Search results for: tall buildings
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1821

Search results for: tall buildings

831 Regulating Green Roofs: A Review of the Relation between Current International Regulations and Economic, Environmental and Social Effects

Authors: Marianna Nigra, Maicol Negrello

Abstract:

Efficiency, productivity, and sustainability are important factors for structure and the application of processes in green building. Various previous studies have addressed efficiency, productivity, and sustainability separately. This research study aims to investigate the implications of these three factors taking together. Frequency analysis and the ranking techniques are carried out to explore the connection between these factors. The interconnection matrix has been developed and functional grouping is made based upon data from expert opinion and field professionals. The existence of a relationship, the type of relationship and the scaled impact have been drawn. Additionally, a system diagram has been developed to show the variable correlation. The results of expert opinion show that efficiency, productivity, and sustainability have a stronger impact on green buildings.

Keywords: green roof regulation, architecture, climate adaptation, resilience, innovation management

Procedia PDF Downloads 89
830 Numerical Study of Fiber Bragg Grating Sensor: Longitudinal and Transverse Detection of Temperature and Strain

Authors: K. Khelil, H. Ammar, K. Saouchi

Abstract:

Fiber Bragg Grating (FBG) structure is an periodically modulated optical fiber. It acts as a selective filter of wavelength whose reflected peak is called Bragg wavelength and it depends on the period of the fiber and the refractive index. The simulation of FBG is based on solving the Coupled Mode Theory equation by using the Transfer Matrix Method which is carried out using MATLAB. It is found that spectral reflectivity is shifted when the change of temperature and strain is uniform. Under non-uniform temperature or strain perturbation, the spectrum is both shifted and destroyed. In case of transverse loading, reflectivity spectrum is split into two peaks, the first is specific to X axis, and the second belongs to Y axis. FBGs are used in civil engineering to detect perturbations applied to buildings.

Keywords: Bragg wavelength, coupled mode theory, optical fiber, temperature measurement

Procedia PDF Downloads 480
829 Energy Resilience in the Sustainable Built Environment: the Use of Biogas to Reduce Vulnerabilities and Risks

Authors: Janaina Camile Pasqual Lofhagen, David Savarese, Veronika Vazhnik

Abstract:

The built environment is considered as a key element in transitioning to clean energy, needed to create resilient buildings and cities, enhance their adaptability to changes, and pursue energy saving. For such energy transition, this paper presents biogas as one of the sustainable sources of energy, as it is produced from organic materials often available in both urban and rural areas and can be converted into electrical and thermal energy, or into vehicular energies fuel. The resilience benefits of this fuel is being a localized alternative energy, and also provides tangible benefits for water, air, and soil quality. Through bibliographic and empirical research, this study analyzed the biogas potential and applications in Brazil and in the U.S. The results indicated that biogas emits 85% less CO2 to the atmosphere compared to diesel and could supply 40% of domestic electricity demand and 70% of diesel consumption in Brazil, with a similar scenario for the U.S.

Keywords: resilience, sustainability, built environment, energy transition, biogas.

Procedia PDF Downloads 76
828 Construction Sustainability Improvement through Using Recycled Aggregates in Concrete Production

Authors: Zhiqiang Zhu, Khalegh Barati, Xuesong Shen

Abstract:

Due to the energy consumption caused by the construction industry, the public is paying more and more attention to the sustainability of the buildings. With the advancement of research on recycled aggregates, it has become possible to replace natural aggregates with recycled aggregates and to achieve a reduction in energy consumption of materials during construction. The purpose of this paper is to quantitatively compare the emergy consumption of natural aggregate concrete (NAC) and recycled aggregate concrete (RAC). To do so, the emergy analysis method is adopted. Using this technique, it can effectively analyze different forms of energy and substance. The main analysis object is the direct and indirect emergy consumption of the stages in concrete production. Therefore, for indirect energy, consumption of production machinery and transportation vehicle also need to be considered. Finally, the emergy values required to produce the two concrete types are compared to analyze whether the RAC can reduce emergy consumption.

Keywords: sustainable construction, NAC, RAC, emergy, concrete

Procedia PDF Downloads 128
827 A Geographical Information System Supported Method for Determining Urban Transformation Areas in the Scope of Disaster Risks in Kocaeli

Authors: Tayfun Salihoğlu

Abstract:

