Search results for: two-bit transform
556 Heat Sink Optimization for a High Power Wearable Thermoelectric Module
Authors: Zohreh Soleimani, Sally Salome Shahzad, Stamatis Zoras
Abstract:
As a result of current energy and environmental issues, the human body is known as one of the promising candidate for converting wasted heat to electricity (Seebeck effect). Thermoelectric generator (TEG) is one of the most prevalent means of harvesting body heat and converting that to eco-friendly electrical power. However, the uneven distribution of the body heat and its curvature geometry restrict harvesting adequate amount of energy. To perfectly transform the heat radiated by the body into power, the most direct solution is conforming the thermoelectric generators (TEG) with the arbitrary surface of the body and increase the temperature difference across the thermoelectric legs. Due to this, a computational survey through COMSOL Multiphysics is presented in this paper with the main focus on the impact of integrating a flexible wearable TEG with a corrugated shaped heat sink on the module power output. To eliminate external parameters (temperature, air flow, humidity), the simulations are conducted within indoor thermal level and when the wearer is stationary. The full thermoelectric characterization of the proposed TEG fabricated by a wavy shape heat sink has been computed leading to a maximum power output of 25µW/cm2 at a temperature gradient nearly 13°C. It is noteworthy that for the flexibility of the proposed TEG and heat sink, the applicability and efficiency of the module stay high even on the curved surfaces of the body. As a consequence, the results demonstrate the superiority of such a TEG to the most state of the art counterparts fabricated with no heat sink and offer a new train of thought for the development of self-sustained and unobtrusive wearable power suppliers which generate energy from low grade dissipated heat from the body.Keywords: device simulation, flexible thermoelectric module, heat sink, human body heat
Procedia PDF Downloads 153555 Clay Effect on PET/Clay and PEN/Clay Nanocomposites Properties
Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachour
Abstract:
Reinforced plastics or nanocomposites have attracted considerable attention in scientific and industrial fields because a very small amount of clay can significantly improve the properties of the polymer. The polymeric matrices used in this work are two saturated polyesters, i.e., polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). The success of processing compatible blends, based on poly(ethylene terephthalate) (PET)/poly(ethylene naphthalene) (PEN)/clay nanocomposites in one step by reactive melt extrusion is described. Untreated clay was first purified and functionalized ‘in situ’ with a compound based on an organic peroxide/ sulfur mixture and (tetramethylthiuram disulfide) as the activator for sulfur. The PET and PEN materials were first separately mixed in the molten state with functionalized clay. The PET/4 wt% clay and PEN/7.5 wt% clay compositions showed total exfoliation. These compositions, denoted nPET and nPEN, respectively, were used to prepare new n(PET/PEN) nanoblends in the same mixing batch. The n(PET/PEN) nanoblends were compared to neat PET/PEN blends. The blends and nanocomposites were characterized using various techniques. Microstructural and nanostructural properties were investigated. Fourier transform infrared spectroscopy (FTIR) results showed that the exfoliation of tetrahedral clay nanolayers is complete, and the octahedral structure totally disappears. It was shown that total exfoliation, confirmed by wide-angle X-ray scattering (WAXS) measurements, contributes to the enhancement of impact strength and tensile modulus. In addition, WAXS results indicated that all samples are amorphous. The differential scanning calorimetry (DSC) study indicated the occurrence of one glass transition temperature Tg, one crystallization temperature Tc and one melting temperature Tm for every composition.Keywords: exfoliation, DRX, DSC, montmorillonite, nanocomposites, PEN, PET, plastograph, reactive melt-mixing
Procedia PDF Downloads 330554 Multi-Stage Classification for Lung Lesion Detection on CT Scan Images Applying Medical Image Processing Technique
Authors: Behnaz Sohani, Sahand Shahalinezhad, Amir Rahmani, Aliyu Aliyu
Abstract:
Recently, medical imaging and specifically medical image processing is becoming one of the most dynamically developing areas of medical science. It has led to the emergence of new approaches in terms of the prevention, diagnosis, and treatment of various diseases. In the process of diagnosis of lung cancer, medical professionals rely on computed tomography (CT) scans, in which failure to correctly identify masses can lead to incorrect diagnosis or sampling of lung tissue. Identification and demarcation of masses in terms of detecting cancer within lung tissue are critical challenges in diagnosis. In this work, a segmentation system in image processing techniques has been applied for detection purposes. Particularly, the use and validation of a novel lung cancer detection algorithm have been presented through simulation. This has been performed employing CT images based on multilevel thresholding. The proposed technique consists of segmentation, feature extraction, and feature selection and classification. More in detail, the features with useful information are selected after featuring extraction. Eventually, the output image of lung cancer is obtained with 96.3% accuracy and 87.25%. The purpose of feature extraction applying the proposed approach is to transform the raw data into a more usable form for subsequent statistical processing. Future steps will involve employing the current feature extraction method to achieve more accurate resulting images, including further details available to machine vision systems to recognise objects in lung CT scan images.Keywords: lung cancer detection, image segmentation, lung computed tomography (CT) images, medical image processing
Procedia PDF Downloads 102553 Electrospun Fibers Made from Biopolymers (Cellulose Acetate/Chitosan) for Metals Recovery
Authors: Mauricio Gómez, Esmeralda López, Ian Becar, Jaime Pizarro, Paula A. Zapata
Abstract:
A biodegradable material is developed with adsorptive capacity for metals ion for intended use in mining tailings mitigating the environmental impact with economic retribution, two types of fibers were elaborated by electrospinning: (1) a cellulose acetate (CA) matrix and (2) a cellulose acetate (CA)/chitosan (CH) matrix evaluating the effect of CH in CA on its physicochemical properties. Through diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) the incorporation of chitosan in the matrix was identified, observing the band of the amino group at 1500 - 1600 [cm-1]. By scanning electron microscopy (SEM), Hg porosimetry, and CO2 isotherm at 273 [K], the intrafiber microporosity and interfiber macroporosity were identified, with an increase in the distribution of macropores for CA/CH fibers. In the tensile test, CH into the matrix produces a more ductile and tenacious behavior, where the % elongation at break increased by 33% with the other parameters constant. Thermal analysis by differential scanning calorimetry (DSC) and Thermogravimetric Analysis (TGA) showed that the incorporation of chitosan produces higher retention of water molecules due to the functional groups (amino groups (- NH3)), but there is a decrease in the specific heat and thermoplastic properties of the matrix since the glass transition temperature and softening temperature disappear. The effect of the optimum pH for CA and CA/CH fibers were studied in a batch system. In the adsorption kinetic study, the best isotherm model adapted to the experimental results corresponds to the Sips model and the kinetics corresponds to pseudo-second orderKeywords: environmental materials, wastewater treatment, electrospun fibers, biopolymers (cellulose acetate/chitosan), metals recovery
