Search results for: odor classification
1261 Performance in Police Organizations: Approaches from the Literature Review
Authors: Felipe Haleyson Ribeiro dos Santos, Edson Ronaldo Guarido Filho
Abstract:
This article aims to review the literature on performance in police organizations. For that, the inOrdinatio method was adopted, which defines the form of selection and classification of articles. The search was carried out in databases, which resulted in a total of 619 documents that were cataloged and classified with the support of the Mendeley software. The theoretical scope intended here is to identify how performance in police organizations has been studied. After deepening the analysis and focusing on management, it was possible to classify the articles into three levels: individual, organizational, and institutional. However, to our best knowledge, no studies were found that addressed the performance relationship between the levels, which can be seen as a suggestion for further research.Keywords: police management, performance, management, multi-level
Procedia PDF Downloads 1061260 Floodnet: Classification for Post Flood Scene with a High-Resolution Aerial Imaginary Dataset
Authors: Molakala Mourya Vardhan Reddy, Kandimala Revanth, Koduru Sumanth, Beena B. M.
Abstract:
Emergency response and recovery operations are severely hampered by natural catastrophes, especially floods. Understanding post-flood scenarios is essential to disaster management because it facilitates quick evaluation and decision-making. To this end, we introduce FloodNet, a brand-new high-resolution aerial picture collection created especially for comprehending post-flood scenes. A varied collection of excellent aerial photos taken during and after flood occurrences make up FloodNet, which offers comprehensive representations of flooded landscapes, damaged infrastructure, and changed topographies. The dataset provides a thorough resource for training and assessing computer vision models designed to handle the complexity of post-flood scenarios, including a variety of environmental conditions and geographic regions. Pixel-level semantic segmentation masks are used to label the pictures in FloodNet, allowing for a more detailed examination of flood-related characteristics, including debris, water bodies, and damaged structures. Furthermore, temporal and positional metadata improve the dataset's usefulness for longitudinal research and spatiotemporal analysis. For activities like flood extent mapping, damage assessment, and infrastructure recovery projection, we provide baseline standards and evaluation metrics to promote research and development in the field of post-flood scene comprehension. By integrating FloodNet into machine learning pipelines, it will be easier to create reliable algorithms that will help politicians, urban planners, and first responders make choices both before and after floods. The goal of the FloodNet dataset is to support advances in computer vision, remote sensing, and disaster response technologies by providing a useful resource for researchers. FloodNet helps to create creative solutions for boosting communities' resilience in the face of natural catastrophes by tackling the particular problems presented by post-flood situations.Keywords: image classification, segmentation, computer vision, nature disaster, unmanned arial vehicle(UAV), machine learning.
Procedia PDF Downloads 761259 Detection of Powdery Mildew Disease in Strawberry Using Image Texture and Supervised Classifiers
Authors: Sultan Mahmud, Qamar Zaman, Travis Esau, Young Chang
Abstract:
Strawberry powdery mildew (PM) is a serious disease that has a significant impact on strawberry production. Field scouting is still a major way to find PM disease, which is not only labor intensive but also almost impossible to monitor disease severity. To reduce the loss caused by PM disease and achieve faster automatic detection of the disease, this paper proposes an approach for detection of the disease, based on image texture and classified with support vector machines (SVMs) and k-nearest neighbors (kNNs). The methodology of the proposed study is based on image processing which is composed of five main steps including image acquisition, pre-processing, segmentation, features extraction and classification. Two strawberry fields were used in this study. Images of healthy leaves and leaves infected with PM (Sphaerotheca macularis) disease under artificial cloud lighting condition. Colour thresholding was utilized to segment all images before