIIJ3-1 was found to be a new facultative anaerobic, gram-positive, endospore-forming strain capable of arsenite (As3+) oxidation and dissimilatory arsenate (As5+) reduction. The bacterium exhibited low genomic (G+C)% content (45 mol%). Although, its 16S rRNA gene sequence revealed a maximum similarity of 99% with Bacillus cereus ATCC 14579(T) but the DNA-DNA relatedness of their genomic DNAs was only 49.9%, which remains well below the value recommended to delimit different species. Abundance of fatty acids iC17:0, iC15:0 and menaquinone (MK) 7 though corroborates its taxonomic affiliation with B. cereus sensu-lato group, presence of hydroxy fatty acids (HFAs), C18:2, MK5 and MK6 marked its uniqueness. Besides being highly As resistant (MTC=10mM As3+, 350mM As5+), metabolically diverse, efficient aerobic As3+ oxidizer; it exhibited near complete dissimilatory reduction of As5+ (1 mM). Utilization of various carbon sources with As5+ as TEA revealed lactate to serve as the best electron donor. Aerobic biotransformation assay yielded a lower Km for As3+ oxidation than As5+ reduction. Arsenic homeostasis was found to be conferred by the presence of arr, arsB, aioB, and acr3(1) genes. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) analysis of this bacterium revealed reduction in cell size upon exposure to As and formation of As-rich electron opaque dots following growth with As3+. Incubation of this strain with sediment (sterilised) collected from BRB aquifers under varying OC, TEA and redox conditions revealed that the strain caused highest As mobilization from solid to aqueous phase under anaerobic condition with lactate and nitrate as electron donor and acceptor, respectively. Co-release of highest concentrations of oxalic acid, a well known bioweathering agent, considerable fold increase in viable cell counts and SEM-EDX and X-ray diffraction analysis of the sediment after incubation under this condition indicated that As release is consequent to microbial bioweathering of the minerals. Co-release of other elements statistically proves decoupled release of As with Fe and Zn. Principle component analysis also revealed prominent role of nitrate under aerobic and/or anaerobic condition in As release by strain IIIJ3-1. This study, therefore, is the first to isolate, characterize and reveal As mobilization property of a strain belonging to the Bacillus cereus sensu lato group isolated from highly As contaminated aquifers of Brahmaputra River Basin.Keywords: anaerobic microcosm, arsenic rich electron opaque dots, Arsenic release, Bacillus strain IIIJ3-1
Procedia PDF Downloads 12766 An Infrared Inorganic Scintillating Detector Applied in Radiation Therapy
Authors: Sree Bash Chandra Debnath, Didier Tonneau, Carole Fauquet, Agnes Tallet, Julien Darreon
Abstract:
Purpose: Inorganic scintillating dosimetry is the most recent promising technique to solve several dosimetric issues and provide quality assurance in radiation therapy. Despite several advantages, the major issue of using scintillating detectors is the Cerenkov effect, typically induced in the visible emission range. In this context, the purpose of this research work is to evaluate the performance of a novel infrared inorganic scintillator detector (IR-ISD) in the radiation therapy treatment to ensure Cerenkov free signal and the best matches between the delivered and prescribed doses during treatment. Methods: A simple and small-scale infrared inorganic scintillating detector of 100 µm diameter with a sensitive scintillating volume of 2x10-6 mm3 was developed. A prototype of the dose verification system has been introduced based on PTIR1470/F (provided by Phosphor Technology®) material used in the proposed novel IR-ISD. The detector was tested on an Elekta LINAC system tuned at 6 MV/15MV and a brachytherapy source (Ir-192) used in the patient treatment protocol. The associated dose rate was measured in count rate (photons/s) using a highly sensitive photon counter (sensitivity ~20ph/s). Overall measurements were performed in IBATM water tank phantoms by following international Technical Reports series recommendations (TRS 381) for radiotherapy and TG43U1 recommendations for brachytherapy. The performance of the detector was tested through several dosimetric parameters such as PDD, beam profiling, Cerenkov measurement, dose linearity, dose rate linearity repeatability, and scintillator stability. Finally, a comparative study is also shown using a reference microdiamond dosimeter, Monte-Carlo (MC) simulation, and data from recent literature. Results: This study is highlighting the complete removal of the Cerenkov effect especially for small field radiation beam characterization. The detector provides an entire linear response with the dose in the 4cGy to 800 cGy range, independently of the field size selected from 5 x 5 cm² down to 0.5 x 0.5 cm². A perfect repeatability (0.2 % variation from average) with day-to-day reproducibility (0.3% variation) was observed. Measurements demonstrated that ISD has superlinear behavior with dose rate (R2=1) varying from 50 cGy/s to 1000 cGy/s. PDD profiles obtained in water present identical behavior with a build-up maximum depth dose at 15 mm for different small fields irradiation. A low dimension of 0.5 x 0.5 cm² field profiles have been characterized, and the field cross profile presents a Gaussian-like shape. The standard deviation (1σ) of the scintillating signal remains within 0.02% while having a very low convolution effect, thanks to lower sensitive volume. Finally, during brachytherapy, a comparison with MC simulations shows that considering energy dependency, measurement agrees within 0.8% till 0.2 cm source to detector distance. Conclusion: The proposed scintillating detector in this study shows no- Cerenkov radiation and efficient performance for several radiation therapy measurement parameters. Therefore, it is anticipated that the IR-ISD system can be promoted to validate with direct clinical investigations, such as appropriate dose verification and quality control in the Treatment Planning System (TPS).Keywords: IR-Scintillating detector, dose measurement, micro-scintillators, Cerenkov effect
Procedia PDF Downloads 18265 Upflow Anaerobic Sludge Blanket Reactor Followed by Dissolved Air Flotation Treating Municipal Sewage
Authors: Priscila Ribeiro dos Santos, Luiz Antonio Daniel
Abstract:
