Search results for: panel regression techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10422

Search results for: panel regression techniques

9432 Development of a Finite Element Model of the Upper Cervical Spine to Evaluate the Atlantoaxial Fixation Techniques

Authors: Iman Zafarparandeh, Muzammil Mumtaz, Paniz Taherzadeh, Deniz Erbulut

Abstract:

The instability in the atlantoaxial joint may occur due to cervical surgery, congenital anomalies, and trauma. There are different types of fixation techniques proposed for restoring the stability and preventing harmful neurological deterioration. Application of the screw constructs has become a popular alternative to the older techniques for stabilizing the joint. The main difference between the various screw constructs is the type of the screw which can be lateral mass screw, pedicle screw, transarticular screw, and translaminar screw. The aim of this paper is to study the effect of three popular screw constructs fixation techniques on the biomechanics of the atlantoaxial joint using the finite element (FE) method. A three-dimensional FE model of the upper cervical spine including the skull, C1 and C2 vertebrae, and groups of the existing ligaments were developed. The accurate geometry of the model was obtained from the CT data of a 35-year old male. Three screw constructs were designed to compare; Magerl transarticular screw (TA-Screw), Goel-Harms lateral mass screw and pedicle screw (LM-Screw and Pedicle-Screw), and Wright lateral mass screw and translaminar screw (LM-Screw and TL-Screw). Pure moments were applied to the model in the three main planes; flexion (Flex), extension (Ext), axial rotation (AR) and lateral bending (LB). The range of motion (ROM) of C0-C1 and C1-C2 segments for the implanted FE models are compared to the intact FE model and the in vitro study of Panjabi (1988). The Magerl technique showed less effect on the ROM of C0-C1 than the other two techniques in sagittal plane. In lateral bending and axial rotation, the Goel-Harms and Wright techniques showed less effect on the ROM of C0-C1 than the Magerl technique. The Magerl technique has the highest fusion rate as 99% in all loading directions for the C1-C2 segment. The Wright technique has the lowest fusion rate in LB as 79%. The three techniques resulted in the same fusion rate in extension loading as 99%. The maximum stress for the Magerl technique is the lowest in all load direction compared to other two techniques. The maximum stress in all direction was 234 Mpa and occurred in flexion with the Wright technique. The maximum stress for the Goel-Harms and Wright techniques occurred in lateral mass screw. The ROM obtained from the FE results support this idea that the fusion rate of the Magerl is more than 99%. Moreover, the maximum stress occurred in each screw constructs proves the less failure possibility for the Magerl technique. Another advantage of the Magerl technique is the less number of components compared to other techniques using screw constructs. Despite the benefits of the Magerl technique, there are drawbacks to using this method such as reduction of the C1 and C2 before screw placement. Therefore, other fixation methods such as Goel-Harms and Wright techniques find the solution for the drawbacks of the Magerl technique by adding screws separately to C1 and C2. The FE model implanted with the Wright technique showed the highest maximum stress almost in all load direction.

Keywords: cervical spine, finite element model, atlantoaxial, fixation technique

Procedia PDF Downloads 384
9431 Acoustic Emission Techniques in Monitoring Low-Speed Bearing Conditions

Authors: Faisal AlShammari, Abdulmajid Addali, Mosab Alrashed

Abstract:

It is widely acknowledged that bearing failures are the primary reason for breakdowns in rotating machinery. These failures are extremely costly, particularly in terms of lost production. Roller bearings are widely used in industrial machinery and need to be maintained in good condition to ensure the continuing efficiency, effectiveness, and profitability of the production process. The research presented here is an investigation of the use of acoustic emission (AE) to monitor bearing conditions at low speeds. Many machines, particularly large, expensive machines operate at speeds below 100 rpm, and such machines are important to the industry. However, the overwhelming proportion of studies have investigated the use of AE techniques for condition monitoring of higher-speed machines (typically several hundred rpm, or even higher). Few researchers have investigated the application of these techniques to low-speed machines ( < 100 rpm). This paper addressed this omission and has established which, of the available, AE techniques are suitable for the detection of incipient faults and measurement of fault growth in low-speed bearings. The first objective of this paper program was to assess the applicability of AE techniques to monitor low-speed bearings. It was found that the measured statistical parameters successfully monitored bearing conditions at low speeds (10-100 rpm). The second objective was to identify which commonly used statistical parameters derived from the AE signal (RMS, kurtosis, amplitude and counts) could identify the onset of a fault in the out race. It was found that these parameters effectually identify the presence of a small fault seeded into the outer races. Also, it is concluded that rotational speed has a strong influence on the measured AE parameters but that they are entirely independent of the load under such load and speed conditions.

Keywords: acoustic emission, condition monitoring, NDT, statistical analysis

Procedia PDF Downloads 248
9430 Sentiment Analysis: Comparative Analysis of Multilingual Sentiment and Opinion Classification Techniques

Authors: Sannikumar Patel, Brian Nolan, Markus Hofmann, Philip Owende, Kunjan Patel

Abstract:

Sentiment analysis and opinion mining have become emerging topics of research in recent years but most of the work is focused on data in the English language. A comprehensive research and analysis are essential which considers multiple languages, machine translation techniques, and different classifiers. This paper presents, a comparative analysis of different approaches for multilingual sentiment analysis. These approaches are divided into two parts: one using classification of text without language translation and second using the translation of testing data to a target language, such as English, before classification. The presented research and results are useful for understanding whether machine translation should be used for multilingual sentiment analysis or building language specific sentiment classification systems is a better approach. The effects of language translation techniques, features, and accuracy of various classifiers for multilingual sentiment analysis is also discussed in this study.