Following the Law No: 6306 on Transformation of Disaster Risk Areas, urban transformation in Turkey found its legal basis. In the best practices all over the World, the urban transformation was shaped as part of comprehensive social programs through the discourses of renewing the economic, social and physical degraded parts of the city, producing spaces resistant to earthquakes and other possible disasters and creating a livable environment. In Turkish practice, a contradictory process is observed. In this study, it is aimed to develop a method for better understanding of the urban space in terms of disaster risks in order to constitute a basis for decisions in Kocaeli Urban Transformation Master Plan, which is being prepared by Kocaeli Metropolitan Municipality. The spatial unit used in the study is the 50x50 meter grids. In order to reflect the multidimensionality of urban transformation, three basic components that have spatial data in Kocaeli were identified. These components were named as 'Problems in Built-up Areas', 'Disaster Risks arising from Geological Conditions of the Ground and Problems of Buildings', and 'Inadequacy of Urban Services'. Each component was weighted and scored for each grid. In order to delimitate urban transformation zones Optimized Outlier Analysis (Local Moran I) in the ArcGIS 10.6.1 was conducted to test the type of distribution (clustered or scattered) and its significance on the grids by assuming the weighted total score of the grid as Input Features. As a result of this analysis, it was found that the weighted total scores were not significantly clustering at all grids in urban space. The grids which the input feature is clustered significantly were exported as the new database to use in further mappings. Total Score Map reflects the significant clusters in terms of weighted total scores of 'Problems in Built-up Areas', 'Disaster Risks arising from Geological Conditions of the Ground and Problems of Buildings' and 'Inadequacy of Urban Services'. Resulting grids with the highest scores are the most likely candidates for urban transformation in this citywide study. To categorize urban space in terms of urban transformation, Grouping Analysis in ArcGIS 10.6.1 was conducted to data that includes each component scores in significantly clustered grids. Due to Pseudo Statistics and Box Plots, 6 groups with the highest F stats were extracted. As a result of the mapping of the groups, it can be said that 6 groups can be interpreted in a more meaningful manner in relation to the urban space. The method presented in this study can be magnified due to the availability of more spatial data. By integrating with other data to be obtained during the planning process, this method can contribute to the continuation of research and decision-making processes of urban transformation master plans on a more consistent basis.

Keywords: urban transformation, GIS, disaster risk assessment, Kocaeli

Procedia PDF Downloads 106
826 Expected Present Value of Losses in the Computation of Optimum Seismic Design Parameters

Authors: J. García-Pérez

Abstract:

An approach to compute optimum seismic design parameters is presented. It is based on the optimization of the expected present value of the total cost, which includes the initial cost of structures as well as the cost due to earthquakes. Different types of seismicity models are considered, including one for characteristic earthquakes. Uncertainties are included in some variables to observe the influence on optimum values. Optimum seismic design coefficients are computed for three different structural types representing high, medium and low rise buildings, located near and far from the seismic sources. Ordinary and important structures are considered in the analysis. The results of optimum values show an important influence of seismicity models as well as of uncertainties on the variables.

Keywords: importance factors, optimum parameters, seismic losses, seismic risk, total cost

Procedia PDF Downloads 271
825 IoT: State-of-the-Art and Future Directions

Authors: Bashir Abdu Muzakkari, Aisha Umar Sulaiman, Mohamed Afendee Muhamad, Sanah Abdullahi Muaz

Abstract:

The field of the Internet of Things (IoT) is rapidly expanding and has the potential to completely change how we work, live, and interact with the world. The Internet of Things (IoT) is the term used to describe a network of networked physical objects, including machinery, vehicles, and buildings, which are equipped with electronics, software, sensors, and network connectivity. This review paper aims to provide a comprehensive overview of the current state of IoT, including its definition, key components, development history, and current applications. The paper will also discuss the challenges and opportunities presented by IoT, as well as its potential impact on various industries, such as healthcare, agriculture, and transportation. In addition, this paper will highlight the ethical and security concerns associated with IoT and the need for effective solutions to address these challenges. The paper concludes by highlighting the prospects of IoT and the directions for future research in this field.

Keywords: internet of things, IoT, sensors, network

Procedia PDF Downloads 155
824 Research on Architectural Steel Structure Design Based on BIM

Authors: Tianyu Gao

Abstract:

Digital architectures use computer-aided design, programming, simulation, and imaging to create virtual forms and physical structures. Today's customers want to know more about their buildings. They want an automatic thermostat to learn their behavior and contact them, such as the doors and windows they want to open with a mobile app. Therefore, the architectural display form is more closely related to the customer's experience. Based on the purpose of building informationization, this paper studies the steel structure design based on BIM. Taking the Zigan office building in Hangzhou as an example, it is divided into four parts, namely, the digital design modulus of the steel structure, the node analysis of the steel structure, the digital production and construction of the steel structure. Through the application of BIM software, the architectural design can be synergized, and the building components can be informationized. Not only can the architectural design be feedback in the early stage, but also the stability of the construction can be guaranteed. In this way, the monitoring of the entire life cycle of the building and the meeting of customer needs can be realized.