textural analysis. Colour co-occurrence matrix (CCM) was introduced for extraction of textural features. Forty textural features, related to a physiological parameter of leaves were extracted from CCM of National television system committee (NTSC) luminance, hue, saturation and intensity (HSI) images. The normalized feature data were utilized for training and validation, respectively, using developed classifiers. The classifiers have experimented with internal, external and cross-validations. The best classifier was selected based on their performance and accuracy. Experimental results suggested that SVMs classifier showed 98.33%, 85.33%, 87.33%, 93.33% and 95.0% of accuracy on internal, external-I, external-II, 4-fold cross and 5-fold cross-validation, respectively. Whereas, kNNs results represented 90.0%, 72.00%, 74.66%, 89.33% and 90.3% of classification accuracy, respectively. The outcome of this study demonstrated that SVMs classified PM disease with a highest overall accuracy of 91.86% and 1.1211 seconds of processing time. Therefore, overall results concluded that the proposed study can significantly support an accurate and automatic identification and recognition of strawberry PM disease with SVMs classifier.Keywords: powdery mildew, image processing, textural analysis, color co-occurrence matrix, support vector machines, k-nearest neighbors
Procedia PDF Downloads 1201258 Remote Sensing and GIS for Land Use Change Assessment: Case Study of Oued Bou Hamed Watershed, Southern Tunisia
Authors: Ouerchefani Dalel, Mahdhaoui Basma
Abstract:
Land use change is one of the important factors needed to evaluate later on the impact of human actions on land degradation. This work present the application of a methodology based on remote sensing for evaluation land use change in an arid region of Tunisia. This methodology uses Landsat TM and ETM+ images to produce land use maps by supervised classification based on ground truth region of interests. This study showed that it was possible to rely on radiometric values of the pixels to define each land use class in the field. It was also possible to generate 3 land use classes of the same study area between 1988 and 2011.Keywords: land use, change, remote sensing, GIS
Procedia PDF Downloads 5631257 On the Combination of Patient-Generated Data with Data from a Secure Clinical Network Environment: A Practical Example
Authors: Jeroen S. de Bruin, Karin Schindler, Christian Schuh
Abstract:
With increasingly more mobile health applications appearing due to the popularity of smartphones, the possibility arises that these data can be used to improve the medical diagnostic process, as well as the overall quality of healthcare, while at the same time lowering costs. However, as of yet there have been no reports of a successful combination of patient-generated data from smartphones with data from clinical routine. In this paper, we describe how these two types of data can be combined in a secure way without modification to hospital information systems, and how they can together be used in a medical expert system for automatic nutritional classification and triage.Keywords: mobile health, data integration, expert systems, disease-related malnutrition
Procedia PDF Downloads 4761256 Object Oriented Classification Based on Feature Extraction Approach for Change Detection in Coastal Ecosystem across Kochi Region
Authors: Mohit Modi, Rajiv Kumar, Manojraj Saxena, G. Ravi Shankar
Abstract:
Change detection of coastal ecosystem plays a vital role in monitoring and managing natural resources along the coastal regions. The present study mainly focuses on the decadal change in Kochi islands connecting the urban flatland areas and the coastal regions where sand deposits have taken place. With this, in view, the change detection has been monitored in the Kochi area to apprehend the urban growth and industrialization leading to decrease in the wetland ecosystem. The region lies between 76°11'19.134"E to 76°25'42.193"E and 9°52'35.719"N to 10°5'51.575"N in the south-western coast of India. The IRS LISS-IV satellite image has been processed using a rule-based algorithm to classify the LULC and to interpret the changes between 2005 & 2015. The approach takes two steps, i.e. extracting features as a single GIS vector layer using different parametric values and to dissolve them. The multi-resolution segmentation has been carried out on the scale ranging from 10-30. The different classes like aquaculture, agricultural land, built-up, wetlands etc. were extracted using parameters like