Keywords: cross-language analysis, machine learning, machine translation, sentiment analysis

Procedia PDF Downloads 713
9429 Optimizing Quantum Machine Learning with Amplitude and Phase Encoding Techniques

Authors: Om Viroje

Abstract:

Quantum machine learning represents a frontier in computational technology, promising significant advancements in data processing capabilities. This study explores the significance of data encoding techniques, specifically amplitude and phase encoding, in this emerging field. By employing a comparative analysis methodology, the research evaluates how these encoding techniques affect the accuracy, efficiency, and noise resilience of quantum algorithms. Our findings reveal that amplitude encoding enhances algorithmic accuracy and noise tolerance, whereas phase encoding significantly boosts computational efficiency. These insights are crucial for developing robust quantum frameworks that can be effectively applied in real-world scenarios. In conclusion, optimizing encoding strategies is essential for advancing quantum machine learning, potentially transforming various industries through improved data processing and analysis.

Keywords: quantum machine learning, data encoding, amplitude encoding, phase encoding, noise resilience

Procedia PDF Downloads 13
9428 Assessment of the Impact of Traffic Safety Policy in Barcelona, 2010-2019

Authors: Lluís Bermúdez, Isabel Morillo

Abstract:

Road safety involves carrying out a determined and explicit policy to reduce accidents. In the city of Barcelona, through the Local Road Safety Plan 2013-2018, in line with the framework that has been established at the European and state level, a series of preventive, corrective and technical measures are specified, with the priority objective of reducing the number of serious injuries and fatalities. In this work, based on the data from the accidents managed by the local police during the period 2010-2019, an analysis is carried out to verify whether the measures established in the Plan to reduce the accident rate have had an effect or not and to what extent. The analysis focuses on the type of accident and the type of vehicles involved. Different count regression models have been fitted, from which it can be deduced that the number of serious and fatal victims of the accidents that have occurred in the city of Barcelona has been reduced as the measures approved by the authorities.

Keywords: accident reduction, count regression models, road safety, urban traffic

Procedia PDF Downloads 133
9427 Effects of Video Games and Online Chat on Mathematics Performance in High School: An Approach of Multivariate Data Analysis

Authors: Lina Wu, Wenyi Lu, Ye Li

Abstract:

Regarding heavy video game players for boys and super online chat lovers for girls as a symbolic phrase in the current adolescent culture, this project of data analysis verifies the displacement effect on deteriorating mathematics performance. To evaluate correlation or regression coefficients between a factor of playing video games or chatting online and mathematics performance compared with other factors, we use multivariate analysis technique and take gender difference into account. We find the most important reason for the negative sign of the displacement effect on mathematics performance due to students’ poor academic background. Statistical analysis methods in this project could be applied to study internet users’ academic performance from the high school education to the college education.

Keywords: correlation coefficients, displacement effect, multivariate analysis technique, regression coefficients

Procedia PDF Downloads 364
9426 Comprehensive Review of Adversarial Machine Learning in PDF Malware

Authors: Preston Nabors, Nasseh Tabrizi

Abstract:

Portable Document Format (PDF) files have gained significant popularity for sharing and distributing documents due to their universal compatibility. However, the widespread use of PDF files has made them attractive targets for cybercriminals, who exploit vulnerabilities to deliver malware and compromise the security of end-user systems. This paper reviews notable contributions in PDF malware detection, including static, dynamic, signature-based, and hybrid analysis. It presents a comprehensive examination of PDF malware detection techniques, focusing on the emerging threat of adversarial sampling and the need for robust defense mechanisms. The paper highlights the vulnerability of machine learning classifiers to evasion attacks. It explores adversarial sampling techniques in PDF malware detection to produce mimicry and reverse mimicry evasion attacks, which aim to bypass detection systems. Improvements for future research are identified, including accessible methods, applying adversarial sampling techniques to malicious payloads, evaluating other models, evaluating the importance of features to malware, implementing adversarial defense techniques, and conducting comprehensive examination across various scenarios. By addressing these opportunities, researchers can enhance PDF malware detection and develop more resilient defense mechanisms against adversarial attacks.

Keywords: adversarial attacks, adversarial defense, adversarial machine learning, intrusion detection, PDF malware, malware detection, malware detection evasion

Procedia PDF Downloads 39
9425 The Effects of Self-Efficacy on Life Satisfaction

Authors: Gao ya

Abstract:

This present study aims to find the relationship between self-efficacy and life satisfaction and the effects of self-efficacy on life satisfaction among Chinese people whose age is from 27-32, born between 1990 and 1995. People who were born between 1990 and 1995 are worthy to receive more attention now because the 90s was always received a lot of focus and labeled negatively as soon as they were born. And a large number of researches study people in individualism society more. So we chose the specific population whose age is from 27 to 32 live in a collectivist society. Demographic information was collected, including age, gender, education level, marital status, income level, number of children. We used the general self-efficacy scale(GSC) and the satisfaction with Life Scale(SLS) to collect data. A total of 350 questionnaires were distributed in and collected from mainland China, then 261 valid questionnaires were returned in the end, making a response rate of 74.57 percent. Some statistics techniques were used, like regression, correlation, ANOVA, T-test and general linear model, to measure variables. The findings were that self-efficacy positively related to life satisfaction. And self-efficacy influences life satisfaction significantly. At the same time, the relationship between demographic information and life satisfaction was analyzed.