Procedia PDF Downloads 82552 Removal of Lead Ions from Aqueous Medium Using Devised Column Filters Packed with Chitosan from Trash Crab Shells: A Characterization Study
Authors: Charles Klein O. Gorit, Mark Tristan J. Quimque Jr., M. Cecilia V. Almeda, Concepcion M. Salvana
Abstract:
Chitosan is a promising biopolymer commonly found in crustacean shells that has plausible effects in water purification and wastewater treatment. It is a primary derivative of chitin and considered second of the most abundant biopolymer prior to cellulose. Morphological analysis had been done using Scanning Electron Microscopy with Energy Dispersive Microscopy (SEM/EDS), and due to its porous nature, it showcases a certain degree of porosity, hence, larger adsorption site of heavy metal. The Energy Dispersive Spectroscopy of the chitosan and ‘lead-bound’ chitosan, shows a relative increase of percent abundance of lead cation from 1.44% to 2.08% hence, adsorption occurs. Chitosan, as a nitrogenous polysaccharide, subjected to Fourier transform infrared spectroscopy (FTIR) analysis shows amide bands ranging from 1635.36 cm⁻¹ for amide 1 band and 1558.40 cm-1 for amide 2 band with NH stretching. For ‘lead-bound’ chitosan, the FT-IR analysis shows a change in peaks upon adsorption of Pb(II) cation. The spectrum shows broadening of OH and NH stretching band. Such observation can be attributed to the probability that the attachment of Pb(II) ions is in these functional groups. A column filter was devised with lead-bound chitosan to determine the zero point charge (pHzpc) of the biopolymer. The results show that at pH 8.34, below than the zpc level of literatures cited for lead which ranges from pH 4 to 7, favors the adsorption site of chitosan and its capability to adsorb traces amount of aqueous lead.Keywords: chitosan, biopolymer, FT-IR, SEM, zero-point charge, heavy metal, lead ions
Procedia PDF Downloads 153551 Facilitating Conditions Mediating SME’s Intention to Use Social Media for Knowledge Sharing
Authors: Stevens Phaphadi Mamorobela
Abstract:
The Covid-19 pandemic has accelerated the use of social media in SMEs to stay abreast with information about the latest news and developments and to predict the future world of business. The national shutdown regulations for curbing the spread of the Covid-19 virus resulted in SMEs having to distribute large volumes of information through social media platforms to collaborate and conduct business remotely. How much of the information shared on social media is used by SMEs as significant knowledge for economic rent is yet to be known. This study aims to investigate the facilitating conditions that enable SMEs’ intention to use social media as a knowledge-sharing platform to create economic rent and to cope with the Covid-19 challenges. A qualitative research approach was applied where semi-structured interviews were conducted with 13 SME owners located in the Gauteng province in South Africa to identify and explain the facilitating conditions of SMEs towards their intention to use social media as a knowledge-sharing tool in the Covid-19 era. The study discovered that the national lockdown regulations towards curbing the spread of the Covid-19 pandemic had compelled SMEs to adopt digital technologies that enabled them to quickly transform their business processes to cope with the challenges of the pandemic. The facilitating conditions, like access to high bandwidth internet coverage in the Gauteng region, enable SMEs to have strong intentions to use social media to distribute content and to reach out to their target market. However, the content is shared informally using diverse social media platforms without any guidelines for transforming content into rent-yielding knowledge.Keywords: facilitating conditions, knowledge sharing, social media, intention to use, SME
Procedia PDF Downloads 111550 Evaluation of Cytotoxic Effect of Mitoxantrone Conjugated Magnetite Nanoparticles and Graphene Oxide-Magnetite Nanocomposites on Mesenchymal Stem Cells
Authors: Abbas Jafarizad, Duygu Ekinci
Abstract:
In this work targeted drug delivery is proposed to decrease adverse effect of drugs with concomitant reduces in consumption and treatment outgoings. Nanoparticles (NPs) can be prepared from a variety of materials such as lipid, biodegradable polymer that prevent the drugs cytotoxicity in healthy cells, etc. One of the most important drugs used in chemotherapy is mitoxantrone (MTX) which prevents cell proliferation by inhibition of topoisomerase II and DNA repair; however, it is not selective and has some serious side effects. In this study, mentioned aim is achieved by using several nanocarriers like magnetite (Fe3O4) and their composites with magnetic graphene oxide (Fe3O4@GO). Also, cytotoxic potential of Fe3O4, Fe3O4-MTX, and Fe3O4@GO-MTX nanocomposite were evaluated on mesenchymal stem cells (MSCs). In this study, we reported the synthesis of monodisperse Fe3O4 NPs and Fe3O4@GO nanocomposite and their structures were investigated by using field emission scanning electron microscope (FESEM), Fourier transform infrared (FTIR) spectra, atomic force microscopy (AFM), Brauneur Emmet Teller (BET) isotherm and contact angle studies. Moreover, we used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to evaluate cytotoxic effects of MTX, Fe3O4 NPs, Fe3O4-MTX and Fe3O4@GO-MTX nanocomposite on MSCs. The in-vitro MTT results indicated that all concentrations of MTX and Fe3O4@GO-MTX nanocomposites showed cytotoxic effects while all concentrations of Fe3O4 NPs and Fe3O4-MTX NPs did not show any cytotoxic effect on stem cells. The results from this study indicated that using Fe3O4 NPs as anticancer drug delivery systems could be a trustworthy method for cancer treatment. But for reaching excellent and accurate results, further investigation is necessary.Keywords: mitoxantrone, magnetite, magnetic graphene oxide, MTT assay, mesenchymal stem cells
Procedia PDF Downloads 275549 White Light Emitting Carbon Dots- Surface Modification of Carbon Dots Using Auxochromes
Authors: Manasa Perikala, Asha Bhardwaj
Abstract:
Fluorescent carbon dots (CDs), a young member of Carbon nanomaterial family, has gained a lot of research attention across the globe due to its highly luminescent emission properties, non-toxic behavior, stable emission properties, and zero re-absorption lose. These dots have the potential to replace the use of traditional semiconductor quantum dots in light-emitting devices (LED’s, fiber lasers) and other photonic devices (temperature sensor, UV detector). However, One major drawback of Carbon dots is that, till date, the actual mechanism of photoluminescence (PL) in carbon dots is still an open topic of discussion among various researchers across the globe. PL mechanism of CDs based on wide particle size distribution, the effect of surface groups, hybridization in carbon, and charge transfer mechanisms have been proposed. Although these mechanisms explain PL of CDs to an extent, no universally accepted mechanism to explain complete PL behavior of these dots is put forth. In our work, we report parameters affecting the size and surface of CDs, such as time of the reaction, synthesis temperature and concentration of precursors and their effects on the optical properties of the carbon dots. The effect of auxochromes on the emission properties and re-modification of carbon surface using an external surface functionalizing agent is discussed in detail. All the explanations have been supported by UV-Visible absorption, emission spectroscopies, Fourier transform infrared spectroscopy and Transmission electron microscopy and X-Ray diffraction techniques. Once the origin of PL in CDs is understood, parameters affecting PL centers can be modified to tailor the optical properties of these dots, which can enhance their applications in the fabrication of LED’s and other photonic devices out of these carbon dots.Keywords: carbon dots, photoluminescence, size effects on emission in CDs, surface modification of carbon dots