Inadequate access to clean water and sanitation has become one of the most widespread problems affecting people throughout the developing world, leading to an unceasing need for low-cost and sustainable wastewater treatment systems. The UASB technology has been widely employed as a suitable and economical option for the treatment of sewage in developing countries, which involves low initial investment, low energy requirements, low operation and maintenance costs, high loading capacity, short hydraulic retention times, long solids retention times and low sludge production. Whereas dissolved air flotation process is a good option for the post-treatment of anaerobic effluents, being capable of producing high quality effluents in terms of total suspended solids, chemical oxygen demand, phosphorus, and even pathogens. This work presents an evaluation and monitoring, over a period of 6 months, of one compact full-scale system with this configuration, UASB reactors followed by dissolved air flotation units (DAF), operating in Brazil. It was verified as a successful treatment system, and an issue of relevance since dissolved air flotation process treating UASB reactor effluents is not widely encompassed in the literature. The study covered the removal and behavior of several variables, such as turbidity, total suspend solids (TSS), chemical oxygen demand (COD), Escherichia coli, total coliforms and Clostridium perfringens. The physicochemical variables were analyzed according to the protocols established by the Standard Methods for Examination of Water and Wastewater. For microbiological variables, such as Escherichia coli and total coliforms, it was used the “pour plate” technique with Chromocult Coliform Agar (Merk Cat. No.1.10426) serving as the culture medium, while the microorganism Clostridium perfringens was analyzed through the filtering membrane technique, with the Ágar m-CP (Oxoid Ltda, England) serving as the culture medium. Approximately 74% of total COD was removed in the UASB reactor, and the complementary removal done during the flotation process resulted in 88% of COD removal from the raw sewage, thus the initial concentration of COD of 729 mg.L-1 decreased to 87 mg.L-1. Whereas, in terms of particulate COD, the overall removal efficiency for the whole system was about 94%, decreasing from 375 mg.L-1 in raw sewage to 29 mg.L-1 in final effluent. The UASB reactor removed on average 77% of the TSS from raw sewage. While the dissolved air flotation process did not work as expected, removing only 30% of TSS from the anaerobic effluent. The final effluent presented an average concentration of 38 mg.L-1 of TSS. The turbidity was significantly reduced, leading to an overall efficiency removal of 80% and a final turbidity of 28 NTU.The treated effluent still presented a high concentration of fecal pollution indicators (E. coli, total coliforms, and Clostridium perfringens), showing that the system did not present a good performance in removing pathogens. Clostridium perfringens was the organism which suffered the higher removal by the treatment system. The results can be considered satisfactory for the physicochemical variables, taking into account the simplicity of the system, besides that, it is necessary a post-treatment to improve the microbiological quality of the final effluent.Keywords: dissolved air flotation, municipal sewage, UASB reactor, treatment
Procedia PDF Downloads 33164 Tip-Enhanced Raman Spectroscopy with Plasmonic Lens Focused Longitudinal Electric Field Excitation
Authors: Mingqian Zhang
Abstract:
Tip-enhanced Raman spectroscopy (TERS) is a scanning probe technique for individual objects and structured surfaces investigation that provides a wealth of enhanced spectral information with nanoscale spatial resolution and high detection sensitivity. It has become a powerful and promising chemical and physical information detection method in the nanometer scale. The TERS technique uses a sharp metallic tip regulated in the near-field of a sample surface, which is illuminated with a certain incident beam meeting the excitation conditions of the wave-vector matching. The local electric field, and, consequently, the Raman scattering, from the sample in the vicinity of the tip apex are both greatly tip-enhanced owning to the excitation of localized surface plasmons and the lightning-rod effect. Typically, a TERS setup is composed of a scanning probe microscope, excitation and collection optical configurations, and a Raman spectroscope. In the illumination configuration, an objective lens or a parabolic mirror is always used as the most important component, in order to focus the incident beam on the tip apex for excitation. In this research, a novel TERS setup was built up by introducing a plasmonic lens to the excitation optics as a focusing device. A plasmonic lens with symmetry breaking semi-annular slits corrugated on gold film was designed for the purpose of generating concentrated sub-wavelength light spots with strong longitudinal electric field. Compared to conventional far-field optical components, the designed plasmonic lens not only focuses an incident beam to a sub-wavelength light spot, but also realizes a strong z-component that dominants the electric field illumination, which is ideal for the excitation of tip-enhancement. Therefore, using a PL in the illumination configuration of TERS contributes to improve the detection sensitivity by both reducing the far-field background and effectively exciting the localized electric field enhancement. The FDTD method was employed to investigate the optical near-field distribution resulting from the light-nanostructure interaction. And the optical field distribution was characterized using an scattering-type scanning near-field optical microscope to demonstrate the focusing performance of the lens. The experimental result is in agreement with the theoretically calculated one. It verifies the focusing performance of the plasmonic lens. The optical field distribution shows a bright elliptic spot in the lens center and several arc-like side-lobes on both sides. After the focusing performance was experimentally verified, the designed plasmonic lens was used as a focusing component in the excitation configuration of TERS setup to concentrate incident energy and generate a longitudinal optical field. A collimated linearly polarized laser beam, with along x-axis polarization, was incident from the bottom glass side on the plasmonic lens. The incident light focused by the plasmonic lens interacted with the silver-coated tip apex and enhanced the Raman signal of the sample locally. The scattered Raman signal was gathered by a parabolic mirror and detected with a Raman spectroscopy. Then, the plasmonic lens based setup was employed to investigate carbon nanotubes and TERS experiment was performed. Experimental results indicate that the Raman signal is considerably enhanced which proves that the novel TERS configuration is feasible and promising.Keywords: longitudinal electric field, plasmonics, raman spectroscopy, tip-enhancement
Procedia PDF Downloads 37363 Somatic Delusional Disorder Subsequent to Phantogeusia: A Case Report
Authors: Pedro Felgueiras, Ana Miguel, Nélson Almeida, Raquel Silva
Abstract:
Objective: Through the study of a clinical case of delusional somatic disorder secondary to phantogeusia, we aim to highlight the importance of considering psychosomatic conditions in differential diagnosis, as well as to emphasize the complexity of its comprehension, treatment, and respective impact on patients’ functioning. Methods: Bearing this in mind, we conducted a critical analysis of a case series based on patient observations, clinical data, and complementary diagnostic methods, as well as a non-systematic review of the literature on the subject. Results: A 61-year-old female patient with no history of psychiatric conditions. Family psychiatric history of mood disorder (depression), with psychotic features found in her mother. Medical history of many comorbidities affecting different organ systems (endocrine, gastrointestinal, genitourinary, ophthalmological). Documented neuroticism traits of personality. The patient’s family described a persistent concern about several physical symptoms across her life, with a continuous effort to obtain explanations about any sensation out of her normal perception. Since being subjected to endoscopy in 2018, she started complaints of persistent phantogeusia (acid taste) and developed excessive thoughts, feelings, and behaviors associated with this somatic symptom. The patient was evaluated by several medical specialties, and an extensive panel of medical exams was carried out, excluding any disease. Besides all the investigation and with no evidence of disease signs, acute anxiety, time, and energy dispended to this symptom culminated in severe psychosocial impairment. The patient was admitted to a psychiatric ward for investigation and treatment of this clinical picture, leading to the diagnosis of the delusional somatic disorder. In order to exclude the acute organic etiology of this psychotic disorder, an analytic panel was carried out with no abnormal results. In the context of a psychotic clinical picture, a CT scan was performed, which revealed a right cortical vascular lesion. Neuropsychological evaluation was made, with the description of cognitive functioning being globally normative. During treatment with an antipsychotic (pimozide), a complete remission of the somatic delusion was associated with the disappearance of gustative perception disturbance. In follow-up, a relapse of gustative sensation was documented, and her thoughts and speech were dominated by concerns about multiple somatic symptoms. Conclusion: In terms of abnormal bodily sensations, the oral cavity is one of the frequent sites of delusional disorder. Patients with these gustatory perception distortions complain about unusual sensations without corresponding abnormal findings in the oral area. Its pathophysiology has not been fully elucidated yet. In terms of its comprehensive psychopathology, this case was hypothesized as a paranoid development of a delusional somatic disorder triggered by a post-invasive procedure phantogeusia (which is described as a possible side effect of an endoscopy) in a patient with an anankastic personality. This case presents interesting psychopathology, reinforcing the complexity of psychosomatic disorders in terms of their etiopathogenesis, clinical treatment, and long-term prognosis.Keywords: psychosomatics, delusional somatic disorder, phantogeusia, paranoid development
Procedia PDF Downloads 12962 Transcriptomic Analysis of Acanthamoeba castellanii Virulence Alteration by Epigenetic DNA Methylation
Authors: Yi-Hao Wong, Li-Li Chan, Chee-Onn Leong, Stephen Ambu, Joon-Wah Mak, Priyasashi Sahu
Abstract:
Background: Acanthamoeba is a genus of amoebae which lives as a free-living in nature or as a human pathogen that causes severe brain and eye infections. Virulence potential of Acanthamoeba is not constant and can change with growth conditions. DNA methylation, an epigenetic process which adds methyl groups to DNA, is used by eukaryotic cells, including several human parasites to control their gene expression. We used qPCR, siRNA gene silencing, and RNA sequencing (RNA-Seq) to study DNA-methyltransferase gene family (DNMT) in order to indicate the possibility of its involvement in programming Acanthamoeba virulence potential. Methods: A virulence-attenuated Acanthamoeba isolate (designation: ATCC; original isolate: ATCC 50492) was subjected to mouse passages to restore its pathogenicity; a virulence-reactivated isolate (designation: AC/5) was generated. Several established factors associated with Acanthamoeba virulence phenotype were examined to confirm the succession of reactivation process. Differential gene expression of DNMT between ATCC and AC/5 isolates was performed by qPCR. Silencing on DNMT gene expression in AC/5 isolate was achieved by siRNA duplex. Total RNAs extracted from ATCC, AC/5, and siRNA-treated (designation: si-146) were subjected to RNA-Seq for comparative transcriptomic analysis in order to identify the genome-wide effect of DNMT in regulating Acanthamoeba gene expression. qPCR was performed to validate the RNA-Seq results. Results: Physiological and cytophatic assays demonstrated an increased in virulence potential of AC/5 isolate after mouse passages. DNMT gene expression was significantly higher in AC/5 compared to ATCC isolate (p ≤ 0.01) by qPCR. si-146 duplex reduced DNMT gene expression in AC/5 isolate by 30%. Comparative transcriptome analysis identified the differentially expressed genes, with 3768 genes in AC/5 vs ATCC isolate; 2102 genes in si-146 vs AC/5 isolate and 3422 genes in si-146 vs ATCC isolate, respectively (fold-change of ≥ 2 or ≤ 0.5, p-value adjusted (padj) < 0.05). Of these, 840 and 1262 genes were upregulated and downregulated, respectively, in si-146 vs AC/5 isolate. Eukaryotic orthologous group (KOG) assignments revealed a higher percentage of downregulated gene expression in si-146 compared to AC/5 isolate, were related to posttranslational modification, signal transduction and energy production. Gene Ontology (GO) terms for those downregulated genes shown were associated with transport activity, oxidation-reduction process, and metabolic process. Among these downregulated genes were putative genes encoded for heat shock proteins, transporters, ubiquitin-related proteins, proteins for vesicular trafficking (small GTPases), and oxidoreductases. Functional analysis of similar predicted proteins had been described in other parasitic protozoa for their survival and pathogenicity. Decreased expression of these genes in si146-treated isolate may account in part for Acanthamoeba reduced pathogenicity. qPCR on 6 selected genes upregulated in AC/5 compared to ATCC isolate corroborated the RNA sequencing findings, indicating a good concordance between these two analyses. Conclusion: To the best of our knowledge, this study represents the first genome-wide analysis of DNA methylation and its effects on gene expression in Acanthamoeba spp. The present data indicate that DNA methylation has substantial effect on global gene expression, allowing further dissection of the genome-wide effects of DNA-methyltransferase gene in regulating Acanthamoeba pathogenicity.Keywords: Acanthamoeba, DNA methylation, RNA sequencing, virulence
Procedia PDF Downloads 19661 Predicting and Obtaining New Solvates of Curcumin, Demethoxycurcumin and Bisdemethoxycurcumin Based on the Ccdc Statistical Tools and Hansen Solubility Parameters
Authors: J. Ticona Chambi, E. A. De Almeida, C. A. Andrade Raymundo Gaiotto, A. M. Do Espírito Santo, L. Infantes, S. L. Cuffini
Abstract:
The solubility of active pharmaceutical ingredients (APIs) is challenging for the pharmaceutical industry. The new multicomponent crystalline forms as cocrystal and solvates present an opportunity to improve the solubility of APIs. Commonly, the procedure to obtain multicomponent crystalline forms of a drug starts by screening the drug molecule with the different coformers/solvents. However, it is necessary to develop methods to obtain multicomponent forms in an efficient way and with the least possible environmental impact. The Hansen Solubility Parameters (HSPs) is considered a tool to obtain theoretical knowledge of the solubility of the target compound in the chosen solvent. H-Bond Propensity (HBP), Molecular Complementarity (MC), Coordination Values (CV) are tools used for statistical prediction of cocrystals developed by the Cambridge Crystallographic Data Center (CCDC). The HSPs and the CCDC tools are based on inter- and intra-molecular interactions. The curcumin (Cur), target molecule, is commonly used as an anti‐inflammatory. The demethoxycurcumin (Demcur) and bisdemethoxycurcumin (Bisdcur) are natural analogues of Cur from turmeric. Those target molecules have differences in their solubilities. In this way, the work aimed to analyze and compare different tools for multicomponent forms prediction (solvates) of Cur, Demcur and Biscur. The HSP values were calculated for Cur, Demcur, and Biscur using the chemical group contribution methods and the statistical optimization from experimental data. The HSPmol software was used. From the HSPs of the target molecules and fifty solvents (listed in the HSP books), the relative energy difference (RED) was determined. The probability of the target molecules would be interacting with the solvent molecule was determined using the CCDC tools. A dataset of fifty molecules of different organic solvents was ranked for each prediction method and by a consensus ranking of different combinations: HSP, CV, HBP and MC values. Based on the prediction, 15 solvents were selected as Dimethyl Sulfoxide (DMSO), Tetrahydrofuran (THF), Acetonitrile (ACN), 1,4-Dioxane (DOX) and others. In a starting analysis, the slow evaporation technique from 50°C at room temperature and 4°C was used to obtain solvates. The single crystals were collected by using a Bruker D8 Venture diffractometer, detector Photon100. The data processing and crystal structure determination were performed using APEX3 and Olex2-1.5 software. According to the results, the HSPs (theoretical and optimized) and the Hansen solubility sphere for Cur, Demcur and Biscur were obtained. With respect to prediction analyses, a way to evaluate the predicting method was through the ranking and the consensus ranking position of solvates already reported in the literature. It was observed that the combination of HSP-CV obtained the best results when compared to the other methods. Furthermore, as a result of solvent selected, six new solvates, Cur-DOX, Cur-DMSO, Bicur-DOX, Bircur-THF, Demcur-DOX, Demcur-ACN and a new Biscur hydrate, were obtained. Crystal structures were determined for Cur-DOX, Biscur-DOX, Demcur-DOX and Bicur-Water. Moreover, the unit-cell parameter information for Cur-DMSO, Biscur-THF and Demcur-ACN were obtained. The preliminary results showed that the prediction method is showing a promising strategy to evaluate the possibility of forming multicomponent. It is currently working on obtaining multicomponent single crystals.Keywords: curcumin, HSPs, prediction, solvates, solubility
Procedia PDF Downloads 6360 Nanoscale Photo-Orientation of Azo-Dyes in Glassy Environments Using Polarized Optical Near-Field
Authors: S. S. Kharintsev, E. A. Chernykh, S. K. Saikin, A. I. Fishman, S. G. Kazarian
Abstract:
Recent advances in improving information storage performance are inseparably linked with circumvention of fundamental constraints such as the supermagnetic limit in heat assisted magnetic recording, charge loss tolerance in solid-state memory and the Abbe’s diffraction limit in optical storage. A substantial breakthrough in the development of nonvolatile storage devices with dimensional scaling has been achieved due to phase-change chalcogenide memory, which nowadays, meets the market needs to the greatest advantage. A further progress is aimed at the development of versatile nonvolatile high-speed memory combining potentials of random access memory and archive storage. The well-established properties of light at the nanoscale empower us to use them for recording optical information with ultrahigh density scaled down to a single molecule, which is the size of a pit. Indeed, diffraction-limited optics is able to record as much information as ~1 Gb/in2. Nonlinear optical effects, for example, two-photon fluorescence recording, allows one to decrease the extent of the pit even more, which results in the recording density up to ~100 Gb/in2. Going beyond the diffraction limit, due to the sub-wavelength confinement of light, pushes the pit size down to a single chromophore, which is, on average, of ~1 nm in length. Thus, the memory capacity can be increased up to the theoretical limit of 1 Pb/in2. Moreover, the field confinement provides faster recording and readout operations due to the enhanced light-matter interaction. This, in turn, leads to the miniaturization of optical devices and the decrease of energy supply down to ~1 μW/cm². Intrinsic features of light such as multimode, mixed polarization and angular momentum in addition to the underlying optical and holographic tools for writing/reading, enriches the storage and encryption of optical information. In particular, the finite extent of the near-field penetration, falling into a range of 50-100 nm, gives the possibility to perform 3D volume (layer-to-layer) recording/readout of optical information. In this study, we demonstrate a comprehensive evidence of isotropic-to-homeotropic phase transition of the azobenzene-functionalized polymer thin film exposed to light and dc electric field using near-field optical microscopy and scanning capacitance microscopy. We unravel a near-field Raman dichroism of a sub-10 nm thick epoxy-based side-chain azo-polymer films with polarization-controlled tip-enhanced Raman scattering. In our study, orientation of azo-chromophores is controlled with a bias voltage gold tip rather than light polarization. Isotropic in-plane and homeotropic out-of-plane arrangement of azo-chromophores in glassy environment can be distinguished with transverse and longitudinal optical near-fields. We demonstrate that both phases are unambiguously visualized by 2D mapping their local dielectric properties with scanning capacity microscopy. The stability of the polar homeotropic phase is strongly sensitive to the thickness of the thin film. We make an analysis of α-transition of the azo-polymer by detecting a temperature-dependent phase jump of an AFM cantilever when passing through the glass temperature. Overall, we anticipate further improvements in optical storage performance, which approaches to a single molecule level.Keywords: optical memory, azo-dye, near-field, tip-enhanced Raman scattering