Keywords: marital status, life satisfaction, number of children, self-efficacy, income level

Procedia PDF Downloads 121
9424 Influence of Atmospheric Pollutants on Child Respiratory Disease in Cartagena De Indias, Colombia

Authors: Jose A. Alvarez Aldegunde, Adrian Fernandez Sanchez, Matthew D. Menden, Bernardo Vila Rodriguez

Abstract:

Up to five statistical pre-processings have been carried out considering the pollutant records of the stations present in Cartagena de Indias, Colombia, also taking into account the childhood asthma incidence surveys conducted in hospitals in the city by the Health Ministry of Colombia for this study. These pre-processings have consisted of different techniques such as the determination of the quality of data collection, determination of the quality of the registration network, identification and debugging of errors in data collection, completion of missing data and purified data, as well as the improvement of the time scale of records. The characterization of the quality of the data has been conducted by means of density analysis of the pollutant registration stations using ArcGis Software and through mass balance techniques, making it possible to determine inconsistencies in the records relating the registration data between stations following the linear regression. The results obtained in this process have highlighted the positive quality in the pollutant registration process. Consequently, debugging of errors has allowed us to identify certain data as statistically non-significant in the incidence and series of contamination. This data, together with certain missing records in the series recorded by the measuring stations, have been completed by statistical imputation equations. Following the application of these prior processes, the basic series of incidence data for respiratory disease and pollutant records have allowed the characterization of the influence of pollutants on respiratory diseases such as, for example, childhood asthma. This characterization has been carried out using statistical correlation methods, including visual correlation, simple linear regression correlation and spectral analysis with PAST Software which identifies maximum periodicity cycles and minimums under the formula of the Lomb periodgram. In relation to part of the results obtained, up to eleven maximums and minimums considered contemporary between the incidence records and the particles have been identified taking into account the visual comparison. The spectral analyses that have been performed on the incidence and the PM2.5 have returned a series of similar maximum periods in both registers, which are at a maximum during a period of one year and another every 25 days (0.9 and 0.07 years). The bivariate analysis has managed to characterize the variable "Daily Vehicular Flow" in the ninth position of importance of a total of 55 variables. However, the statistical correlation has not obtained a favorable result, having obtained a low value of the R2 coefficient. The series of analyses conducted has demonstrated the importance of the influence of pollutants such as PM2.5 in the development of childhood asthma in Cartagena. The quantification of the influence of the variables has been able to determine that there is a 56% probability of dependence between PM2.5 and childhood respiratory asthma in Cartagena. Considering this justification, the study could be completed through the application of the BenMap Software, throwing a series of spatial results of interpolated values of the pollutant contamination records that exceeded the established legal limits (represented by homogeneous units up to the neighborhood level) and results of the impact on the exacerbation of pediatric asthma. As a final result, an economic estimate (in Colombian Pesos) of the monthly and individual savings derived from the percentage reduction of the influence of pollutants in relation to visits to the Hospital Emergency Room due to asthma exacerbation in pediatric patients has been granted.

Keywords: Asthma Incidence, BenMap, PM2.5, Statistical Analysis

Procedia PDF Downloads 116
9423 A Regression Model for Predicting Sugar Crystal Size in a Fed-Batch Vacuum Evaporative Crystallizer

Authors: Sunday B. Alabi, Edikan P. Felix, Aniediong M. Umo

Abstract:

Crystal size distribution is of great importance in the sugar factories. It determines the market value of granulated sugar and also influences the cost of production of sugar crystals. Typically, sugar is produced using fed-batch vacuum evaporative crystallizer. The crystallization quality is examined by crystal size distribution at the end of the process which is quantified by two parameters: the average crystal size of the distribution in the mean aperture (MA) and the width of the distribution of the coefficient of variation (CV). Lack of real-time measurement of the sugar crystal size hinders its feedback control and eventual optimisation of the crystallization process. An attractive alternative is to use a soft sensor (model-based method) for online estimation of the sugar crystal size. Unfortunately, the available models for sugar crystallization process are not suitable as they do not contain variables that can be measured easily online. The main contribution of this paper is the development of a regression model for estimating the sugar crystal size as a function of input variables which are easy to measure online. This has the potential to provide real-time estimates of crystal size for its effective feedback control. Using 7 input variables namely: initial crystal size (Lo), temperature (T), vacuum pressure (P), feed flowrate (Ff), steam flowrate (Fs), initial super-saturation (S0) and crystallization time (t), preliminary studies were carried out using Minitab 14 statistical software. Based on the existing sugar crystallizer models, and the typical ranges of these 7 input variables, 128 datasets were obtained from a 2-level factorial experimental design. These datasets were used to obtain a simple but online-implementable 6-input crystal size model. It seems the initial crystal size (Lₒ) does not play a significant role. The goodness of the resulting regression model was evaluated. The coefficient of determination, R² was obtained as 0.994, and the maximum absolute relative error (MARE) was obtained as 4.6%. The high R² (~1.0) and the reasonably low MARE values are an indication that the model is able to predict sugar crystal size accurately as a function of the 6 easy-to-measure online variables. Thus, the model can be used as a soft sensor to provide real-time estimates of sugar crystal size during sugar crystallization process in a fed-batch vacuum evaporative crystallizer.

Keywords: crystal size, regression model, soft sensor, sugar, vacuum evaporative crystallizer

Procedia PDF Downloads 208
9422 The TarMed Reform of 2014: A Causal Analysis of the Effects on the Behavior of Swiss Physicians

Authors: Camila Plaza, Stefan Felder

Abstract:

In October 2014, the TARMED reform was implemented in Switzerland. In an effort to even out the financial standing of general practitioners (including pediatricians) relative to that of specialists in the outpatient sector, the reform tackled two aspects: on the one hand, GPs would be able to bill an additional 9 CHF per patient, once per consult per day. This is referred to as the surcharge position. As a second measure, it reduced the fees for certain technical services targeted to specialists (e.g., imaging, surgical technical procedures, etc.). Given the fee-for-service reimbursement system in Switzerland, we predict that physicians reacted to the economic incentives of the reform by increasing the consults per patient and decreasing the average amount of time per consult. Within this framework, our treatment group is formed by GPs and our control group by those specialists who were not affected by the reform. Using monthly insurance claims panel data aggregated at the physician praxis level (provided by SASIS AG), for the period of January 2013-December 2015, we run difference in difference panel data models with physician and time fixed effects in order to test for the causal effects of the reform. We account for seasonality, and control for physician characteristics such as age, gender, specialty, and physician experience. Furthermore, we run the models on subgroups of physicians within our sample so as to account for heterogeneity and treatment intensities. Preliminary results support our hypothesis. We find evidence of an increase in consults per patients and a decrease in time per consult. Robustness checks do not significantly alter the results for our outcome variable of consults per patient. However, we do find a smaller effect of the reform for time per consult. Thus, the results of this paper could provide policymakers a better understanding of physician behavior and their sensitivity to financial incentives of reforms (both past and future) under the current reimbursement system.