Procedia PDF Downloads 138548 Collagen Silver Lipid Nanoparticles as Matrix and Fillers for Cosmeceuticals: An In-Vitro and In-Vivo Study
Authors: Kumari Kajal, Muthu Kumar Sampath, Hare Ram Singh
Abstract:
In this context, the formulation and characterization of collagen silver lipid nanoparticles (CSLNs) were studied for their capacity to serve as fillers/matrix materials used in cosmeceutical applications. The CSLNs were prepared following a series of studies, such as X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) coupled with energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy FT-IR; thermogravimetric analysis (TGA); and differential scanning calorimetry (DSC). The studies confirmed the structural integrity of nanoparticles, their cargo and thermal stability. The biological functionality of CSLNs was studied by carrying out in vitro & in vivo studies. The antibacterial effect, hemocompatibility and anti-inflammatory characteristics of these fibers were systematically investigated. The toxicological assays included oral toxicity in mice and aquatic life tests with the fish Danio rerio model. The morphology of the nanoparticles was confirmed using high-resolution transmission electron microscopy (HR-TEM). The report found that CSLNs had strong antimicrobial effects, unmatched hemocompatibility, and low or absent inflammatory reactions, which makes them perfect candidates for cosmeceutical applications. The toxicological evaluations evinced a good safety record without any significant adverse effects in both murine and Danio rerio models. This research reveals the efficient way of CSLNs to the efficacy and safety of dermaceuticals.Keywords: collagen silver lipid nanoparticles (CSLNs), cosmeceuticals, antimicrobial activity, hemocompatibility, in vitro assessment, in vivo assessment.
Procedia PDF Downloads 21547 Fight against Money Laundering with Optical Character Recognition
Authors: Saikiran Subbagari, Avinash Malladhi
Abstract:
Anti Money Laundering (AML) regulations are designed to prevent money laundering and terrorist financing activities worldwide. Financial institutions around the world are legally obligated to identify, assess and mitigate the risks associated with money laundering and report any suspicious transactions to governing authorities. With increasing volumes of data to analyze, financial institutions seek to automate their AML processes. In the rise of financial crimes, optical character recognition (OCR), in combination with machine learning (ML) algorithms, serves as a crucial tool for automating AML processes by extracting the data from documents and identifying suspicious transactions. In this paper, we examine the utilization of OCR for AML and delve into various OCR techniques employed in AML processes. These techniques encompass template-based, feature-based, neural network-based, natural language processing (NLP), hidden markov models (HMMs), conditional random fields (CRFs), binarizations, pattern matching and stroke width transform (SWT). We evaluate each technique, discussing their strengths and constraints. Also, we emphasize on how OCR can improve the accuracy of customer identity verification by comparing the extracted text with the office of foreign assets control (OFAC) watchlist. We will also discuss how OCR helps to overcome language barriers in AML compliance. We also address the implementation challenges that OCR-based AML systems may face and offer recommendations for financial institutions based on the data from previous research studies, which illustrate the effectiveness of OCR-based AML.Keywords: anti-money laundering, compliance, financial crimes, fraud detection, machine learning, optical character recognition
Procedia PDF Downloads 146546 Experimental and Numerical Performance Analysis for Steam Jet Ejectors
Authors: Abdellah Hanafi, G. M. Mostafa, Mohamed Mortada, Ahmed Hamed
Abstract:
The steam ejectors are the heart of most of the desalination systems that employ vacuum. The systems that employ low grade thermal energy sources like solar energy and geothermal energy use the ejector to drive the system instead of high grade electric energy. The jet-ejector is used to create vacuum employing the flow of steam or air and using the severe pressure drop at the outlet of the main nozzle. The present work involves developing a one dimensional mathematical model for designing jet-ejectors and transform it into computer code using Engineering Equation solver (EES) software. The model receives the required operating conditions at the inlets and outlet of the ejector as inputs and produces the corresponding dimensions required to reach these conditions. The one-dimensional model has been validated using an existed model working on Abu-Qir power station. A prototype has been designed according to the one-dimensional model and attached to a special test bench to be tested before using it in the solar desalination pilot plant. The tested ejector will be responsible for the startup evacuation of the system and adjusting the vacuum of the evaporating effects. The tested prototype has shown a good agreement with the results of the code. In addition a numerical analysis has been applied on one of the designed geometry to give an image of the pressure and velocity distribution inside the ejector from a side, and from other side, to show the difference in results between the two-dimensional ideal gas model and real prototype. The commercial edition of ANSYS Fluent v.14 software is used to solve the two-dimensional axisymmetric case.Keywords: solar energy, jet ejector, vacuum, evaporating effects
Procedia PDF Downloads 624545 Approach to Establish Logistics as a Central Scientific Discipline of Tomorrow's Industry
Authors: Johannes Dregger, Michael Schmidt, Christian Prasse, Michael ten Hompel
Abstract:
Most of the today’s companies face increasing need to operate efficiently. Driven by global trends like shorter product cycles, mass customization and the rising speed of delivery, manufacturing value chains are becoming more and more distributed. Manufacturing processes are becoming highly integrated, e.g. 3D printing. All these changes are affecting companies´ organization. They are leading towards individual, small scale, and ad-hoc logistics processes and structures, and finally, towards a significant increase in the importance of logistics itself since traditional value chains transform into agile value networks. In the past logistics has been following manufacturing but in the future industry, this role allocation might change. With this increase in the logistics practice of companies and businesses, the relevance of logistics research as the methodological foundation of logistics networks and processes is gaining importance. Logistics research is evolving into a central and highly interdisciplinary science for the future industry. Using the example of Germany, this paper discusses ways to establish logistics as a central scientific discipline of the future industry. About three million people work in the logistics sector in Germany. Only automotive and retail industry have more employees. Even though there is a bunch of logistics degree programs at more than 100 institutions of higher education, a common understanding of logistics as a research discipline is missing. In this paper an innovative approach will be presented, including; identified perspectives on logistics, such as process orientation, IT orientation or employees orientation, relevant scientific disciplines for logistics science, a concept for interdisciplinary research approaches to unify the perspectives of the different scientific disciplines on logistics and the methodological base of logistics science.Keywords: logistics, logistics science, logistics management, future challenges
Procedia PDF Downloads 320544 Development of a Sensitive Electrochemical Sensor Based on Carbon Dots and Graphitic Carbon Nitride for the Detection of 2-Chlorophenol and Arsenic
Authors: Theo H. G. Moundzounga
Abstract:
Arsenic and 2-chlorophenol are priority pollutants that pose serious health threats to humans and ecology. An electrochemical sensor, based on graphitic carbon nitride (g-C₃N₄) and carbon dots (CDs), was fabricated and used for the determination of arsenic and 2-chlorophenol. The g-C₃N₄/CDs nanocomposite was prepared via microwave irradiation heating method and was dropped-dried on the surface of the glassy carbon electrode (GCE). Transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL), Fourier transform infrared spectroscopy (FTIR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) were used for the characterization of structure and morphology of the nanocomposite. Electrochemical characterization was done by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical behaviors of arsenic and 2-chlorophenol on different electrodes (GCE, CDs/GCE, and g-C₃N₄/CDs/GCE) was investigated by differential pulse voltammetry (DPV). The results demonstrated that the g-C₃N₄/CDs/GCE significantly enhanced the oxidation peak current of both analytes. The analytes detection sensitivity was greatly improved, suggesting that this new modified electrode has great potential in the determination of trace level of arsenic and 2-chlorophenol. Experimental conditions which affect the electrochemical response of arsenic and 2-chlorophenol were studied, the oxidation peak currents displayed a good linear relationship to concentration for 2-chlorophenol (R²=0.948, n=5) and arsenic (R²=0.9524, n=5), with a linear range from 0.5 to 2.5μM for 2-CP and arsenic and a detection limit of 2.15μM and 0.39μM respectively. The modified electrode was used to determine arsenic and 2-chlorophenol in spiked tap and effluent water samples by the standard addition method, and the results were satisfying. According to the measurement, the new modified electrode is a good alternative as chemical sensor for determination of other phenols.Keywords: electrochemistry, electrode, limit of detection, sensor
Procedia PDF Downloads 146543 Ultradrawing and Ultimate Tensile Properties of Ultrahigh Molecular Weight Polyethylene Composite Fibers Filled with Activated Nanocarbon Particles with Varying Specific Surface Areas
Authors: Wang-Xi Fan, Yi Ding, Zhong-Dan Tu, Kuo-Shien Huang, Chao-Ming Huang, Jen-Taut Yeh
Abstract:
Original and/or functionalized activated nanocarbon particles with a quoted specific surface area of 100, 500, 1000 and 1400 m2/g, respectively, were used to investigate the influence of specific surface areas of activated nanocarbon on ultra drawing and ultimate tensile properties of ultrahigh molecular weight polyethylene (UHMWPE), UHMWPE/activated nanocarbon and UHMWPE/ functionalized activated nanocarbon fibers. The specific surface areas of well dispersed functionalized activated nanocarbon in UHMWPE/functionalized activated nanocarbon fibers can positively affect their ultra drawing, orientation, ultimate tensile properties and “micro-fibril” characteristics. Excellent orientation and ultimate tensile properties of UHMWPE/nanofiller fibers can be prepared by ultra drawing the UHMWPE/functionalized activated nanocarbon as-prepared fibers with optimal contents and compositions of functionalized activated nanocarbon. The ultimate tensile strength value of the best prepared UHMWPE/functionalized activated nanocarbon drawn fiber reached 8.0 GPa, which was about 2.86 times of that of the best-prepared UHMWPE drawn fiber prepared in this study. Specific surface area, morphological and Fourier transform infrared analyses of original and functionalized activated nanocarbon and/or investigations of thermal, orientation factor and ultimate tensile properties of as-prepared and/or drawn UHMWPE/functionalized activated nanocarbon fibers were performed to understand the above-improved ultra drawing and ultimate tensile properties of the UHMWPE/functionalized activated nanocarbon fibers.Keywords: activated nanocarbon, specific surface areas, ultradrawing, ultrahigh molecular weight polyethylene
Procedia PDF Downloads 375542 Development of a Sequential Multimodal Biometric System for Web-Based Physical Access Control into a Security Safe
Authors: Babatunde Olumide Olawale, Oyebode Olumide Oyediran
Abstract:
The security safe is a place or building where classified document and precious items are kept. To prevent unauthorised persons from gaining access to this safe a lot of technologies had been used. But frequent reports of an unauthorised person gaining access into security safes with the aim of removing document and items from the safes are pointers to the fact that there is still security gap in the recent technologies used as access control for the security safe. In this paper we try to solve this problem by developing a multimodal biometric system for physical access control into a security safe using face and voice recognition. The safe is accessed by the combination of face and speech pattern recognition and also in that sequential order. User authentication is achieved through the use of camera/sensor unit and a microphone unit both attached to the door of the safe. The user face was captured by the camera/sensor while the speech was captured by the use of the microphone unit. The Scale Invariance Feature Transform (SIFT) algorithm was used to train images to form templates for the face recognition system while the Mel-Frequency Cepitral Coefficients (MFCC) algorithm was used to train the speech recognition system to recognise authorise user’s speech. Both algorithms were hosted in two separate web based servers and for automatic analysis of our work; our developed system was simulated in a MATLAB environment. The results obtained shows that the developed system was able to give access to authorise users while declining unauthorised person access to the security safe.Keywords: access control, multimodal biometrics, pattern recognition, security safe
Procedia PDF Downloads 341541 Free Raducal Scavenging Activity of Fractionated Extract and Structural Elucidation of Isolated Compounds from Hydrocotyl Bonariensis Comm. Ex Lam Leaves
Authors: Emmanuel O Ajani, Sabiu S, Mariam Zakari, Fisayo A Bamisaye
Abstract:
Hydrocotyl bonariensis is a plant which anticataractogenic potentials have been reported. In the present study an attempt was made to evaluate the in vitro antioxidant activity of the fractionates of the leaves extract and also characterize some of its chemical constituents. DPPH, H₂O₂, OH and NO free radical scavenging, metal chelating and reducing power activity was used to evaluate the antioxidant activity of the crude extract fractionates. Fresh leaves of Hydrocotyl bonariensis leaves were extracted in 70% methanol. The extract was partitioned with different solvent system of increasing polarity (n-hexane, chloroform, ethyl acetate methanol and water). Compounds were isolated from the aqueous practitionate using accelerated gradient chromatography, vacuum liquid chromatography, preparative TLC and conventional column chromatography. The presence of the chemical groups was established with HPLC and Fourier Transform Infra Red. The structures of isolated compounds were elucidated by spectroscopic study and chemical shifts. Data from the study indicates that all the fractionates contain compounds with free radical scavenging activity. This activity was more pronounced in the aqueous fractionate (DPPH IC₅₀, 0025 ± 0.011 mg/ml, metal chelating capacity 27.5%, OH- scavenging IC₅₀, 0.846 ± 0.037 mg/ml, H₂O₂ scavenging IC₅₀ 0.521 ± 0.015 mg/ml, reducing power IC₅₀ 0.248 ± 0.025 mg/ml and NO scavenging IC₅₀ 0.537 ± 0.038 mg/ml). Two compounds were isolated and when compared with data from the literature; the structures were suggestive of polyphenolic flavonoid, quercetin and 3-O-β-D-glucopyranosyl-sitosterol. The result indicates that H. bonariensis leaves contain bioactive compounds with antioxidant activity.Keywords: antioxidant, cataract, free radical, flavonoids, hydrocotyl bonariensis
Procedia PDF Downloads 273540 Modified Silicates as Dissolved Oxygen Sensors in Water: Structural and Optical Properties
Authors: Andile Mkhohlakali, Tien-Chien Jen, James Tshilongo, Happy Mabowa
Abstract:
Among different parameters, oxygen is one of the most important analytes of interest, dissolved oxygen (DO) concentration is very crucial and significant for various areas of physical, chemical, and environmental monitoring. Herein we report oxygen-sensitive luminophores -based lanthanum(III) trifluoromethanesulfonate), [La]³⁺ was encapsulated into SiO₂-based xerogel matrix. The nanosensor is composed of organically modified silica nanoparticles, doped with the luminescent oxygen–sensitive lanthanum(III) trifluoromethanesulfonate complex. The precursor materials used for sensing film were triethyl ethoxy silane (TEOS) and (3-Mercaptopropyltriethoxysilane) (MPTMS- TEOS) used for SiO2-baed matrices. Brunauer–Emmett–Teller (BET), and BJH indicate that the SiO₂ transformed from microporous to mesoporous upon the addition of La³⁺ luminophore with increased surface area (SBET). The typical amorphous SiO₂ based xerogels were revealed with X-Ray diffraction (XRD) and Selected Area Electron Diffraction (SAED) analysis. Scanning electron microscope- (SEM) and transmission electron microscope (TEM) showed the porous morphology and reduced particle for SiO₂ and La-SiO₂ xerogels respectively. The existence of elements, siloxane networks, and thermal stability of xerogel was confirmed by energy dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and Thermographic analysis (TGA). UV-Vis spectroscopy and photoluminescence (PL) have been used to characterize the optical properties of xerogels. La-SiO₂ demonstrates promising characteristic features of an active sensing film for dissolved oxygen in the water. Keywords: Sol-gel, ORMOSILs, encapsulation, Luminophores quenching, O₂-sensingKeywords: sol-gel, ORMOSILs, luminophores quenching, O₂-sensing
Procedia PDF Downloads 126539 Exploring the Intrinsic Ecology and Suitable Density of Historic Districts Through a Comparative Analysis of Ancient and Modern Ecological Smart Practices
Authors: Hu Changjuan, Gong Cong, Long Hao
Abstract:
Although urban ecological policies and the public's aspiration for livable environments have expedited the pace of ecological revitalization, historic districts that have evolved through natural ecological processes often become obsolete and less habitable amid rapid urbanization. This raises a critical question about historic districts inherently incapable of being ecological and livable. The thriving concept of ‘intrinsic ecology,’ characterized by its ability to transform city-district systems into healthy ecosystems with diverse environments, stable functions, and rapid restoration capabilities, holds potential for guiding the integration of ancient and modern ecological wisdom while supporting the dynamic involvement of cultures. This study explores the intrinsic ecology of historic districts from three aspects: 1) Population Density: By comparing the population density before urban population expansion to the present day, determine the reasonable population density for historic districts. 2) Building Density: Using the ‘Space-mate’ tool for comparative analysis, form a spatial matrix to explore the intrinsic ecology of building density in Chinese historic districts. 3) Green Capacity Ratio: By using ecological districts as control samples, conduct dual comparative analyses (related comparison and upgraded comparison) to determine the intrinsic ecological advantages of the two-dimensional and three-dimensional green volume in historic districts. The study inform a density optimization strategy that supports cultural, social, natural, and economic ecology, contributing to the creation of eco-historic districts.Keywords: eco-historic districts, intrinsic ecology, suitable density, green capacity ratio.
Procedia PDF Downloads 29538 Digital Memory plus City Cultural Heritage: The Peking Memory Project Experience
Authors: Huiling Feng, Xiaoshuang Jia, Jihong Liang, Li Niu
Abstract:
Beijing, formerly romanized as Peking, is the capital of the People's Republic of China and the world's second most populous city proper and most populous capital city. Beijing is a noted historical and cultural whose city history dates back three millennia which is extremely rich in terms of cultural heritage. In 2012, a digital memory project led by Humanistic Beijing Studies Center in Renmin University of China started with the goal to build a total digital collection of knowledge assets about Beijing and represent Beijing memories in new fresh ways. The title of the entire project is ‘Peking Memory Project(PMP)’. The main goal is for safeguarding the documentary heritage and intellectual memory of Beijing, more specifically speaking, from the perspective of historical humanities and public participation, PMP will comprehensively applied digital technologies like digital capture, digital storage, digital process, digital presentation and digital communication to transform different kinds of cultural heritage of Beijing into digital formats that can be stored, re-organized and shared. These digital memories can be interpreted with a new perspective, be organized with a new theme, be presented in a new way and be utilized with a new need. Taking social memory as theoretical basis and digital technologies as tools, PMP is framed with ‘Two Sites and A Repository’. Two sites mean the special website(s) characterized by ‘professional’ and an interactive website characterized by ‘crowdsourcing’. A Repository means the storage pool used for safety long-time preservation of the digital memories. The work of PMP has ultimately helped to highlight the important role in safeguarding the documentary heritage and intellectual memory of Beijing.Keywords: digital memory, cultural heritage, digital technologies, peking memory project