Procedia PDF Downloads 17759 Engineering Design of a Chemical Launcher: An Interdisciplinary Design Activity
Authors: Mei Xuan Tan, Gim-Yang Maggie Pee, Mei Chee Tan
Abstract:
Academic performance, in the form of scoring high grades in enrolled subjects, is not the only significant trait in achieving success. Engineering graduates with experience in working on hands-on projects in a team setting are highly sought after in industry upon graduation. Such projects are typically real world problems that require the integration and application of knowledge and skills from several disciplines. In a traditional university setting, subjects are taught in a silo manner with no cross participation from other departments or disciplines. This may lead to knowledge compartmentalization and students are unable to understand and connect the relevance and applicability of the subject. University instructors thus see this integration across disciplines as a challenging task as they aim to better prepare students in understanding and solving problems for work or future studies. To improve students’ academic performance and to cultivate various skills such as critical thinking, there has been a gradual uptake in the use of an active learning approach in introductory science and engineering courses, where lecturing is traditionally the main mode of instruction. This study aims to discuss the implementation and experience of a hands-on, interdisciplinary project that involves all the four core subjects taught during the term at the Singapore University of Technology Design (SUTD). At SUTD, an interdisciplinary design activity, named 2D, is integrated into the curriculum to help students reinforce the concepts learnt. A student enrolled in SUTD experiences his or her first 2D in Term 1. This activity. which spans over one week in Week 10 of Term 1, highlights the application of chemistry, physics, mathematics, humanities, arts and social sciences (HASS) in designing an engineering product solution. The activity theme for Term 1 2D revolved around “work and play”. Students, in teams of 4 or 5, used a scaled-down model of a chemical launcher to launch a projectile across the room. It involved the use of a small chemical combustion reaction between ethanol (a highly volatile fuel) and oxygen. This reaction generated a sudden and large increase in gas pressure built up in a closed chamber, resulting in rapid gas expansion and ejection of the projectile out of the launcher. Students discussed and explored the meaning of play in their lives in HASS class while the engineering aspects of a combustion system to launch an object using underlying principles of energy conversion and projectile motion were revisited during the chemistry and physics classes, respectively. Numerical solutions on the distance travelled by the projectile launched by the chemical launcher, taking into account drag forces, was developed during the mathematics classes. At the end of the activity, students developed skills in report writing, data collection and analysis. Specific to this 2D activity, students gained an understanding and appreciation on the application and interdisciplinary nature of science, engineering and HASS. More importantly, students were exposed to design and problem solving, where human interaction and discussion are important yet challenging in a team setting.Keywords: active learning, collaborative learning, first year undergraduate, interdisciplinary, STEAM
Procedia PDF Downloads 12258 Coil-Over Shock Absorbers Compared to Inherent Material Damping
Authors: Carina Emminger, Umut D. Cakmak, Evrim Burkut, Rene Preuer, Ingrid Graz, Zoltan Major
Abstract:
Damping accompanies us daily in everyday life and is used to protect (e.g., in shoes) and make our life more comfortable (damping of unwanted motion) and calm (noise reduction). In general, damping is the absorption of energy which is either stored in the material (vibration isolation systems) or changed into heat (vibration absorbers). In case of the last, the damping mechanism can be split in active, passive, as well as semi-active (a combination of active and passive). Active damping is required to enable an almost perfect damping over the whole application range and is used, for instance, in sport cars. In contrast, passive damping is a response of the material due to external loading. Consequently, the material composition has a huge influence on the damping behavior. For elastomers, the material behavior is inherent viscoelastic, temperature, and frequency dependent. However, passive damping is not adjustable during application. Therefore, it is of importance to understand the fundamental viscoelastic behavior and the dissipation capability due to external loading. The objective of this work is to assess the limitation and applicability of viscoelastic material damping for applications in which currently coil-over shock absorbers are utilized. Coil-over shock absorbers are usually made of various mechanical parts and incorporate fluids within the damper. These shock absorbers are well-known and studied in the industry, and when needed, they can be easily adjusted during their product lifetime. In contrary, dampers made of – ideally – a single material are more resource efficient, have an easier serviceability, and are easier manufactured. However, they lack of adaptability and adjustability in service. Therefore, a case study with a remote-controlled sport car was conducted. The original shock absorbers were redesigned, and the spring-dashpot system was replaced by both an elastomer and a thermoplastic-elastomer, respectively. Here, five different formulations of elastomers were used, including a pure and an iron-particle filled thermoplastic poly(urethan) (TPU) and blends of two different poly(dimethyl siloxane) (PDMS). In addition, the TPUs were investigated as full and hollow dampers to investigate the difference between solid and structured material. To get comparative results each material formulation was comprehensively characterized, by monotonic uniaxial compression tests, dynamic thermomechanical analysis (DTMA), and rebound resilience. Moreover, the new material-based shock absorbers were compared with spring-dashpot shock absorbers. The shock absorbers were analyzed under monotonic and cyclic loading. In addition, an impact loading was applied on the remote-controlled car to measure the damping properties in operation. A servo-hydraulic high-speed linear actuator was utilized to apply the loads. The acceleration of the car and the displacement of specific measurement points were recorded while testing by a sensor and high-speed camera, respectively. The results prove that elastomers are suitable in damping applications, but they are temperature and frequency dependent. This is a limitation in applicability of viscous material damper. Feasible fields of application may be in the case of micromobility, like bicycles, e-scooters, and e-skateboards. Furthermore, the viscous material damping could be used to increase the inherent damping of a whole structure, e.g., in bicycle-frames.Keywords: damper structures, material damping, PDMS, TPU