Keywords: digital architectures, BIM, steel structure, architectural design

Procedia PDF Downloads 176
823 University Building: Discussion about the Effect of Numerical Modelling Assumptions for Occupant Behavior

Authors: Fabrizio Ascione, Martina Borrelli, Rosa Francesca De Masi, Silvia Ruggiero, Giuseppe Peter Vanoli

Abstract:

The refurbishment of public buildings is one of the key factors of energy efficiency policy of European States. Educational buildings account for the largest share of the oldest edifice with interesting potentialities for demonstrating best practice with regards to high performance and low and zero-carbon design and for becoming exemplar cases within the community. In this context, this paper discusses the critical issue of dealing the energy refurbishment of a university building in heating dominated climate of South Italy. More in detail, the importance of using validated models will be examined exhaustively by proposing an analysis on uncertainties due to modelling assumptions mainly referring to the adoption of stochastic schedules for occupant behavior and equipment or lighting usage. Indeed, today, the great part of commercial tools provides to designers a library of possible schedules with which thermal zones can be described. Very often, the users do not pay close attention to diversify thermal zones and to modify or to adapt predefined profiles, and results of designing are affected positively or negatively without any alarm about it. Data such as occupancy schedules, internal loads and the interaction between people and windows or plant systems, represent some of the largest variables during the energy modelling and to understand calibration results. This is mainly due to the adoption of discrete standardized and conventional schedules with important consequences on the prevision of the energy consumptions. The problem is surely difficult to examine and to solve. In this paper, a sensitivity analysis is presented, to understand what is the order of magnitude of error that is committed by varying the deterministic schedules used for occupation, internal load, and lighting system. This could be a typical uncertainty for a case study as the presented one where there is not a regulation system for the HVAC system thus the occupant cannot interact with it. More in detail, starting from adopted schedules, created according to questioner’ s responses and that has allowed a good calibration of energy simulation model, several different scenarios are tested. Two type of analysis are presented: the reference building is compared with these scenarios in term of percentage difference on the projected total electric energy need and natural gas request. Then the different entries of consumption are analyzed and for more interesting cases also the comparison between calibration indexes. Moreover, for the optimal refurbishment solution, the same simulations are done. The variation on the provision of energy saving and global cost reduction is evidenced. This parametric study wants to underline the effect on performance indexes evaluation of the modelling assumptions during the description of thermal zones.

Keywords: energy simulation, modelling calibration, occupant behavior, university building

Procedia PDF Downloads 128
822 Influence of Orientation in Complex Building Architecture in Various Climatic Regions in Winter

Authors: M. Alwetaishi, Giulia Sonetti

Abstract:

It is architecturally accepted that building form and design is considered as one of the most important aspects in affecting indoor temperature. The total area of building plan might be identical, but the design will have a major influence on the total area of external walls. This will have a clear impact on the amount of heat exchange with outdoor. Moreover, it will affect the position and area of glazing system. This has not received enough consideration in research by the specialists, since most of the publications are highlighting the impact of building envelope in terms of physical heat transfer in buildings. This research will investigate the impact of orientation of various building forms in various climatic regions. It will be concluded that orientation and glazing to wall ratio were recognized to be the most effective variables despite the shape of the building. However, linear ad radial forms were found more appropriate shapes almost across the continent.

Keywords: architectural building design, building form, building design in different climate, indoor air temperature

Procedia PDF Downloads 389
821 Enhancing Efficiency of Building through Translucent Concrete

Authors: Humaira Athar, Brajeshwar Singh

Abstract:

Generally, the brightness of the indoor environment of buildings is entirely maintained by the artificial lighting which has consumed a large amount of resources. It is reported that lighting consumes about 19% of the total generated electricity which accounts for about 30-40% of total energy consumption. One possible way is to reduce the lighting energy by exploiting sunlight either through the use of suitable devices or energy efficient materials like translucent concrete. Translucent concrete is one such architectural concrete which allows the passage of natural light as well as artificial light through it. Several attempts have been made on different aspects of translucent concrete such as light guiding materials (glass fibers, plastic fibers, cylinder etc.), concrete mix design and manufacturing methods for use as building elements. Concerns are, however, raised on various related issues such as poor compatibility between the optical fibers and cement paste, unaesthetic appearance due to disturbance occurred in the arrangement of fibers during vibration and high shrinkage in flowable concrete due to its high water/cement ratio. Need is felt to develop translucent concrete to meet the requirement of structural safety as OPC concrete with the maximized saving in energy towards the power of illumination and thermal load in buildings. Translucent concrete was produced using pre-treated plastic optical fibers (POF, 2mm dia.) and high slump white concrete. The concrete mix was proportioned in the ratio of 1:1.9:2.1 with a w/c ratio of 0.40. The POF was varied from 0.8-9 vol.%. The mechanical properties and light transmission of this concrete were determined. Thermal conductivity of samples was measured by a transient plate source technique. Daylight illumination was measured by a lux grid method as per BIS:SP-41. It was found that the compressive strength of translucent concrete increased with decreasing optical fiber content. An increase of ~28% in the compressive strength of concrete was noticed when fiber was pre-treated. FE-SEM images showed little-debonded zone between the fibers and cement paste which was well supported with pull-out bond strength test results (~187% improvement over untreated). The light transmission of concrete was in the range of 3-7% depending on fiber spacing (5-20 mm). The average daylight illuminance (~75 lux) was nearly equivalent to the criteria specified for illumination for circulation (80 lux). The thermal conductivity of translucent concrete was reduced by 28-40% with respect to plain concrete. The thermal load calculated by heat conduction equation was ~16% more than the plain concrete. Based on Design-Builder software, the total annual illumination energy load of a room using one side translucent concrete was 162.36 kW compared with the energy load of 249.75 kW for a room without concrete. The calculated energy saving on an account of the power of illumination was ~25%. A marginal improvement towards thermal comfort was also noticed. It is concluded that the translucent concrete has the advantages of the existing concrete (load bearing) with translucency and insulation characteristics. It saves a significant amount of energy by providing natural daylight instead of artificial power consumption of illumination.