Procedia PDF Downloads 179537 In Vivo Assessment of Biogenically Synthesized Silver Nanoparticles
Authors: Muhammad Shahzad Tufail, Iram Liaqat
Abstract:
Silver nanoparticles (AgNPs) have wider biomedical applications due to their intensive antimicrobial activities. However, toxicity and side effects of nanomaterials like AgNPs is a subject of great controversy towards the further studies in this direction. In this study, biogenically synthesized AgNPs, previously characterized via ultraviolet (UV) visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR), were subjected to toxicity evaluation using mice model. Albino male mice (BALB/c) were administered with 50 mgkg-1, 100 mgkg-1 and 150 mgkg-1 of AgNPs, respectively, except for control for 30 days. Log-probit regression analysis was used to measure the dosage response to determine the median lethal dose (LD50). Exposure to AgNPs caused significant changes in the levels of serum AST (P ˂ 0.05) at the 100mgkg-1 and 150mgkg-1 of AgNPs exposure, while ALT and serum creatinine (P ˃ 0.05) levels remained normal. Histopathology of male albino mice liver and kidney was studied after 30 days experimental period. Results revealed that mice exposed to heavy dose (150 mgkg-1) of AgNPs showed cell distortion, necrosis and detachment of hepatocytes in the liver. Regarding kidney, at lower concentration, normal renal structure with normal glomeruli was observed. However, at higher concentration (150 mgkg-1), kidneys showed smooth surface and dark red colour with proliferation of podocytes. It can be concluded from present study that biologically synthesized AgNPs are small to be eliminated easily by kidney and therefore the liver and kidney did not show toxicity at low concentrations.Keywords: silver nanoparticles, pseudomonas aeruginosa, male albino mice, toxicity assessment
Procedia PDF Downloads 82536 Quartz Crystal Microbalance Based Hydrophobic Nanosensor for Lysozyme Detection
Authors: F. Yılmaz, Y. Saylan, A. Derazshamshir, S. Atay, A. Denizli
Abstract:
Quartz crystal microbalance (QCM), high-resolution mass-sensing technique, measures changes in mass on oscillating quartz crystal surface by measuring changes in oscillation frequency of crystal in real time. Protein adsorption techniques via hydrophobic interaction between protein and solid support, called hydrophobic interaction chromatography (HIC), can be favorable in many cases. Some nanoparticles can be effectively applied for HIC. HIC takes advantage of the hydrophobicity of proteins by promoting its separation on the basis of hydrophobic interactions between immobilized hydrophobic ligands and nonpolar regions on the surface of the proteins. Lysozyme is found in a variety of vertebrate cells and secretions, such as spleen, milk, tears, and egg white. Its common applications are as a cell-disrupting agent for extraction of bacterial intracellular products, as an antibacterial agent in ophthalmologic preparations, as a food additive in milk products and as a drug for treatment of ulcers and infections. Lysozyme has also been used in cancer chemotherapy. The aim of this study is the synthesis of hydrophobic nanoparticles for Lysozyme detection. For this purpose, methacryoyl-L-phenylalanine was chosen as a hydrophobic matrix. The hydrophobic nanoparticles were synthesized by micro-emulsion polymerization method. Then, hydrophobic QCM nanosensor was characterized by Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM) and zeta size analysis. Hydrophobic QCM nanosensor was tested for real-time detection of Lysozyme from aqueous solution. The kinetic and affinity studies were determined by using Lysozyme solutions with different concentrations. The responses related to a mass (Δm) and frequency (Δf) shifts were used to evaluate adsorption properties.Keywords: nanosensor, HIC, lysozyme, QCM
Procedia PDF Downloads 352535 Characterization of Biogenic Silver Nanoparticles by Salvadora persica Leaves Extract and its Application Against Some MDR Pathogens E. Coli and S. Aureus
Authors: Mudawi M. Nour
Abstract:
Background: Now a days, the multidisciplinary scientific research conception in the field of nanotechnology has witnessed development with regard to the numerous applications and synthesis of nanomaterials. Objective: The current investigation has been conducted with the main focus on the green synthesis of silver nanoparticles from the leaves of Salvadora persica and its antibacterial activity against MDR pathogens E. coli and S. aureus. Methodology: Silver nanoparticles (AgNPs) were prepared after addition of aqueous extract of Salvadora persica leaves. The UV-Vis spectrophotometer, Transmission Electron Microscopy (TEM), zeta potential and Scanning Electron Microscopy (SEM) were employed to detect the particle size and morphology, besides Fourier transform infra-red spectrometer (FTIR) analysis was performed to determine the capping and stabilizing agents in the extract. Antibacterial assay for the biogenic AgNPs was conducted against E. coli and S. aureus. Results: Color change of the mixture from yellow to dark brown is the first indication to AgNPs formation. Furthermore, 420 nm was the peak value for UV-Vis spectroscopy absorption of the mixture. Besides, TEM and SEM micrographs showed wide variability in the diameter of smaller NPs aggregated together with spherical shapes, and zeta sizer showed about 153.3 nm as an average size of nanoparticles. Microbial suppression was noticed for the tested microorganisms. Furthermore, with the help of FTIR analysis, the biomolecules that act as capping and stabilizing agents of AgNPs are proteins and phenols present in the plant extract. Conclusion: Salvadora persica leaves extract act as a reducing and stabilizing agent for the synthesis of AgNPs, keeping its ability to suppress the MDR pathogen.Keywords: green synthesis, FTIR, MDR pathogen, salvadora persica
Procedia PDF Downloads 77534 Winning the Future of Education in Africa through Project Base Learning: How the Implementation of PBL Pedagogy Can Transform Africa’s Educational System from Theory Base to Practical Base in School Curriculum
Authors: Bismark Agbemble
Abstract:
This paper talks about how project-based learning (PBL) is being infused or implemented in the educational sphere of Africa. The paper navigates through the liminal aspects of PBL as a pedagogical approach to bridge the divide between theoretical knowledge and its application within school curriculums. Given that contextualized learning can be embodied, the abstract vehemently discusses that PBL creates an opportunity for students to work on projects that are of academic relevance in their local settings. It presents PBL’s growth of critical thinking, problem-solving, cooperation, and communications, which is vital in getting young citizens to prepare for the 21st-century revolution. In addition, the abstract stresses the possibility that PBL could become a stimulus to creativity and innovation wherein learning becomes motivated from within by intrinsic motivations. The paper advocates for a holistic approach that is based on teacher’s professional development with the provision of adequate infrastructural facilities and resource allocation, thus ensuring the success and sustainability of PBLs in African education systems. In the end, the paper positions this as a transformative educational methodology that has great potential in helping to shape an African generation that is prepared for a great future.Keywords: student centered pedagogy, constructivist learning theory, self-directed learning, active exploration, real world challenges, STEM, 21st century skills, curriculum design, classroom management, project base learning curriculum, global intelligence, social and communication skills, transferable skills, critical thinking, investigatable learning, life skills