Procedia PDF Downloads 11457 Gas-Phase Noncovalent Functionalization of Pristine Single-Walled Carbon Nanotubes with 3D Metal(II) Phthalocyanines
Authors: Vladimir A. Basiuk, Laura J. Flores-Sanchez, Victor Meza-Laguna, Jose O. Flores-Flores, Lauro Bucio-Galindo, Elena V. Basiuk
Abstract:
Noncovalent nanohybrid materials combining carbon nanotubes (CNTs) with phthalocyanines (Pcs) is a subject of increasing research effort, with a particular emphasis on the design of new heterogeneous catalysts, efficient organic photovoltaic cells, lithium batteries, gas sensors, field effect transistors, among other possible applications. The possibility of using unsubstituted Pcs for CNT functionalization is very attractive due to their very moderate cost and easy commercial availability. However, unfortunately, the deposition of unsubstituted Pcs onto nanotube sidewalls through the traditional liquid-phase protocols turns to be very problematic due to extremely poor solubility of Pcs. On the other hand, unsubstituted free-base H₂Pc phthalocyanine ligand, as well as many of its transition metal complexes, exhibit very high thermal stability and considerable volatility under reduced pressure, which opens the possibility for their physical vapor deposition onto solid surfaces, including nanotube sidewalls. In the present work, we show the possibility of simple, fast and efficient noncovalent functionalization of single-walled carbon nanotubes (SWNTs) with a series of 3d metal(II) phthalocyanines Me(II)Pc, where Me= Co, Ni, Cu, and Zn. The functionalization can be performed in a temperature range of 400-500 °C under moderate vacuum and requires about 2-3 h only. The functionalized materials obtained were characterized by means of Fourier-transform infrared (FTIR), Raman, UV-visible and energy-dispersive X-ray spectroscopy (EDS), scanning and transmission electron microscopy (SEM and TEM, respectively) and thermogravimetric analysis (TGA). TGA suggested that Me(II)Pc weight content is 30%, 17% and 35% for NiPc, CuPc, and ZnPc, respectively (CoPc exhibited anomalous thermal decomposition behavior). The above values are consistent with those estimated from EDS spectra, namely, of 24-39%, 27-36% and 27-44% for CoPc, CuPc, and ZnPc, respectively. A strong increase in intensity of D band in the Raman spectra of SWNT‒Me(II)Pc hybrids, as compared to that of pristine nanotubes, implies very strong interactions between Pc molecules and SWNT sidewalls. Very high absolute values of binding energies of 32.46-37.12 kcal/mol and the highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO, respectively) distribution patterns, calculated with density functional theory by using Perdew-Burke-Ernzerhof general gradient approximation correlation functional in combination with the Grimme’s empirical dispersion correction (PBE-D) and the double numerical basis set (DNP), also suggested that the interactions between Me(II) phthalocyanines and nanotube sidewalls are very strong. The authors thank the National Autonomous University of Mexico (grant DGAPA-IN200516) and the National Council of Science and Technology of Mexico (CONACYT, grant 250655) for financial support. The authors are also grateful to Dr. Natalia Alzate-Carvajal (CCADET of UNAM), Eréndira Martínez (IF of UNAM) and Iván Puente-Lee (Faculty of Chemistry of UNAM) for technical assistance with FTIR, TGA measurements, and TEM imaging, respectively.Keywords: carbon nanotubes, functionalization, gas-phase, metal(II) phthalocyanines
Procedia PDF Downloads 13056 Influence of the Local External Pressure on Measured Parameters of Cutaneous Microcirculation
Authors: Irina Mizeva, Elena Potapova, Viktor Dremin, Mikhail Mezentsev, Valeri Shupletsov
Abstract:
The local tissue perfusion is regulated by the microvascular tone which is under the control of a number of physiological mechanisms. Laser Doppler flowmetry (LDF) together with wavelet analyses is the most commonly used technique to study the regulatory mechanisms of cutaneous microcirculation. External factors such as temperature, local pressure of the probe on the skin, etc. influence on the blood flow characteristics and are used as physiological tests to evaluate microvascular regulatory mechanisms. Local probe pressure influences on the microcirculation parameters measured by optical methods: diffuse reflectance spectroscopy, fluorescence spectroscopy, and LDF. Therefore, further study of probe pressure effects can be useful to improve the reliability of optical measurement. During pressure tests variation of the mean perfusion measured by means of LDF usually is estimated. An additional information concerning the physiological mechanisms of the vascular tone regulation system in response to local pressure can be obtained using spectral analyses of LDF samples. The aim of the present work was to develop protocol and algorithm of data processing appropriate for study physiological response to the local pressure test. Involving 6 subjects (20±2 years) and providing 5 measurements for every subject we estimated intersubject and-inter group variability of response of both averaged and oscillating parts of the LDF sample on external surface pressure. The final purpose of the work was to find special features which further can be used in wider clinic studies. The cutaneous perfusion measurements were carried out by LAKK-02 (SPE LAZMA Ltd., Russia), the skin loading was provided by the originally designed device which allows one to distribute the pressure around the LDF probe. The probe was installed on the dorsal part of the distal finger of the index figure. We collected measurements continuously for one hour and varied loading from 0 to 180mmHg stepwise with a step duration of 10 minutes. Further, we post-processed the samples using the wavelet transform and traced the energy of oscillations in five frequency bands over time. Weak loading leads to pressure-induced vasodilation, so one should take into account that the perfusion measured under pressure conditions will be overestimated. On the other hand, we revealed a decrease in endothelial associated fluctuations. Further loading (88 mmHg) induces amplification of pulsations in all frequency bands. We assume that such loading leads to a higher number of closed capillaries, higher input of arterioles in the LDF signal and as a consequence more vivid oscillations which mainly are formed in arterioles. External pressure higher than 144 mmHg leads to the decrease of oscillating components, after removing the loading very rapid restore of the tissue perfusion takes place. In this work, we have demonstrated that local skin loading influence on the microcirculation parameters measured by optic technique; this should be taken into account while developing portable electronic devices. The proposed protocol of local loading allows one to evaluate PIV as far as to trace dynamic of blood flow oscillations. This study was supported by the Russian Science Foundation under project N 18-15-00201.Keywords: blood microcirculation, laser Doppler flowmetry, pressure-induced vasodilation, wavelet analyses blood