Keywords: energy saving, light transmission, microstructure, plastic optical fibers, translucent concrete

Procedia PDF Downloads 108
820 Reliability of Cores Test Result at Elevated Temperature in Case of High Strength Concrete (HSC)

Authors: Waqas Ali

Abstract:

Concrete is broadly used as a structural material in the construction of buildings. When the concrete is exposed to elevated temperature, its strength evaluation is very necessary in the existing structure. In this study, the effect of temperature and the reliability of the core test has been evaluated. For this purpose, the cylindrical cores were extracted from High strength concrete (HSC) specimens that were exposed to the temperature ranging from 300 ℃ to 900 ℃ with a constant duration of 4 hr. This study compares the difference between the standard heated cylinders and the cores taken from them after curing of 90 days. The difference of cylindrical control and binary mix samples and extracted cores revealed that there is 12.19 and 12.38% difference at 300℃, while this difference was found to increase up to 12.89%, 13.03% at 500 ℃. Furthermore, this value is recorded as 12.99%, 13.57% and 14.40%, 14.38% at 700 ℃ and 900 ℃, respectively. A total of four equations were developed through a regression model for the prediction of the strength of concrete for both standard cylinders and extracted cores whose R square values were 0.9733, 0.9627 and 0.9473, 0.9452, respectively.

Keywords: high strength, temperature, core, reliability

Procedia PDF Downloads 60
819 Static Response of Homogeneous Clay Stratum to Imposed Structural Loads

Authors: Aaron Aboshio

Abstract:

Numerical study of the static response of homogeneous clay stratum considering a wide range of cohesion and subject to foundation loads is presented. The linear elastic–perfectly plastic constitutive relation with the von Mises yield criterion were utilised to develop a numerically cost effective finite element model for the soil while imposing a rigid body constrain to the foundation footing. From the analyses carried out, estimate of the bearing capacity factor, Nc as well as the ultimate load-carrying capacities of these soils, effect of cohesion on foundation settlements, stress fields and failure propagation were obtained. These are consistent with other findings in the literature and hence can be a useful guide in design of safe foundations in clay soils for buildings and other structure.

Keywords: bearing capacity factors, finite element method, safe bearing pressure, structure-soil interaction

Procedia PDF Downloads 282
818 Friendly Public Spaces in Iran

Authors: Bibi Somayeh Aliakbari, Niknaz Kachooei, Fatemeh Amiri Najafabadi

Abstract:

According to the results of contemporary urbanism, social living moved into buildings and the quality of urban space has been declining. But still, there are life in open public space and it is one of reason attendance and activities of people in open public spaces.The purpose of this research is finding reason creation friendly public space in urban spaces and also use these in new urban spaces.The research methodology consisted of a qualitative model based on observation and graphical analysis. In this paper case study is public space historical, moderns in urban scales and local scales in Iran.This paper shows that Existence of friendly public space in cities cause is attendance and activities of people in open public spaces that it is reason the revitalization of public open spaces in cities.

Keywords: public space, public open space, friendly public space, Iran

Procedia PDF Downloads 560
817 Recommending Appropriate Type of Green Roof Considering Urban Typology and Climatic Zoning in Iran

Authors: Ghazal Raheb

Abstract:

Population growth in big cities of Iran has led to limitation of land resources, more consumption of non-renewable sources of energy and many environmental problems. Emerging of overbuilt urban areas and decreasing amount of green spaces cause the appearance of an undesirable landscape in the cities. Green roof technology is a solution to improve environmental concerns in urban areas which combines green spaces with buildings as the private or semi-private spaces. Successful implementation in different areas definitely depends on accommodation of green roof type with the environment and urban and building typology in Iran. This paper is aiming to provide some recommendation for selecting appropriate type of green roof and executive solutions considering to climatic zoning and urban situation in Iran. Two main aspects which have been considered are environmental and urban typology factors.