Procedia PDF Downloads 59533 Sorption of Cesium Ions from Aqueous Solutions by Magnetic Multi-Walled Carbon Nanotubes Functionalized with Zinc Hexacyanoferrate
Authors: H. H. Lee, D. Y. Kim, S. W. Lee, J. H. Kim, J. H. Kim, W. Z. Oh, S. J. Choi
Abstract:
In recent years, carbon nanotubes (CNTs) have been widely employed as a sorbent for the removal of various metal ions from water due to their unique properties such as large surface area, light mass density, high porous and hollow structure, and strong interaction between the pollutant molecules and CNTs. To apply CNTs to the sorption of Cs+ from aqueous solutions, they must first be functionalized to increase their hydrophilicity and therefore, enhance their applicability to the sorption of polar and relatively low-molecular-weight species. The objective of this study is to investigate the preparation of magnetically separable multi-walled carbon nanotubes (MWCNTs-m) as a sorbents for the removal of Cs+ from aqueous solutions. The MWCNTs-m was prepared using pristine MWCNTs and iron precursor Fe(acac)3. For the selective removal of Cs+ from aqueous solutions, the MWCNTs-m was functionalized with zinc hexacyanoferrate (MWCNTs-m-ZnFC). The physicochemical properties of the synthesized sorbents were characterized with various techniques, including transmission electron microscopy (TEM), specific surface area analysis, Fourier transform-infrared (FT-IR) spectroscopy, and vibrating-sample magnetometer. The MWCNTs-m-ZnFC was found to be easily separated from aqueous solutions by using magnetic field. The MWCNTs-m-ZnFC exhibited a high capacity for sorbing Cs+ from aqueous solutions because of their strong affinity for Cs+ and specific surface area. The sorption ability of the MWCNTs-m-ZnFC for Cs+ was maintained even in the presence of co-existing ions (Na+). Considering these results, the CNT-m-ZnFCs have great potential for use as an effective sorbent for the selective removal of radioactive Cs+ ions from aqueous solutions.Keywords: multi-walled carbon nanotubes, magnetic materials, cesium, zinc hexacyanoferrate, sorption
Procedia PDF Downloads 326532 The Seedlings Pea (Pisum Sativum L.) Have A High Potential To Be Used As A Promising Condidate For The Study Of Phytoremediation Mechanisms Following An Aromatic Polycyclic Hydrocarbon (Hap) Contamination Such As Naphtalene
Authors: Agoun-bahar Salima
Abstract:
The environmental variations to which plants are subjected require them to have a strong capacity for adaptation. Some plants are affected by pollutants and are used as pollution indicators; others have the capacity to block, extract, accumulate, transform or degrade the xenobiotic. The diversity of the legume family includes around 20 000 species and offers opportunities for exploitation through their agronomic, dietary and ecological interests. The lack of data on the bioavailability of the Aromatic Polycyclic Hydrocarbon (PAH) in polluted environments, as their passage in the food chains and on the effects of interaction with other pollutants, justifies priority research on this vast family of hydrocarbons. Naphthalene is a PAH formed from two aromatic rings, it is listed and classified as priority pollutant in the list of 16 PAH by the United States Environmental Protection Agency. The aim of this work was to determinate effect of naphthalene at different concentrations on morphological and physiological responses of pea seedlings. At the same time, the behavior of the pollutant in the soil and its fate at the different parts of plant (roots, stems, leaves and fruits) were also recorded by Gas Chromatography/ Mass Spectrometry (GC / MS). In it controlled laboratory studies, plants exposed to naphthalene were able to grow efficiently. From a quantitative analysis, 67% of the naphthalene was removed from the soil and then found on the leaves of the seedlings in just three weeks of cultivation. Interestingly, no trace of naphthalene or its derivatives were detected on the chromatograms corresponding to the dosage of the pollutant at the fruit level after ten weeks of cultivating the seedlings and this for all the pollutant concentrations used. The pea seedlings seem to tolerate the pollutant when it is applied to the soil. In conclusion, the pea represents an interesting biological model in the study of phytoremediation mechanisms.Keywords: naphtalene, PAH, Pea, phytoremediation, pollution
Procedia PDF Downloads 79531 Promotional Effects of Zn in Cu-Zn/Core-Shell Al-MCM-41 for Selective Catalytic Reduction of NO with NH3: Acidic Properties, NOx Adsorption Properties, and Nature of Copper
Authors: Thidarat Imyen, Paisan Kongkachuichay
Abstract:
Cu-Zn/core-shell Al-MCM-41 catalyst with various copper species, prepared by a combination of three methods—substitution, ion-exchange, and impregnation, was studied for the selective catalytic reduction (SCR) of NO with NH3 at 300 °C for 150 min. In order to investigate the effects of Zn introduction on the nature of the catalyst, Cu/core-shell Al-MCM-41 and Zn/core-shell Al-MCM-41 catalysts were also studied. The roles of Zn promoter in the acidity and the NOx adsorption properties of the catalysts were investigated by in situ Fourier transform infrared spectroscopy (FTIR) of NH3 and NOx adsorption, and temperature-programmed desorption (TPD) of NH3 and NOx. The results demonstrated that the acidity of the catalyst was enhanced by the Zn introduction, as exchanged Zn(II) cations loosely bonded with Al-O-Si framework could create Brønsted acid sites by interacting with OH groups. Moreover, Zn species also provided the additional sites for NO adsorption in the form of nitrite (NO2–) and nitrate (NO3–) species, which are the key intermediates for SCR reaction. In addition, the effect of Zn on the nature of copper was studied by in situ FTIR of CO adsorption and in situ X-ray adsorption near edge structure (XANES). It was found that Zn species hindered the reduction of Cu(II) to Cu(0), resulting in higher Cu(I) species in the Zn promoted catalyst. The Cu-Zn/core-shell Al-MCM-41 exhibited higher catalytic activity compared with that of the Cu/core-shell Al-MCM-41 for the whole reaction time, as it possesses the highest amount of Cu(I) sites, which are responsible for SCR catalytic activity. The Cu-Zn/core-shell Al-MCM-41 catalyst also reached the maximum NO conversion of 100% with the average NO conversion of 76 %. The catalytic performance of the catalyst was further improved by using Zn promoter in the form of ZnO instead of reduced Zn species. The Cu-ZnO/core-shell Al-MCM-41 catalyst showed better catalytic performance with longer working reaction time, and achieved the average NO conversion of 81%.Keywords: Al-MCM-41, copper, nitrogen oxide, selective catalytic reduction, zinc
Procedia PDF Downloads 308530 Facile Fabrication of TiO₂NT/Fe₂O₃@Ag₂CO₃ Nanocomposite and Its Highly Efficient Visible Light Photocatalytic and Antibacterial Activity
Authors: Amal A. Al-Kahlawy, Heba H. El-Maghrabi
Abstract:
Due to the increasing need to environment protection in real time need to energize new materials are under extensive investigations. Between others, TiO2 nanotubes (TNTs) nanocomposite with iron oxide and silver carbonate, are promising alternatives as high-efficiency visible light photocatalyst due to their unique properties and their superior charge transport properties. Our efforts in this domain aim the construction of novel nanocomposite of TiO2NT/Fe2O3@Ag2CO3. The structure, surface morphology, chemical composition and optical properties were characterized by X-ray diffraction (XRD), Raman, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and UV–vis diffuse reflectance spectroscopy (DRS). XRD results confirm the interaction of TiO2-NT with iron oxide. This novel nanocomposite shows remarkably enhanced performance for phenol compounds photodegradation. The experimental data shows a promising photocatalytic activity. In particular, a maximum value of 450 mg/g was removed within 60 min at solar light irradiation with degradation efficiency of 99.5%. The high photocatalytic activity of the nanocomposite is found to be related to the increased adsorption toward chemical species, enhanced light absorption and efficient charge separation and transfer. Finally, the designed TiO2NT/Fe2O3@Ag2CO3 nanocomposite has a great degree of sustainability and could has a potential application for the industrial treatment of wastewater containing toxic organic materials.Keywords: nanocomposite, photocatalyst, solar energy, titanium dioxide nanotubes
Procedia PDF Downloads 250529 The Effect of Simultaneous Doping of Silicate Bioglass with Alkaline and Alkaline-Earth Elements on Biological Behavior
Authors: Tannaz Alimardani, Amirhossein Moghanian, Morteza Elsa
Abstract:
Bioactive glasses (BGs) are a group of surface-reactive biomaterials used in clinical applications as implants or filler materials in the human body to repair and replace diseased or damaged bone. Sol-gel technique was employed to prepare a SiO₂-CaO-P₂O₅ glass with a nominal composition of 58S BG with the addition of Sr and Li modifiers which imparts special properties to the BG. The effect of simultaneous addition of Sr and Li on bioactivity and biocompatibility, proliferation, alkaline phosphatase (ALP) activity of osteoblast cell line MC3T3-E1 and antibacterial property against methicillin-resistant Staphylococcus aureus (MRSA) bacteria were examined. BGs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy before and after soaking the samples in the simulated body fluid (SBF) for different time intervals to characterize the formation of hydroxyapatite (HA) formed on the surface of BGs. Structural characterization indicated that the simultaneous presence of 5% Sr and 5% Li in 58S-BG composition not only did not retard HA formation because of the opposite effect of Sr and Li of the dissolution of BG in the SBF, but also stimulated the differentiation and proliferation of MC3T3-E1s. Moreover, the presence of Sr and Li on the dissolution of the ions resulted in an increase in the mean number of DAPI-labeled nuclei which was in good agreement with the live/dead assay. The result of antibacterial tests revealed that Sr and Li-substituted 58S bioactive glass exhibited a potential antibacterial effect against MRSA bacteria. Because of optimal proliferation and ALP activity of MC3T3-E1cells, proper bioactivity and high antibacterial potential against MRSA, BG-5/5 is suggested as a multifunctional candidate for bone tissue engineering.Keywords: alkaline, alkaline earth, bioglass, co-doping, ion release
Procedia PDF Downloads 232528 Examining the Notion of Duality: The Interaction between Neo-Academicism and University Teachers' Agency within the Performativity Context Defined by Public Managerialism
Authors: Tien Hui Chiang
Abstract:
Along with the predominant influence of neo-liberalism, public managerialism is viewed as a panacea for curing the institutionalized weakness caused by the monopoly of the public sector. In the name of efficiency, its outcome-led approach acquires a legitimate status and, in turn, it transforms into the discourse of performativity, reformulating the souls of individual members into the form of docile bodies who are willing to demonstrate their own ability in organizational contributions. The evaluation system and the organizational reconstruction are viewed as the crucial means for achieving this mission. Inevitably, university teachers are confined within a rigid and bureaucratic setting, in which they do not have too much latitude but are subject to the commands of senior administrators. However, the notion of duality highlights the interaction between structural constraints and agency. If the actor discovers the rules or properties of social structure, he/she is able to transform structural constraints into resources for developing creative actions, conceptualized as an agency. This study was designed for examining how duality operates within this hierarchical arrangement formed by public managerialism. Fourteen informants were interviewed from February to August 2014. The findings show that the evaluation system created the culture of neo-academicalism, addressing excellence in research and, in turn, motivating academic-oriented teachers. This correspondence provided a gateway for them to win honor, dignity, and prestige in groups. However, unlike the concept of duality, this agency was operating within the institutionalized context, regulated by structural constraint. Furthermore, complying with the rule/property of social structure was able to secure their advantages.Keywords: public managerialism, social discourse, neo-academicalism, duality, structural constraint, agency
Procedia PDF Downloads 241527 Role of Cellulose Fibers in Tuning the Microstructure and Crystallographic Phase of α-Fe₂O₃ and α-FeOOH Nanoparticles
Authors: Indu Chauhan, Bhupendra S. Butola, Paritosh Mohanty
Abstract:
It is very well known that properties of material changes as their size approach to nanoscale level due to the high surface area to volume ratio. However, in last few decades, a tenet ‘structure dictates function’ is quickly being adopted by researchers working with nanomaterials. The design and exploitation of nanoparticles with tailored shape and size has become one of the primary goals of materials science researchers to expose the properties of nanostructures. To date, various methods, including soft/hard template/surfactant assisted route hydrothermal reaction, seed mediated growth method, capping molecule-assisted synthesis, polyol process, etc. have been adopted to synthesize the nanostructures with controlled size and shape and monodispersity. However controlling the shape and size of nanoparticles is an ultimate challenge of modern material research. In particular, many efforts have been devoted to rational and skillful control of hierarchical and complex nanostructures. Thus in our research work, role of cellulose in manipulating the nanostructures has been discussed. Nanoparticles of α-Fe₂O₃ (diameter ca. 15 to 130 nm) were immobilized on the cellulose fiber surface by a single step in situ hydrothermal method. However, nanoflakes of α-FeOOH having thickness ca. ~25 nm and length ca. ~250 nm were obtained by the same method in absence of cellulose fibers. A possible nucleation and growth mechanism of the formation of nanostructures on cellulose fibers have been proposed. The covalent bond formation between the cellulose fibers and nanostructures has been discussed with supporting evidence from the spectroscopic and other analytical studies such as Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The role of cellulose in manipulating the nanostructures has been discussed.Keywords: cellulose fibers, α-Fe₂O₃, α-FeOOH, hydrothermal, nanoflakes, nanoparticles
Procedia PDF Downloads 154