Procedia PDF Downloads 15055 The Dark History of American Psychiatry: Racism and Ethical Provider Responsibility
Authors: Mary Katherine Hoth
Abstract:
Despite racial and ethnic disparities in American psychiatry being well-documented, there remains an apathetic attitude among nurses and providers within the field to engage in active antiracism and provide equitable, recovery-oriented care. It is insufficient to be a “colorblind” nurse or provider and state that call care provided is identical for every patient. Maintaining an attitude of “colorblindness” perpetuates the racism prevalent throughout healthcare and leads to negative patient outcomes. The purpose of this literature review is to highlight the how the historical beginnings of psychiatry have evolved into the disparities seen in today’s practice, as well as to provide some insight on methods that providers and nurses can employ to actively participate in challenging these racial disparities. Background The application of psychiatric medicine to White people versus Black, Indigenous, and other People of Color has been distinctly different as a direct result of chattel slavery and the development of pseudoscience “diagnoses” in the 19th century. This weaponization of the mental health of Black people continues to this day. Population The populations discussed are Black, Indigenous, and other People of Color, with a primary focus on Black people’s experiences with their mental health and the field of psychiatry. Methods A literature review was conducted using CINAHL, EBSCO, MEDLINE, and PubMed databases with the following terms: psychiatry, mental health, racism, substance use, suicide, trauma-informed care, disparities and recovery-oriented care. Articles were further filtered based on meeting the criteria of peer-reviewed, full-text availability, written in English, and published between 2018 and 2023. Findings Black patients are more likely to be diagnosed with psychotic disorders and prescribed antipsychotic medications compared to White patients who were more often diagnosed with mood disorders and prescribed antidepressants. This same disparity is also seen in children and adolescents, where Black children are more likely to be diagnosed with behavior problems such as Oppositional Defiant Disorder (ODD) and White children with the same presentation are more likely to be diagnosed with Attention Hyperactivity Disorder. Medications advertisements for antipsychotics like Haldol as recent as 1974 portrayed a Black man, labeled as “agitated” and “aggressive”, a trope we still see today in police violence cases. The majority of nursing and medical school programs do not provide education on racism and how to actively combat it in practice, leaving many healthcare professionals acutely uneducated and unaware of their own biases and racism, as well as structural and institutional racism. Conclusions Racism will continue to grow wherever it is given time, space, and energy. Providers and nurses have an ethical obligation to educate themselves, actively deconstruct their personal racism and bias, and continuously engage in active antiracism by dismantling racism wherever it is encountered, be it structural, institutional, or scientific racism. Agents of change at the patient care level not only improve the outcomes of Black patients, but it will also lead the way in ensuring Black, Indigenous, and other People of Color are included in research of methods and medications in psychiatry in the future.Keywords: disparities, psychiatry, racism, recovery-oriented care, trauma-informed care
Procedia PDF Downloads 12954 Optimizing Heavy-Duty Green Hydrogen Refueling Stations: A Techno-Economic Analysis of Turbo-Expander Integration
Authors: Christelle Rabbat, Carole Vouebou, Sary Awad, Alan Jean-Marie
Abstract:
Hydrogen has been proven to be a viable alternative to standard fuels as it is easy to produce and only generates water vapour and zero carbon emissions. However, despite the hydrogen benefits, the widespread adoption of hydrogen fuel cell vehicles and internal combustion engine vehicles is impeded by several challenges. The lack of refueling infrastructures remains one of the main hindering factors due to the high costs associated with their design, construction, and operation. Besides, the lack of hydrogen vehicles on the road diminishes the economic viability of investing in refueling infrastructure. Simultaneously, the absence of accessible refueling stations discourages consumers from adopting hydrogen vehicles, perpetuating a cycle of limited market uptake. To address these challenges, the implementation of adequate policies incentivizing the use of hydrogen vehicles and the reduction of the investment and operation costs of hydrogen refueling stations (HRS) are essential to put both investors and customers at ease. Even though the transition to hydrogen cars has been rather slow, public transportation companies have shown a keen interest in this highly promising fuel. Besides, their hydrogen demand is easier to predict and regulate than personal vehicles. Due to the reduced complexity of designing a suitable hydrogen supply chain for public vehicles, this sub-sector could be a great starting point to facilitate the adoption of hydrogen vehicles. Consequently, this study will focus on designing a chain of on-site green HRS for the public transportation network in Nantes Metropole leveraging the latest relevant technological advances aiming to reduce the costs while ensuring reliability, safety, and ease of access. To reduce the cost of HRS and encourage their widespread adoption, a network of 7 H35-T40 HRS has been designed, replacing the conventional J-T valves with turbo-expanders. Each station in the network has a daily capacity of 1,920 kg. Thus, the HRS network can produce up to 12.5 tH2 per day. The detailed cost analysis has revealed a CAPEX per station of 16.6 M euros leading to a network CAPEX of 116.2 M euros. The proposed station siting prioritized Nantes metropole’s 5 bus depots and included 2 city-centre locations. Thanks to the turbo-expander technology, the cooling capacity of the proposed HRS is 19% lower than that of a conventional station equipped with J-T valves, resulting in significant CAPEX savings estimated at 708,560 € per station, thus nearly 5 million euros for the whole HRS network. Besides, the turbo-expander power generation ranges from 7.7 to 112 kW. Thus, the power produced can be used within the station or sold as electricity to the main grid, which would, in turn, maximize the station’s profit. Despite the substantial initial investment required, the environmental benefits, cost savings, and energy efficiencies realized through the transition to hydrogen fuel cell buses and the deployment of HRS equipped with turbo-expanders offer considerable advantages for both TAN and Nantes Metropole. These initiatives underscore their enduring commitment to fostering green mobility and combatting climate change in the long term.Keywords: green hydrogen, refueling stations, turbo-expander, heavy-duty vehicles