Keywords: green roof, urban typology, climate zone, landscape

Procedia PDF Downloads 482
816 Approaches to Eco-Friendly Architecture: Modules Assembled Specially to Conserve

Authors: Arshleen Kaur, Sarang Barbarwar, Madhusudan Hamirwasia

Abstract:

Sustainable architecture is going to be the soul of construction in the near future, with building material as a vital link connecting sustainability to construction. The priority in Architecture has shifted from having a lesser negative footprint to having a positive footprint on Earth. The design has to be eco-centric as well as anthro-centric so as to attain its true purpose. Brick holds the same importance like a cell holds in one’s body. The study focuses on this basic building block with an experimental material and technique known as Module Assembled Specially to Conserve (MASC). The study explores the usage and construction of these modules in the construction of buildings. It also shows the impact assessment of the modules on the environment and its significance in reducing the carbon footprint of the construction industry. The aspects like cost-effectiveness, ease of working and reusability of MASC have been studied as well.

Keywords: anthro-centric, carbon footprint, eco-centric, sustainable

Procedia PDF Downloads 161
815 Application of Sorptive Passive Panels for Reducing Indoor Formaldehyde Level: Effect of Environmental Conditions

Authors: Mitra Bahri, Jean Leopold Kabambi, Jacqueline Yakobi-Hancock, William Render, Stephanie So

Abstract:

Reducing formaldehyde concentration in residential buildings is an important challenge, especially during the summer. In this study, a ceiling tile was used as a sorptive passive panel for formaldehyde removal. The performance of this passive panel was evaluated under different environmental conditions. The results demonstrated that the removal efficiency is comprised between 40% and 71%. Change in the level of relative humidity (30%, 50%, and 75%) had a slight positive effect on the sorption capacity. However, increase in temperature from 21 °C to 26 °C led to approximately 7% decrease in the average formaldehyde removal performance. GC/MS and HPLC analysis revealed the formation of different by-products at low concentrations under extreme environmental conditions. These findings suggest that the passive panel selected for this study holds the potential to be used for formaldehyde removal under various conditions.

Keywords: formaldehyde, indoor air quality, passive panel, removal efficiency, sorption

Procedia PDF Downloads 184
814 Urban Seismic Risk Reduction in Algeria: Adaptation and Application of the RADIUS Methodology

Authors: Mehdi Boukri, Mohammed Naboussi Farsi, Mounir Naili, Omar Amellal, Mohamed Belazougui, Ahmed Mebarki, Nabila Guessoum, Brahim Mezazigh, Mounir Ait-Belkacem, Nacim Yousfi, Mohamed Bouaoud, Ikram Boukal, Aboubakr Fettar, Asma Souki

Abstract:

The seismic risk to which the urban centres are more and more exposed became a world concern. A co-operation on an international scale is necessary for an exchange of information and experiments for the prevention and the installation of action plans in the countries prone to this phenomenon. For that, the 1990s was designated as 'International Decade for Natural Disaster Reduction (IDNDR)' by the United Nations, whose interest was to promote the capacity to resist the various natural, industrial and environmental disasters. Within this framework, it was launched in 1996, the RADIUS project (Risk Assessment Tools for Diagnosis of Urban Areas Against Seismic Disaster), whose the main objective is to mitigate seismic risk in developing countries, through the development of a simple and fast methodological and operational approach, allowing to evaluate the vulnerability as well as the socio-economic losses, by probable earthquake scenarios in the exposed urban areas. In this paper, we will present the adaptation and application of this methodology to the Algerian context for the seismic risk evaluation in urban areas potentially exposed to earthquakes. This application consists to perform an earthquake scenario in the urban centre of Constantine city, located at the North-East of Algeria, which will allow the building seismic damage estimation of this city. For that, an inventory of 30706 building units was carried out by the National Earthquake Engineering Research Centre (CGS). These buildings were digitized in a data base which comprises their technical information by using a Geographical Information system (GIS), and then they were classified according to the RADIUS methodology. The study area was subdivided into 228 meshes of 500m on side and Ten (10) sectors of which each one contains a group of meshes. The results of this earthquake scenario highlights that the ratio of likely damage is about 23%. This severe damage results from the high concentration of old buildings and unfavourable soil conditions. This simulation of the probable seismic damage of the building and the GIS damage maps generated provide a predictive evaluation of the damage which can occur by a potential earthquake near to Constantine city. These theoretical forecasts are important for decision makers in order to take the adequate preventive measures and to develop suitable strategies, prevention and emergency management plans to reduce these losses. They can also help to take the adequate emergency measures in the most impacted areas in the early hours and days after an earthquake occurrence.