Keywords: difference in differences, financial incentives, health reform, physician behavior

Procedia PDF Downloads 127
9421 Impact of Improved Beehive on Income of Rural Households: Evidence from Bugina District of Northern Ethiopia

Authors: Wondmnew Derebe

Abstract:

Increased adoption of modern beehives improves the livelihood of smallholder farmers whose income largely depends on mixed crop-livestock farming. Improved beehives have been disseminated to farmers in many parts of Ethiopia. However, its impact on income is less investigated. Thus, this study estimates how adopting improved beehives impacts rural households' income. Survey data were collected from 350 randomly selected households' and analyzed using an endogenous switching regression model. The result revealed that the adoption of improved beehives is associated with a higher annual income. On average, improved beehive adopters earned about 6,077 (ETB) more money than their counterparts. However, the impact of adoption would have been larger for actual non-adopters, as reflected in the negative transitional heterogeneity effect of 1792 (ETB). The result also indicated that the decision to adopt or not to adopt improved beehives was subjected to individual self-selection. Improved beehive adoption can increase farmers' income and can be used as an alternative poverty reduction strategy.

Keywords: impact, adoption, endogenous switching regression, income, improved

Procedia PDF Downloads 74
9420 One Step Further: Pull-Process-Push Data Processing

Authors: Romeo Botes, Imelda Smit

Abstract:

In today’s modern age of technology vast amounts of data needs to be processed in real-time to keep users satisfied. This data comes from various sources and in many formats, including electronic and mobile devices such as GPRS modems and GPS devices. They make use of different protocols including TCP, UDP, and HTTP/s for data communication to web servers and eventually to users. The data obtained from these devices may provide valuable information to users, but are mostly in an unreadable format which needs to be processed to provide information and business intelligence. This data is not always current, it is mostly historical data. The data is not subject to implementation of consistency and redundancy measures as most other data usually is. Most important to the users is that the data are to be pre-processed in a readable format when it is entered into the database. To accomplish this, programmers build processing programs and scripts to decode and process the information stored in databases. Programmers make use of various techniques in such programs to accomplish this, but sometimes neglect the effect some of these techniques may have on database performance. One of the techniques generally used,is to pull data from the database server, process it and push it back to the database server in one single step. Since the processing of the data usually takes some time, it keeps the database busy and locked for the period of time that the processing takes place. Because of this, it decreases the overall performance of the database server and therefore the system’s performance. This paper follows on a paper discussing the performance increase that may be achieved by utilizing array lists along with a pull-process-push data processing technique split in three steps. The purpose of this paper is to expand the number of clients when comparing the two techniques to establish the impact it may have on performance of the CPU storage and processing time.

Keywords: performance measures, algorithm techniques, data processing, push data, process data, array list

Procedia PDF Downloads 244
9419 An Evaluation of Different Weed Management Techniques in Organic Arable Systems

Authors: Nicola D. Cannon

Abstract:

A range of field experiments have been conducted since 1991 to 2017 on organic land at the Royal Agricultural University’s Harnhill Manor Farm near Cirencester, UK to explore the impact of different management practices on weed infestation in organic winter and spring wheat. The experiments were designed using randomised complete block and some with split plot arrangements. Sowing date, variety choice, crop height and crop establishment technique have all shown a significant impact on weed infestations. Other techniques have also been investigated but with less clear, but, still often significant effects on weed control including grazing with sheep, undersowing with different legumes and mechanical weeding techniques. Tillage treatments included traditional plough based systems, minimum tillage and direct drilling. Direct drilling had significantly higher weed dry matter than the other two techniques. Taller wheat varieties which do not contain Rht1 or Rht2 had higher weed populations than the wheat without dwarfing genes. Early sown winter wheat had greater weed dry matter than later sown wheat. Grazing with sheep interacted strongly with sowing date, with shorter varieties and also late sowing dates providing much less forage but, grazing did reduce weed biomass in June. Undersowing had mixed impacts which were related to the success of establishment of the undersown legume crop. Weeds are most successfully controlled when a range of techniques are implemented to give the wheat crop the greatest chance of competing with weeds.

Keywords: crop establishment, drilling date, grazing, undersowing, varieties, weeds

Procedia PDF Downloads 183
9418 Two-Stage Estimation of Tropical Cyclone Intensity Based on Fusion of Coarse and Fine-Grained Features from Satellite Microwave Data

Authors: Huinan Zhang, Wenjie Jiang

Abstract:

Accurate estimation of tropical cyclone intensity is of great importance for disaster prevention and mitigation. Existing techniques are largely based on satellite imagery data, and research and utilization of the inner thermal core structure characteristics of tropical cyclones still pose challenges. This paper presents a two-stage tropical cyclone intensity estimation network based on the fusion of coarse and fine-grained features from microwave brightness temperature data. The data used in this network are obtained from the thermal core structure of tropical cyclones through the Advanced Technology Microwave Sounder (ATMS) inversion. Firstly, the thermal core information in the pressure direction is comprehensively expressed through the maximal intensity projection (MIP) method, constructing coarse-grained thermal core images that represent the tropical cyclone. These images provide a coarse-grained feature range wind speed estimation result in the first stage. Then, based on this result, fine-grained features are extracted by combining thermal core information from multiple view profiles with a distributed network and fused with coarse-grained features from the first stage to obtain the final two-stage network wind speed estimation. Furthermore, to better capture the long-tail distribution characteristics of tropical cyclones, focal loss is used in the coarse-grained loss function of the first stage, and ordinal regression loss is adopted in the second stage to replace traditional single-value regression. The selection of tropical cyclones spans from 2012 to 2021, distributed in the North Atlantic (NA) regions. The training set includes 2012 to 2017, the validation set includes 2018 to 2019, and the test set includes 2020 to 2021. Based on the Saffir-Simpson Hurricane Wind Scale (SSHS), this paper categorizes tropical cyclone levels into three major categories: pre-hurricane, minor hurricane, and major hurricane, with a classification accuracy rate of 86.18% and an intensity estimation error of 4.01m/s for NA based on this accuracy. The results indicate that thermal core data can effectively represent the level and intensity of tropical cyclones, warranting further exploration of tropical cyclone attributes under this data.

Keywords: Artificial intelligence, deep learning, data mining, remote sensing

Procedia PDF Downloads 63
9417 Pattern Synthesis of Nonuniform Linear Arrays Including Mutual Coupling Effects Based on Gaussian Process Regression and Genetic Algorithm

Authors: Ming Su, Ziqiang Mu

Abstract:

This paper proposes a synthesis method for nonuniform linear antenna arrays that combine Gaussian process regression (GPR) and genetic algorithm (GA). In this method, the GPR model can be used to calculate the array radiation pattern in the presence of mutual coupling effects, and then the GA is used to optimize the excitations and locations of the elements so as to generate the desired radiation pattern. In this paper, taking a 9-element nonuniform linear array as an example and the desired radiation pattern corresponding to a Chebyshev distribution as the optimization objective, optimize the excitations and locations of the elements. Finally, the optimization results are verified by electromagnetic simulation software CST, which shows that the method is effective.

Keywords: nonuniform linear antenna arrays, GPR, GA, mutual coupling effects, active element pattern

Procedia PDF Downloads 109
9416 Assessment of Forest Above Ground Biomass Through Linear Modeling Technique Using SAR Data

Authors: Arjun G. Koppad

Abstract:

The study was conducted in Joida taluk of Uttara Kannada district, Karnataka, India, to assess the land use land cover (LULC) and forest aboveground biomass using L band SAR data. The study area covered has dense, moderately dense, and sparse forests. The sampled area was 0.01 percent of the forest area with 30 sampling plots which were selected randomly. The point center quadrate (PCQ) method was used to select the tree and collected the tree growth parameters viz., tree height, diameter at breast height (DBH), and diameter at the tree base. The tree crown density was measured with a densitometer. Each sample plot biomass was estimated using the standard formula. In this study, the LULC classification was done using Freeman-Durden, Yamaghuchi and Pauli polarimetric decompositions. It was observed that the Freeman-Durden decomposition showed better LULC classification with an accuracy of 88 percent. An attempt was made to estimate the aboveground biomass using SAR backscatter. The ALOS-2 PALSAR-2 L-band data (HH, HV, VV &VH) fully polarimetric quad-pol SAR data was used. SAR backscatter-based regression model was implemented to retrieve forest aboveground biomass of the study area. Cross-polarization (HV) has shown a good correlation with forest above-ground biomass. The Multi Linear Regression analysis was done to estimate aboveground biomass of the natural forest areas of the Joida taluk. The different polarizations (HH &HV, VV &HH, HV & VH, VV&VH) combination of HH and HV polarization shows a good correlation with field and predicted biomass. The RMSE and value for HH & HV and HH & VV were 78 t/ha and 0.861, 81 t/ha and 0.853, respectively. Hence the model can be recommended for estimating AGB for the dense, moderately dense, and sparse forest.

Keywords: forest, biomass, LULC, back scatter, SAR, regression

Procedia PDF Downloads 26
9415 Enhancing goal Achivement through Improved Communication Skills

Authors: Lin Xie, Yang Wang

Abstract:

An extensive body of research studies suggest that students, teachers, and supervisors can enhance the likelihood of reaching their goals by improving their communication skills. It is highly important to learn how and when to provide different kinds of feedback, e.g. anticipatory, corrective and positive) will gain better result and higher morale. The purpose of this mixed methods research is twofold: 1) To find out what factors affect effective communication among different stakeholders and how these factors affect student learning 2) What are the good practices for improving communication among different stakeholders and improve student achievement. This presentation first begins with an introduction to the recent research on Marshall’s Nonviolent Communication Techniques (NVC), including four important components: observations, feelings, needs, requests. These techniques can be effectively applied at all levels of communication. To develop an in-depth understanding of the relationship among different techniques within, this research collected, compared, and combined qualitative and quantitative data to better improve communication and support student learning.

Keywords: communication, education, language learning, goal achievement, academic success

Procedia PDF Downloads 71
9414 Chain Networks on Internationalization of SMEs: Co-Opetition Strategies in Agrifood Sector

Authors: Emilio Galdeano-Gómez, Juan C. Pérez-Mesa, Laura Piedra-Muñoz, María C. García-Barranco, Jesús Hernández-Rubio

Abstract:

The situation in which firms engage in simultaneous cooperation and competition with each other is a phenomenon known as co-opetition. This scenario has received increasing attention in business economics and management analyses. In the domain of supply chain networks and for small and medium-sized enterprises, SMEs, these strategies are of greater relevance given the complex environment of globalization and competition in open markets. These firms face greater challenges regarding technology and access to specific resources due to their limited capabilities and limited market presence. Consequently, alliances and collaborations with both buyers and suppliers prove to be key elements in overcoming these constraints. However, rivalry and competition are also regarded as major factors in successful internationalization processes, as they are drivers for firms to attain a greater degree of specialization and to improve efficiency, for example enabling them to allocate scarce resources optimally and providing incentives for innovation and entrepreneurship. The present work aims to contribute to the literature on SMEs’ internationalization strategies. The sample is constituted by a panel data of marketing firms from the Andalusian food sector and a multivariate regression analysis is developed, measuring variables of co-opetition and international activity. The hierarchical regression equations method has been followed, thus resulting in three estimated models: the first one excluding the variables indicative of channel type, while the latter two include the international retailer chain and wholesaler variable. The findings show that the combination of several factors leads to a complex scenario of inter-organizational relationships of cooperation and competition. In supply chain management analyses, these relationships tend to be classified as either buyer-supplier (vertical level) or supplier-supplier relationships (horizontal level). Several buyers and suppliers tend to participate in supply chain networks, and in which the form of governance (hierarchical and non-hierarchical) influences cooperation and competition strategies. For instance, due to their market power and/or their closeness to the end consumer, some buyers (e.g. large retailers in food markets) can exert an influence on the selection and interaction of several of their intermediate suppliers, thus endowing certain networks in the supply chain with greater stability. This hierarchical influence may in turn allow these suppliers to develop their capabilities (e.g. specialization) to a greater extent. On the other hand, for those suppliers that are outside these networks, this environment of hierarchy, characterized by a “hub firm” or “channel master”, may provide an incentive for developing their co-opetition relationships. These results prove that the analyzed firms have experienced considerable growth in sales to new foreign markets, mainly in Europe, dealing with large retail chains and wholesalers as main buyers. This supply industry is predominantly made up of numerous SMEs, which has implied a certain disadvantage when dealing with the buyers, as negotiations have traditionally been held on an individual basis and in the face of high competition among suppliers. Over recent years, however, cooperation among these marketing firms has become more common, for example regarding R&D, promotion, scheduling of production and sales.

Keywords: co-petition networks, international supply chain, maketing agrifood firms, SMEs strategies

Procedia PDF Downloads 79
9413 The Association between Self-Efficacy and Hypertension Self-Care Behavior among Patients with Hypertension

Authors: Fazel Zinat Motlagh, Reza Chaman, Rashid Ghafari, Zahra Behzad, Ahmad Ali Eslami

Abstract:

Background: Chronic disease management requires the individual to perform several self-care behaviors. Self-efficacy, a widely used psychosocial concept, is associated with the ability to manage chronic disease. In this study, we examine the association between self-efficacy and self-care behaviors related to hypertension. Methods: In this cross-sectional study, conducted in Kohgiluye Boyer Ahmad province, the south of Iran, a total of 1836 hypertension patients, were randomly selected and participated in the study. Self-care behavior was measured with using H-SCALE (Hypertension Self-Care Activity Level Effects). Logistic regression conducted to detect correlation between self-efficacy and adherence to hypertension self-care behaviors. Results: Less than half (40.8%) of the participants reported that they have good self-efficacy to manage hypertension. Good self-efficacy was significantly associated with improve in adherence to medication (95% CI: 1.68, 1.83), eating a low-salt diet (95% CI: 1.44–1.73), physical activity (95% CI: 1.39–1.55), quit smoking (95% CI: 0.38–0.47), and weight management techniques (95% CI: 0.66–0.82). Conclusion: Hypertension self-efficacy was associated with adherence to self-care behaviors among adult with hypertension. According to our finding hypertension is a manageable condition. Self-efficacy is important factor in adherence with self-care behaviors related with hypertension.

Keywords: self-efficacy, hypertension, self-care, Iran

Procedia PDF Downloads 545
9412 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors

Authors: Duc V. Nguyen

Abstract:

Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest bene t based on their requirements. These are the key requirements of a robust prognostics and health management system.

Keywords: fault detection, FFT, induction motor, predictive maintenance

Procedia PDF Downloads 170
9411 Perceived Stigma, Perception of Burden and Psychological Distress among Parents of Intellectually Disable Children: Role of Perceived Social Support

Authors: Saima Shafiq, Najma Iqbal Malik

Abstract:

This study was aimed to explore the relationship of perceived stigma, perception of burden and psychological distress among parents of intellectually disabled children. The study also aimed to explore the moderating role of perceived social support on all the variables of the study. The sample of the study comprised of (N = 250) parents of intellectually disabled children. The present study utilized the co-relational research design. It consists of two phases. Phase-I consisted of two steps which contained the translation of two scales that were used in the present study and tried out on the sample of parents (N = 70). The Affiliated Stigma Scale and Care Giver Burden Inventory were translated into Urdu for the present study. Phase-1 revealed that translated scaled entailed satisfactory psychometric properties. Phase -II of the study was carried out in order to test the hypothesis. Correlation, linear regression analysis, and t-test were computed for hypothesis testing. Hierarchical regression analysis was applied to study the moderating effect of perceived social support. Findings revealed that there was a positive relationship between perceived stigma and psychological distress, perception of burden and psychological distress. Linear regression analysis showed that perceived stigma and perception of burden were positive predictors of psychological distress. The study did not show the moderating role of perceived social support among variables of the present study. The major limitation of the study is the sample size and the major implication is awareness regarding problems of parents of intellectually disabled children.