NDVI, mean layer values, the texture-based feature with corresponding threshold values using a rule set algorithm. The objects obtained in the segmentation process were visualized to be overlaying the satellite image at a scale of 15. This layer was further segmented using the spectral difference segmentation rule between the objects. These individual class layers were dissolved in the basic segmented layer of the image and were interpreted in vector-based GIS programme to achieve higher accuracy. The result shows a rapid increase in an industrial area of 40% based on industrial area statistics of 2005. There is a decrease in wetlands area which has been converted into built-up. New roads have been constructed which are connecting the islands to urban areas as well as highways. The increase in coastal region has been visualized due to sand depositions. The outcome is well supported by quantitative assessments which will empower rich understanding of land use land cover change for appropriate policy intervention and further monitoring.Keywords: land use land cover, multiresolution segmentation, NDVI, object based classification
Procedia PDF Downloads 1811255 Afrikan Natural Medicines: An Innovation-Based Model for Medicines Production, Curriculum Development and Clinical Application
Authors: H. Chabalala, A. Grootboom, M. Tang
Abstract:
The innovative development, production, and clinical utilisation of African natural medicines requires frameworks from systematisation, innovation, registration. Afrika faces challenges when it comes to these sectors. The opposite is the case as is is evident in ancient Asian (Traditional Chinese Medicine and Indian Ayurveda and Siddha) medical systems, which are interfaced into their respective national health and educational systems. Afrikan Natural Medicines (ANMs) are yet to develop systematisation frameworks, i.e. disease characterisation and medicines classification. This paper explores classical medical systems drawn from Afrikan and Chinese experts in natural medicines. An Afrikological research methodology was used to conduct in-depth interviews with 20 key respondents selected through purposeful sampling technique. Data was summarised into systematisation frameworks for classical disease theories, patient categorisation, medicine classification, aetiology and pathogenesis of disease, diagnosis and prognosis techniques and treatment methods. It was discovered that ancient Afrika had systematic medical cosmologies, remnants of which are evident in most Afrikan cultural health practices. Parallels could be drawn from classical medical concepts of antiquity, like Chinese Taoist and Indian tantric health systems. Data revealed that both the ancient and contemporary ANM systems were based on living medical cosmologies. The study showed that African Natural Healing Systems have etiological systems, general pathogenesis knowledge, differential diagnostic techniques, comprehensive prognosis and holistic treatment regimes. Systematisation models were developed out of these frameworks, and this could be used for evaluation of clinical research, medical application including development of curriculum for high-education. It was envisaged that frameworks will pave way towards the development, production and commercialisation of ANMs. This was piloted in inclusive innovation, technology transfer and commercialisation of South African natural medicines, cosmeceuticals, nutraceuticals and health infusions. The central model presented here in will assist in curriculum development and establishment of Afrikan Medicines Hospitals and Pharmaceutical Industries.Keywords: African Natural Medicines, Indigenous Knowledge Systems, Medical Cosmology, Clinical Application
Procedia PDF Downloads 1271254 Vegetation Assessment Under the Influence of Environmental Variables; A Case Study from the Yakhtangay Hill of Himalayan Range, Pakistan
Authors: Hameed Ullah, Shujaul Mulk Khan, Zahid Ullah, Zeeshan Ahmad Sadia Jahangir, Abdullah, Amin Ur Rahman, Muhammad Suliman, Dost Muhammad
Abstract:
The interrelationship between vegetation and abiotic variables inside an ecosystem is one of the main jobs of plant scientists. This study was designed to investigate the vegetation structure and species diversity along with the environmental variables in the Yakhtangay hill district Shangla of the Himalayan Mountain series Pakistan by using multivariate statistical analysis. Quadrat’s method was used and a total of 171 Quadrats were laid down 57 for Tree, Shrubs and Herbs, respectively, to analyze the phytosociological attributes of the vegetation. The vegetation of the selected area was classified into different Life and leaf-forms according to Raunkiaer classification, while PCORD software version 5 was used to classify the vegetation into different plants communities by Two-way indicator species Analysis (TWINSPAN). The CANOCCO version 4.5 was used for DCA and CCA analysis to find out variation directories of vegetation with different environmental variables. A total of 114 plants species belonging to 45 different families was investigated inside the area. The Rosaceae (12 species) was the dominant family followed by Poaceae (10 species) and then Asteraceae (7 species). Monocots were more dominant than Dicots and Angiosperms were more dominant than Gymnosperms. Among the life forms the Hemicryptophytes and Nanophanerophytes were dominant, followed by Therophytes, while among the leaf forms Microphylls were dominant, followed by Leptophylls. It is concluded that among the edaphic factors such as soil pH, the concentration of soil organic matter, Calcium Carbonates concentration in soil, soil EC, soil TDS, and physiographic factors such as Altitude and slope are affecting the structure of vegetation, species composition and species diversity at the significant level with p-value ≤0.05. The Vegetation of the selected area was classified into four major plants communities and the indicator species for each community was recorded. Classification of plants into 4 different communities based upon edaphic gradients favors the individualistic hypothesis. Indicator Species Analysis (ISA) shows the indicators of the study area are mostly indicators to the Himalayan or moist temperate ecosystem, furthermore, these indicators could be considered for micro-habitat conservation and respective ecosystem management plans.Keywords: species richness, edaphic gradients, canonical correspondence analysis (CCA), TWCA
Procedia PDF Downloads 1511253 Prediction of Mental Health: Heuristic Subjective Well-Being Model on Perceived Stress Scale
Authors: Ahmet Karakuş, Akif Can Kilic, Emre Alptekin
Abstract:
A growing number of studies have been conducted to determine how well-being may be predicted using well-designed models. It is necessary to investigate the backgrounds of features in order to construct a viable Subjective Well-Being (SWB) model. We have picked the suitable variables from the literature on SWB that are acceptable for real-world data instructions. The goal of this work is to evaluate the model by feeding it with SWB characteristics and then categorizing the stress levels using machine learning methods to see how well it performs on a real dataset. Despite the fact that it is a multiclass classification issue, we have achieved significant metric scores, which may be taken into account for a specific task.Keywords: machine learning, multiclassification problem, subjective well-being, perceived stress scale
Procedia PDF Downloads 1291252 A Review on the Re-Usage of Single-Use Medical Devices
Authors: Lucas B. Naves, Maria José Abreu
Abstract:
Reprocessing single-use device has attracted interesting on the medical environment over the last decades. The reprocessing technique was sought in order to reduce the cost of purchasing the new medical device, which can achieve almost double of the price of the reprocessed product. In this manuscript, we have done a literature review, aiming the reuse of medical device that was firstly designed for single use only, but has become, more and more, effective on its reprocessing procedure. We also show the regulation, the countries which allows this procedure, the classification of these device and also the most important issue concerning the re-utilization of medical device, how to minimizing the risk of gram positive and negative bacteria, avoid cross-contamination, hepatitis B (HBV), and C (HCV) virus, and also human immunodeficiency virus (HIV).Keywords: reusing, reprocessing, single-use medical device, HIV, hepatitis B and C
Procedia PDF Downloads 3911251 Perspectives and Challenges a Functional Bread With Yeast Extract to Improve Human Diet
Authors: Cláudia Patrocínio, Beatriz Fernandes, Ana Filipa Pires
Abstract:
Background: Mirror therapy (MT) is used to improve motor function after stroke. During MT, a mirror is placed between the two upper limbs (UL), thus reflecting movements of the non- affected side as if it were the affected side. Objectives: The aim of this review is to analyze the evidence on the effec.tiveness of MT in the recovery of UL function in population with post chronic stroke. Methods: The literature search was carried out in PubMed, ISI Web of Science, and PEDro database. Inclusion criteria: a) studies that include individuals diagnosed with stroke for at least 6 months; b) intervention with MT in UL or comparing it with other interventions; c) articles published until 2023; d) articles published in English or Portuguese; e) randomized controlled studies. Exclusion criteria: a) animal studies; b) studies that do not provide a detailed description of the intervention; c) Studies using central electrical stimulation. The methodological quality of the included studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. Studies with < 4 on PEDro scale were excluded. Eighteen studies met all the inclusion criteria. Main results and conclusions: The quality of the studies varies between 5 and 8. One article compared muscular strength training (MST) with MT vs without MT and four articles compared the use of MT vs conventional therapy (CT), one study compared extracorporeal shock therapy (EST) with and without MT and another study compared functional electrical stimulation (FES), MT and biofeedback, three studies compared MT with Mesh Glove (MG) or Sham Therapy, five articles compared performing bimanual exercises with and without MT and three studies compared MT with virtual reality (VR) or robot training (RT). The assessment of changes in function and structure (International Classification of Functioning, Disability and Health parameter) was carried out, in each article, mainly using the Fugl Meyer Assessment-Upper Limb scale, activity and participation (International Classification of Functioning, Disability and Health parameter) were evaluated using different scales, in each study. The positive results were seen in these parameters, globally. Results suggest that MT is more effective than other therapies in motor recovery and function of the affected UL, than these techniques alone, although the results have been modest in most of the included studies. There is also a more significant improvement in the distal movements of the affected hand than in the rest of the UL.Keywords: physical therapy, mirror therapy, chronic stroke, upper limb, hemiplegia
Procedia PDF Downloads 511250 Time Estimation of Return to Sports Based on Classification of Health Levels of Anterior Cruciate Ligament Using a Convolutional Neural Network after Reconstruction Surgery
Authors: Zeinab Jafari A., Ali Sharifnezhad B., Mohammad Razi C., Mohammad Haghpanahi D., Arash Maghsoudi
Abstract:
Background and Objective: Sports-related rupture of the anterior cruciate ligament (ACL) and following injuries have been associated with various disorders, such as long-lasting changes in muscle activation patterns in athletes, which might last after ACL reconstruction (ACLR). The rupture of the ACL might result in abnormal patterns of movement execution, extending the treatment period and delaying athletes’ return to sports (RTS). As ACL injury is especially prevalent among athletes, the lengthy treatment process and athletes’ absence from sports are of great concern to athletes and coaches. Thus, estimating safe time of RTS is of crucial importance. Therefore, using a deep neural network (DNN) to classify the health levels of ACL in injured athletes, this study aimed to estimate the safe time for athletes to return to competitions. Methods: Ten athletes with ACLR and fourteen healthy controls participated in this study. Three health levels of ACL were defined: healthy, six-month post-ACLR surgery and nine-month post-ACLR surgery. Athletes with ACLR were tested six and nine months after the ACLR surgery. During the course of this study, surface electromyography (sEMG) signals were recorded from five knee muscles, namely Rectus Femoris (RF), Vastus Lateralis (VL), Vastus Medialis (VM), Biceps Femoris (BF), Semitendinosus (ST), during single-leg drop landing (SLDL) and forward hopping (SLFH) tasks. The Pseudo-Wigner-Ville distribution (PWVD) was used to produce three-dimensional (3-D) images of the energy distribution patterns of sEMG signals. Then, these 3-D images were converted to two-dimensional (2-D) images implementing the heat mapping technique, which were then fed to a deep convolutional neural network (DCNN). Results: In this study, we estimated the safe time of RTS by designing a DCNN classifier with an accuracy of 90 %, which could classify ACL into three health levels. Discussion: The findings of this study demonstrate the potential of the DCNN classification technique using sEMG signals in estimating RTS time, which will assist in evaluating the recovery process of ACLR in athletes.Keywords: anterior cruciate ligament reconstruction, return to sports, surface electromyography, deep convolutional neural network