Keywords: seismic risk, mitigation, RADIUS, urban areas, Algeria, earthquake scenario, Constantine

Procedia PDF Downloads 244
813 An Investigation on Electric Field Distribution around 380 kV Transmission Line for Various Pylon Models

Authors: C. F. Kumru, C. Kocatepe, O. Arikan

Abstract:

In this study, electric field distribution analyses for three pylon models are carried out by a Finite Element Method (FEM) based software. Analyses are performed in both stationary and time domains to observe instantaneous values along with the effective ones. Considering the results of the study, different line geometries is considerably affecting the magnitude and distribution of electric field although the line voltages are the same. Furthermore, it is observed that maximum values of instantaneous electric field obtained in time domain analysis are quite higher than the effective ones in stationary mode. In consequence, electric field distribution analyses should be individually made for each different line model and the limit exposure values or distances to residential buildings should be defined according to the results obtained.

Keywords: electric field, energy transmission line, finite element method, pylon

Procedia PDF Downloads 712
812 The Impact of Road Development on the Emergence of the Commercial Area

Authors: Ida Bagus Ilham Malik, Bart Julian Dewancker

Abstract:

The road construction will affect the development of the region along the new road. With this principle, the government developed Antasari Street in order to become one of the main economic corridors for the city of Bandar Lampung. Since its construction in 1997, Antasari Street developed into one of the main economic corridors that greatly affect the economic condition of the city, in addition to other economic corridors such as Pagar Alam Street and Teuku Umar Street. The data shows that the construction of roads affects economic development in the corridor that with the advent of commercial buildings in large quantities. Among them are shops, office, restaurants, and a car showroom. This study proves that the road construction could accelerate the economic progress of the road corridor, especially in the construction and development of urban roads.

Keywords: road development, commercial area, Antasari street, Bandar Lampung

Procedia PDF Downloads 275
811 Development of an Interface between BIM-model and an AI-based Control System for Building Facades with Integrated PV Technology

Authors: Moser Stephan, Lukasser Gerald, Weitlaner Robert

Abstract:

Urban structures will be used more intensively in the future through redensification or new planned districts with high building densities. Especially, to achieve positive energy balances like requested for Positive Energy Districts (PED) the single use of roofs is not sufficient for dense urban areas. However, the increasing share of window significantly reduces the facade area available for use in PV generation. Through the use of PV technology at other building components, such as external venetian blinds, onsite generation can be maximized and standard functionalities of this product can be positively extended. While offering advantages in terms of infrastructure, sustainability in the use of resources and efficiency, these systems require an increased optimization in planning and control strategies of buildings. External venetian blinds with PV technology require an intelligent control concept to meet the required demands such as maximum power generation, glare prevention, high daylight autonomy, avoidance of summer overheating but also use of passive solar gains in wintertime. Today, geometric representation of outdoor spaces and at the building level, three-dimensional geometric information is available for planning with Building Information Modeling (BIM). In a research project, a web application which is called HELLA DECART was developed to provide this data structure to extract the data required for the simulation from the BIM models and to make it usable for the calculations and coupled simulations. The investigated object is uploaded as an IFC file to this web application and includes the object as well as the neighboring buildings and possible remote shading. This tool uses a ray tracing method to determine possible glare from solar reflections of a neighboring building as well as near and far shadows per window on the object. Subsequently, an annual estimate of the sunlight per window is calculated by taking weather data into account. This optimized daylight assessment per window provides the ability to calculate an estimation of the potential power generation at the integrated PV on the venetian blind but also for the daylight and solar entry. As a next step, these results of the calculations as well as all necessary parameters for the thermal simulation can be provided. The overall aim of this workflow is to advance the coordination between the BIM model and coupled building simulation with the resulting shading and daylighting system with the artificial lighting system and maximum power generation in a control system. In the research project Powershade, an AI based control concept for PV integrated façade elements with coupled simulation results is investigated. The developed automated workflow concept in this paper is tested by using an office living lab at the HELLA company.

Keywords: BIPV, building simulation, optimized control strategy, planning tool

Procedia PDF Downloads 91
810 Structural Rehabilitation, Retrofitting and Strengthening of Reinforced Concrete Structures

Authors: Manish Kumar

Abstract:

Reinforced cement concrete is getting extensively used for construction of different type of structures for the last one century. During this period, we have constructed many structures like buildings, bridges, industrial structures, pavement, water tanks etc. using this construction material. These structures have been created with huge investment of resources. It is essential to maintain those structures in functional condition. Since deterioration in RCC Structures is a common and natural phenomenon it is required to have a detailed plan, methodology for structural repair and rehabilitation shall be in place for dealing such issues. It is important to know exact reason of distress, type of distress and correct method of repair concrete structures. The different methods of repair are described in paper according to distress category which can be refereed for repair. Major finding of the study is that to protect our structure we need to have maintenance frequency and correct material to be chosen for repair. Also workmanship during repair needs to be taken utmost care for quality repair.