Keywords: perceived stigma, perception of burden, psychological distress, perceived social support

Procedia PDF Downloads 213
9410 Exploring Marine Bacteria in the Arabian Gulf Region for Antimicrobial Metabolites

Authors: Julie Connelly, Tanvi Toprani, Xin Xie, Dhinoth Kumar Bangarusamy, Kris C. Gunsalus

Abstract:

The overuse of antibiotics worldwide has contributed to the development of multi-drug resistant (MDR) pathogenic bacterial strains. There is an increasing urgency to discover antibiotics to combat MDR pathogens. The microbiome of the Arabian Gulf is a largely unexplored and potentially rich source of novel bioactive compounds. Microbes that inhabit the Abu Dhabi coastal regions adapt to extreme environments with high salinity, hot temperatures, large temperature fluctuations, and acute exposure to solar energy. The microbes native to this region may produce unique metabolites with therapeutic potential as antibiotics and antifungals. We have isolated 200 pure bacterial strains from mangrove sediments, cyanobacterial mats, and coral reefs of the Abu Dhabi region. In this project, we aim to screen the marine bacterial strains to identify antibiotics, in particular undocumented compounds that show activity against existing antibiotic-resistant strains. We have acquired the ESKAPE pathogen panel, which consists of six antibiotic-resistant gram-positive and gram-negative bacterial pathogens that collectively cause most clinical infections. Our initial efforts of the primary screen using colony-picking co-culture assay have identified several candidate marine strains producing potential antibiotic compounds. We will next apply different assays, including disk-diffusion and broth turbidity growth assay, to confirm the results. This will be followed by bioactivity-guided purification and characterization of target compounds from the scaled-up volume of candidate strains, including SPE fraction, HPLC fraction, LC-MS, and NMR. For antimicrobial compounds with unknown structures, our final goal is to investigate their mode of action by identifying the molecular target.

Keywords: marine bacteria, natural products, drug discovery, ESKAPE panel

Procedia PDF Downloads 75
9409 Competitors’ Influence Analysis of a Retailer by Using Customer Value and Huff’s Gravity Model

Authors: Yepeng Cheng, Yasuhiko Morimoto

Abstract:

Customer relationship analysis is vital for retail stores, especially for supermarkets. The point of sale (POS) systems make it possible to record the daily purchasing behaviors of customers as an identification point of sale (ID-POS) database, which can be used to analyze customer behaviors of a supermarket. The customer value is an indicator based on ID-POS database for detecting the customer loyalty of a store. In general, there are many supermarkets in a city, and other nearby competitor supermarkets significantly affect the customer value of customers of a supermarket. However, it is impossible to get detailed ID-POS databases of competitor supermarkets. This study firstly focused on the customer value and distance between a customer's home and supermarkets in a city, and then constructed the models based on logistic regression analysis to analyze correlations between distance and purchasing behaviors only from a POS database of a supermarket chain. During the modeling process, there are three primary problems existed, including the incomparable problem of customer values, the multicollinearity problem among customer value and distance data, and the number of valid partial regression coefficients. The improved customer value, Huff’s gravity model, and inverse attractiveness frequency are considered to solve these problems. This paper presents three types of models based on these three methods for loyal customer classification and competitors’ influence analysis. In numerical experiments, all types of models are useful for loyal customer classification. The type of model, including all three methods, is the most superior one for evaluating the influence of the other nearby supermarkets on customers' purchasing of a supermarket chain from the viewpoint of valid partial regression coefficients and accuracy.

Keywords: customer value, Huff's Gravity Model, POS, Retailer

Procedia PDF Downloads 123
9408 A Comparative Study of European Terrazzo and Tibetan Arga Floor Making Techniques

Authors: Hubert Feiglstorfer

Abstract:

The technique of making terrazzo has been known since ancient times. During the Roman Empire, known as opus signinum, at the time of the Renaissance, known as composto terrazzo marmorino or at the turn of the 19th and 20th centuries, the use of terrazzo experienced a common use in Europe. In Asia, especially in the Himalayas and the Tibetan highlands, a particular floor and roof manufacturing technique is commonly used for about 1500 years, known as arga. The research question in this contribution asks for technical and cultural-historical synergies of these floor-making techniques. The making process of an arga floor shows constructive parallels to the European terrazzo. Surface processing by grinding, burnishing and sealing, in particular, reveals technological similarities. The floor structure itself, on the other hand, shows differences, for example in the use of hydraulic aggregate in the terrazzo, while the arga floor is used without hydraulic material, but the result of both techniques is a tight, water-repellent and shiny surface. As part of this comparative study, the materials, processing techniques and quality features of the two techniques are compared and parallels and differences are analysed. In addition to text and archive research, the methods used are results of material analyses and ethnographic research such as participant observation. Major findings of the study are the investigation of the mineralogical composition of arga floors and its comparison with terrazzo floors. The study of the cultural-historical context in which both techniques are embedded will give insight into technical developments in Europe and Asia, parallels and differences. Synergies from this comparison let possible technological developments in the production, conservation and renovation of European terrazzo floors appear in a new light. By making arga floors without cement-based aggregates, the renovation of historical floors from purely natural products and without using energy by means of a burning process can be considered.

Keywords: European and Asian crafts, material culture, floor making technology, terrazzo, arga, Tibetan building traditions

Procedia PDF Downloads 248
9407 A Study on the Conspicuous Consumption, Involvement and Physical and Mental Health of Pet Owners

Authors: Chi-Yueh Hsu, Hsuan-Liang Hsu, Hsiu-Hui Chiang

Abstract:

This study is to explore the relationship between the conspicuous consumption, leisure involvement and physical and mental health, and to understand the prediction of conspicuous consumption and leisure involvement to physical and mental health. The data was collected and analysed by purposive sampling, and the research objects were the dog walkers in Taiwan area. A total of 300 questionnaires were issued and after shaving the invalid questionnaire, a total of 246 valid samples were collected, and the effective rate was 82%.. The data were analyzed by correlation analysis and multiple stepwise regression analysis. The results showed that there was a significant correlation between conspicuous consumption and leisure involvement, and the conspicuous consumption and leisure involvement of dog walkers have a significant impact on physical and mental health, especially in self-expression, attractiveness and centrality of leisure involvement have a significant impact on physical and mental health.