Procedia PDF Downloads 5653 Integrated Services Hub for Exploration and Production Industry: An Indian Narrative
Authors: Sunil Arora, Anitya Kumar Jena, S. A. Ravi
Abstract:
India is at the cusp of major reforms in the hydrocarbon sector. Oil and gas sector is highly liberalised to attract private investment and to increase domestic production. Major hydrocarbon Exploration & Production (E&P) activity here have been undertaken by Government owned companies but with easing up and reworking of hydro carbon exploration licensing policies private players have also joined the fray towards achieving energy security for India. Government of India has come up with policy and administrative reforms including Hydrocarbon Exploration and Licensing Policy (HELP), Sagarmala (port-led development with coastal connectivity), and Development of Small Discovered Fields, etc. with the intention to make industry friendly conditions for investment, ease of doing business and reduce gestation period. To harness the potential resources of Deep water and Ultra deep water, High Pressure – High Temperature (HP-HT) regions, Coal Bed Methane (CBM), Shale Hydrocarbons besides Gas Hydrates, participation shall be required from both domestic and international players. Companies engaged in E&P activities in India have traditionally been managing through their captive supply base, but with crude prices under hammer, the need is being felt to outsource non-core activities. This necessitates establishment of a robust support services to cater to E&P Industry, which is currently non-existent to meet the bourgeon challenges. This paper outlines an agenda for creating an Integrated Services Hub (ISH) under Special Economic Zone (SEZ) to facilitate complete gamut of non-core support activities of E&P industry. This responsive and proficient multi-usage facility becomes viable with better resource utilization, economies of scale to offer cost effective services. The concept envisages companies to bring-in their core technical expertise leaving complete hardware peripherals outsourced to this ISH. The Integrated Services Hub, complying with the best in class global standards, shall typically provide following Services under Single Window Solution, but not limited to: a) Logistics including supply base operations, transport of manpower and material, helicopters, offshore supply vessels, warehousing, inventory management, sourcing and procurement activities, international freight forwarding, domestic trucking, customs clearance service etc. b) Trained/Experienced pool of competent Manpower (Technical, Security etc.) will be available for engagement by companies on either short or long term basis depending upon the requirements with provisions of meeting any training requirements. c) Specialized Services through tie-up with global best companies for Crisis Management, Mud/Cement, Fishing, Floating Dry-dock besides provision of Workshop, Repair and Testing facilities, etc. d) Tools and Tackles including drill strings, etc. A pre-established Integrated Services Hub shall facilitate an early start-up of activities with substantial savings in time lines. This model can be replicated at other parts of the world to expedite E&P activities.Keywords: integrated service hub, India, oil gas, offshore supply base
Procedia PDF Downloads 15052 Metabolic Changes during Reprogramming of Wheat and Triticale Microspores
Authors: Natalia Hordynska, Magdalena Szechynska-Hebda, Miroslaw Sobczak, Elzbieta Rozanska, Joanna Troczynska, Zofia Banaszak, Maria Wedzony
Abstract:
Albinism is a common problem encountered in wheat and triticale breeding programs, which require in vitro culture steps e.g. generation of doubled haploids via androgenesis process. Genetic factor is a major determinant of albinism, however, environmental conditions such as temperature and media composition influence the frequency of albino plant formation. Cold incubation of wheat and triticale spikes induced a switch from gametophytic to sporophytic development. Further, androgenic structures formed from anthers of the genotypes susceptible to androgenesis or treated with cold stress, had a pool of structurally primitive plastids, with small starch granules or swollen thylakoids. High temperature was a factor inducing andro-genesis of wheat and triticale, but at the same time, it was a factor favoring the formation of albino plants. In genotypes susceptible to albinism or after heat stress conditions, cells formed from anthers were vacuolated, and plastids were eliminated. Partial or complete loss of chlorophyll pigments and incomplete differentiation of chloroplast membranes result in formation of tissues or whole plant unable to perform photosynthesis. Indeed, susceptibility to the andro-genesis process was associated with an increase of total concentration of photosynthetic pigments in anthers, spikes and regenerated plants. The proper balance of the synthesis of various pigments, was the starting point for their proper incorporation into photosynthetic membranes. In contrast, genotypes resistant to the androgenesis process and those treated with heat, contained 100 times lower content of photosynthetic pigments. In particular, the synthesis of violaxanthin, zeaxanthin, lutein and chlorophyll b was limited. Furthermore, deregulation of starch and lipids synthesis, which led to the formation of very complex starch granules and an increased number of oleosomes, respectively, correlated with the reduction of the efficiency of androgenesis. The content of other sugars varied depending on the genotype and the type of stress. The highest content of various sugars was found for genotypes susceptible to andro-genesis, and highly reduced for genotypes resistant to androgenesis. The most important sugars seem to be glucose and fructose. They are involved in sugar sensing and signaling pathways, which affect the expression of various genes and regulate plant development. Sucrose, on the other hand, seems to have minor effect at each stage of the androgenesis. The sugar metabolism was related to metabolic activity of microspores. The genotypes susceptible to androgenesis process had much faster mitochondrium- and chloroplast-dependent energy conversion and higher heat production by tissues. Thus, the effectiveness of metabolic processes, their balance and the flexibility under the stress was a factor determining the direction of microspore development, and in the later stages of the androgenesis process, a factor supporting the induction of androgenic structures, chloroplast formation and the regeneration of green plants. The work was financed by Ministry of Agriculture and Rural Development within Program: ‘Biological Progress in Plant Production’, project no HOR.hn.802.15.2018.Keywords: androgenesis, chloroplast, metabolism, temperature stress
Procedia PDF Downloads 260