Keywords: deterioration, functional condition, reinforced cement concrete, resources

Procedia PDF Downloads 238
809 Impact Load Response of Light Rail Train Rail Guard

Authors: Eyob Hundessa Gose

Abstract:

Nowadays, it is obviously known that the construction of different infrastructures is one measurement of the development of a country; infrastructures like buildings, bridges, roads, and railways are among them. In the capital city of Ethiopia, the so-called Addis Ababa, the Light Rail Train (LRT), was built Four years ago to satisfy the demand for transportation among the people in the city. The lane of the Train and vehicle separation Media was built with a curb and rail guard installation system to show the right-of-way and for protection of vehicles entering the Train Lane, but this Rail guard fails easily when impacted by vehicles and found that the impact load response of the Rail guard is weak and the Rail guard cannot withstand impact load. This study investigates the effect of variation of parameters such as vehicle speed and different mass effects and assesses the failure mode FRP and Steel reinforcement bar rail guards of deflection and damage state.

Keywords: impact load, fiber reinforced polymer, rail guard, LS-DYNA

Procedia PDF Downloads 44
808 High Strength Steel Thin-Walled Cold-Formed Profiles Manufactured for Automated Rack Supported Warehouses

Authors: A. Natali, F. V. Lippi, F. Morelli, W. Salvatore, J. H. M. De Paula Filho, P. Pol

Abstract:

Automated Rack Supported Warehouses (ARSWs) are storage buildings whose load-bearing structure is made of the same steel racks where goods are stocked. These racks are made of cold formed elements, and the main supporting structure is repeated several times along the length of the building, resulting in a huge quantity of steel. The possibility of using high strength steel to manufacture the traditional cold-formed profiles used for ARSWs is numerically investigated, with the aim of reducing the necessary steel quantity but guaranteeing optimal structural performance levels.

Keywords: steel racks, automated rack supported warehouse, thin-walled cold-formed elements, high strength steel, structural optimization

Procedia PDF Downloads 135
807 Agriroofs and Agriwalls: Applications of Food Production in Green Roofs and Green Walls

Authors: Eman M. Elmazek

Abstract:

Green roofs and walls are a rising technology in the global sustainable architectural industry. The idea takes great steps towards the future of sustainable design due to its many benefits. However, there are many barriers and constraints. Economical, structural, and knowledge barriers prevent the spread of the usage of green roofs and living walls. Understanding the benefits and expanding them will spread the idea. Benefits provided by these green spots interrupt and maintain the current urban cover. Food production is one of the benefits of green roofs. It can save money and energy spent in food transportation. The goal of this paper is to put a better understanding of implementing green systems. The paper aims to identify gains versus challenges facing the technology. It surveys with case studies buildings with green roofs and walls used for food production.

Keywords: green roof, green walls, urban farming, roof herb garden

Procedia PDF Downloads 504
806 Effectiveness of Radon Remedial Action Implemented in a School on the Island of Ischia

Authors: F. Loffredo, M. Quarto, M. Pugliese, A. Mazzella, F. De Cicco, V. Roca

Abstract:

The aim of this study is to evaluate the efficacy of radon remedial action in a school on the Ischia island, South Italy, affected by indoor radon concentration higher than the value of 500 Bq/m3. This value is the limit imposed by the Italian legislation, to above which corrective actions in schools are necessary. Before the application of remedial action, indoor radon concentrations were measured in 9 rooms of the school. The measurements were performed with LR-115 passive alpha detectors (SSNTDs) and E-Perm. The remedial action was conducted in one of the office affected by high radon concentration using a Radonstop paint applied after the construction of a concrete slab under the floor. The effect of remedial action was the reduction of the concentration of radon of 41% and moreover it has demonstrated to be durable over time. The chosen method is cheap and easy to apply and it could be designed for various types of building. This method can be applied to new and existing buildings that show high dose values.

Keywords: E-Perm, LR 115 detectors, radon remediation, school

Procedia PDF Downloads 211
805 Modelling Residential Space Heating Energy for Romania

Authors: Ion Smeureanu, Adriana Reveiu, Marian Dardala, Titus Felix Furtuna, Roman Kanala

Abstract:

This paper proposes a linear model for optimizing domestic energy consumption, in Romania. Both techno-economic and consumer behavior approaches have been considered, in order to develop the model. The proposed model aims to reduce the energy consumption, in households, by assembling in a unitary model, aspects concerning: residential lighting, space heating, hot water, and combined space heating – hot water, space cooling, and passenger transport. This paper focuses on space heating domestic energy consumption model, and quantify not only technical-economic issues, but also consumer behavior impact, related to people decision to envelope and insulate buildings, in order to minimize energy consumption.