Keywords: walking dog, attractiveness, self-expression, multiple stepwise regression analysis

Procedia PDF Downloads 261
9406 Optimizing Nitrogen Fertilizer Application in Rice Cultivation: A Decision Model for Top and Ear Dressing Dosages

Authors: Ya-Li Tsai

Abstract:

Nitrogen is a vital element crucial for crop growth, significantly influencing crop yield. In rice cultivation, farmers often apply substantial nitrogen fertilizer to maximize yields. However, excessive nitrogen application increases the risk of lodging and pest infestation, leading to yield losses. Additionally, conventional flooded irrigation methods consume significant water resources, necessitating precise agricultural and intelligent water management systems. In this study, it leveraged physiological data and field images captured by unmanned aerial vehicles, considering fertilizer treatment and irrigation as key factors. Statistical models incorporating rice physiological data, yield, and vegetation indices from image data were developed. Missing physiological data were addressed using multiple imputation and regression methods, and regression models were established using principal component analysis and stepwise regression. Target nitrogen accumulation at key growth stages was identified to optimize fertilizer application, with the difference between actual and target nitrogen accumulation guiding recommendations for ear dressing dosage. Field experiments conducted in 2022 validated the recommended ear dressing dosage, demonstrating no significant difference in final yield compared to traditional fertilizer levels under alternate wetting and drying irrigation. These findings highlight the efficacy of applying recommended dosages based on fertilizer decision models, offering the potential for reduced fertilizer use while maintaining yield in rice cultivation.

Keywords: intelligent fertilizer management, nitrogen top and ear dressing fertilizer, rice, yield optimization

Procedia PDF Downloads 82
9405 Botnet Detection with ML Techniques by Using the BoT-IoT Dataset

Authors: Adnan Baig, Ishteeaq Naeem, Saad Mansoor

Abstract:

The Internet of Things (IoT) gadgets have advanced quickly in recent years, and their use is steadily rising daily. However, cyber-attackers can target these gadgets due to their distributed nature. Additionally, many IoT devices have significant security flaws in their implementation and design, making them vulnerable to security threats. Hence, these threats can cause important data security and privacy loss from a single attack on network devices or systems. Botnets are a significant security risk that can harm the IoT network; hence, sophisticated techniques are required to mitigate the risk. This work uses a machine learning-based method to identify IoT orchestrated by botnets. The proposed technique identifies the net attack by distinguishing between legitimate and malicious traffic. This article proposes a hyperparameter tuning model to improvise the method to improve the accuracy of existing processes. The results demonstrated an improved and more accurate indication of botnet-based cyber-attacks.

Keywords: Internet of Things, Botnet, BoT-IoT dataset, ML techniques

Procedia PDF Downloads 11
9404 Automatic Diagnosis of Electrical Equipment Using Infrared Thermography

Authors: Y. Laib Dit Leksir, S. Bouhouche

Abstract:

Analysis and processing of data bases resulting from infrared thermal measurements made on the electrical installation requires the development of new tools in order to obtain correct and additional information to the visual inspections. Consequently, the methods based on the capture of infrared digital images show a great potential and are employed increasingly in various fields. Although, there is an enormous need for the development of effective techniques to analyse these data base in order to extract relevant information relating to the state of the equipments. Our goal consists in introducing recent techniques of modeling based on new methods, image and signal processing to develop mathematical models in this field. The aim of this work is to capture the anomalies existing in electrical equipments during an inspection of some machines using A40 Flir camera. After, we use binarisation techniques in order to select the region of interest and we make comparison between these methods of thermal images obtained to choose the best one.

Keywords: infrared thermography, defect detection, troubleshooting, electrical equipment

Procedia PDF Downloads 476
9403 Arsenic Contamination in Drinking Water Is Associated with Dyslipidemia in Pregnancy

Authors: Begum Rokeya, Rahelee Zinnat, Fatema Jebunnesa, Israt Ara Hossain, A. Rahman

Abstract:

Background and Aims: Arsenic in drinking water is a global environmental health problem, and the exposure may increase dyslipidemia and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of lipid metabolism, atherosclerosis formation, arsenic exposure and impact in pregnancy is still unclear. Recent epidemiological evidences indicate close association between inorganic arsenic exposure via drinking water and Dyslipidemia. However, the exact mechanism of this arsenic-mediated increase in atherosclerosis risk factors remains enigmatic. We explore the association of the effect of arsenic on serum lipid profile in pregnant subjects. Methods: A total 200 pregnant mother screened in this study from arsenic exposed area. Our study group included 100 exposed subjects were cases and 100 Non exposed healthy pregnant were controls requited by a cross-sectional study. Clinical and anthropometric measurements were done by standard techniques. Lipidemic status was assessed by enzymatic endpoint method. Urinary As was measured by inductively coupled plasma-mass spectrometry and adjusted with specific gravity and Arsenic exposure was assessed by the level of urinary arsenic level > 100 μg/L was categorized as arsenic exposed and < 100 μg/L were categorized as non-exposed. Multivariate logistic regression and Student’s t - test was used for statistical analysis. Results: Systolic and diastolic blood pressure both were significantly higher in the Arsenic exposed pregnant subjects compared to the Non-exposed group (p<0.001). Arsenic exposed subjects had 2 times higher chance of developing hypertensive pregnancy (Odds Ratio 2.2). In parallel to the findings in Ar exposed subjects showed significantly higher proportion of triglyceride and total cholesterol and low density of lipo protein when compare to non- arsenic exposed pregnant subjects. Significant correlation of urinary arsenic level was also found with SBP, DBP, TG, T chol and serum LDL-Cholesterol. On multivariate logistic regression showed urinary arsenic had a positive association with DBP, SBP, Triglyceride and LDL-c. Conclusion: In conclusion, arsenic exposure may induce dyslipidemia like atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element.

Keywords: Arsenic Exposure, Dyslipidemia, Gestational Diabetes Mellitus, Serum lipid profile

Procedia PDF Downloads 125