Keywords: consumer behavior, open source energy modeling system (OSeMOSYS), MARKAL/TIMES Romanian energy model, virtual technologies

Procedia PDF Downloads 528
804 Thermo-Aeraulic Studies of a Multizone Building Influence of the Compactness Index

Authors: S. M. A. Bekkouche, T. Benouaz, M. K. Cherier, M. Hamdani, M. R. Yaiche, N. Benamrane

Abstract:

Most codes of building energy simulation neglect the humidity or well represent it with a very simplified method. It is for this reason that we have developed a new approach to the description and modeling of multizone buildings in Saharan climate. The thermal nodal method was used to apprehend thermoaeraulic behavior of air subjected to varied solicitations. In this contribution, analyzing the building geometry introduced the concept of index compactness as "quotient of external walls area and volume of the building". Physical phenomena that we have described in this paper, allow to build the model of the coupled thermoaeraulic behavior. The comparison shows that the found results are to some extent satisfactory. The result proves that temperature and specific humidity depending on compactness and geometric shape. Proper use of compactness index and building geometry parameters will noticeably minimize building energy.

Keywords: multizone model, nodal method, compactness index, specific humidity, temperature

Procedia PDF Downloads 398
803 Sustainable Harvesting, Conservation and Analysis of Genetic Diversity in Polygonatum Verticillatum Linn.

Authors: Anchal Rana

Abstract:

Indian Himalayas with their diverse climatic conditions are home to many rare and endangered medicinal flora. One such species is Polygonatum verticillatum Linn., popularly known as King Solomon’s Seal or Solomon’s Seal. Its mention as an incredible medicinal herb comes from 5000 years ago in Indian Materia Medica as a component of Ashtavarga, a poly-herbal formulation comprising of eight herbs illustrated as world’s first ever revitalizing and rejuvenating nutraceutical food, which is now commercialised in the name ‘Chaywanprash’. It is an erect tall (60 to 120 cm) perennial herb with sessile, linear leaves and white pendulous flowers. The species grows well in an altitude range of 1600 to 3600 m amsl, and propagates mostly through rhizomes. The rhizomes are potential source for significant phytochemicals like flavonoids, phenolics, lectins, terpenoids, allantoin, diosgenin, β-Sitosterol and quinine. The presence of such phytochemicals makes the species an asset for antioxidant, cardiotonic, demulcent, diuretic, energizer, emollient, aphrodisiac, appetizer, glactagogue, etc. properties. Having profound concentrations of macro and micronutrients, species has fine prospects of being used as a diet supplement. However, due to unscientific and gregarious uprooting, it has been assigned a status of ‘vulnerable’ and ‘endangered’ in the Conservation Assessment and Management Plan (CAMP) process conducted by Foundation for Revitalisation of Local Health Traditions (FRLHT) during 2010, according to IUCN Red-List Criteria. Further, destructive harvesting, land use disturbances, heavy livestock grazing, climatic changes and habitat fragmentation have substantially contributed towards anomaly of the species. It, therefore, became imperative to conserve the diversity of the species and make judicious use in future research and commercial programme and schemes. A Gene Bank was therefore established at High Altitude Herbal Garden of the Forest Research Institute, Dehradun, India situated at Chakarata (30042’52.99’’N, 77051’36.77’’E, 2205 m amsl) consisting 149 accessions collected from thirty-one geographical locations spread over three Himalayan States of Jammu and Kashmir, Himachal Pradesh, and Uttarakhand. The present investigations purport towards sampling and collection of divergent germplasm followed by planting and cultivation techniques. The ultimate aim is thereby focussed on analysing genetic diversity of the species and capturing promising genotypes for carrying out further genetic improvement programme so to contribute towards sustainable development and healthcare.

Keywords: Polygonatum verticillatum Linn., phytochemicals, genetic diversity, conservation, gene bank

Procedia PDF Downloads 147
802 Reinforced Concrete, Problems and Solutions: A Literature Review

Authors: Omar Alhamad, Waleed Eid

Abstract:

Reinforced concrete is a concrete lined with steel so that the materials work together in the resistance forces. Reinforcement rods or mesh are used for tensile, shear, and sometimes intense pressure in a concrete structure. Reinforced concrete is subject to many natural problems or industrial errors. The result of these problems is that it reduces the efficiency of the reinforced concrete or its usefulness. Some of these problems are cracks, earthquakes, high temperatures or fires, as well as corrosion of reinforced iron inside reinforced concrete. There are also factors of ancient buildings or monuments that require some techniques to preserve them. This research presents some general information about reinforced concrete, the pros and cons of reinforced concrete, and then presents a series of literary studies of some of the late published researches on the subject of reinforced concrete and how to preserve it, propose solutions or treatments for the treatment of reinforced concrete problems, raise efficiency and quality for a longer period. These studies have provided advanced and modern methods and techniques in the field of reinforced concrete.

Keywords: reinforced concrete, treatment, concrete, corrosion, seismic, cracks

Procedia PDF Downloads 135