Procedia PDF Downloads 771249 Multi-Channel Information Fusion in C-OTDR Monitoring Systems: Various Approaches to Classify of Targeted Events
Authors: Andrey V. Timofeev
Abstract:
The paper presents new results concerning selection of optimal information fusion formula for ensembles of C-OTDR channels. The goal of information fusion is to create an integral classificator designed for effective classification of seismoacoustic target events. The LPBoost (LP-β and LP-B variants), the Multiple Kernel Learning, and Weighing of Inversely as Lipschitz Constants (WILC) approaches were compared. The WILC is a brand new approach to optimal fusion of Lipschitz Classifiers Ensembles. Results of practical usage are presented.Keywords: Lipschitz Classifier, classifiers ensembles, LPBoost, C-OTDR systems
Procedia PDF Downloads 4591248 The Communicative Nature of Linguistic Interference in Learning and Teaching of Slavic Languages
Authors: Kseniia Fedorova
Abstract:
The article is devoted to interlinguistic homonymy and enantiosemy analysis. These phenomena belong to the process of linguistic interference, which leads to violation of the communicative utterances integrity and causes misunderstanding between foreign interlocutors - native speakers of different Slavic languages. More attention is paid to investigation of non-typical speech situations, which occurred spontaneously or created by somebody intentionally being based on described phenomenon mechanism. The classification of typical students' mistakes connected with the paradox of interference is being represented in the article. The survey contributes to speech act theory, contemporary linguodidactics, translation science and comparative lexicology of Slavonic languages.Keywords: adherent enantiosemy, interference, interslavonic homonymy, speech act
Procedia PDF Downloads 2421247 High Altitude Glacier Surface Mapping in Dhauliganga Basin of Himalayan Environment Using Remote Sensing Technique
Authors: Aayushi Pandey, Manoj Kumar Pandey, Ashutosh Tiwari, Kireet Kumar
Abstract:
Glaciers play an important role in climate change and are sensitive phenomena of global climate change scenario. Glaciers in Himalayas are unique as they are predominantly valley type and are located in tropical, high altitude regions. These glaciers are often covered with debris which greatly affects ablation rate of glaciers and work as a sensitive indicator of glacier health. The aim of this study is to map high altitude Glacier surface with a focus on glacial lake and debris estimation using different techniques in Nagling glacier of dhauliganga basin in Himalayan region. Different Image Classification techniques i.e. thresholding on different band ratios and supervised classification using maximum likelihood classifier (MLC) have been used on high resolution sentinel 2A level 1c satellite imagery of 14 October 2017.Here Near Infrared (NIR)/Shortwave Infrared (SWIR) ratio image was used to extract the glaciated classes (Snow, Ice, Ice Mixed Debris) from other non-glaciated terrain classes. SWIR/BLUE Ratio Image was used to map valley rock and Debris while Green/NIR ratio image was found most suitable for mapping Glacial Lake. Accuracy assessment was performed using high resolution (3 meters) Planetscope Imagery using 60 stratified random points. The overall accuracy of MLC was 85 % while the accuracy of Band Ratios was 96.66 %. According to Band Ratio technique total areal extent of glaciated classes (Snow, Ice ,IMD) in Nagling glacier was 10.70 km2 nearly 38.07% of study area comprising of 30.87 % Snow covered area, 3.93% Ice and 3.27 % IMD covered area. Non-glaciated classes (vegetation, glacial lake, debris and valley rock) covered 61.93 % of the total area out of which valley rock is dominant with 33.83% coverage followed by debris covering 27.7 % of the area in nagling glacier. Glacial lake and Debris were accurately mapped using Band ratio technique Hence, Band Ratio approach appears to be useful for the mapping of debris covered glacier in Himalayan Region.Keywords: band ratio, Dhauliganga basin, glacier mapping, Himalayan region, maximum likelihood classifier (MLC), Sentinel-2 satellite image
Procedia PDF Downloads 2261246 Health Status Monitoring of COVID-19 Patient's through Blood Tests and Naïve-Bayes
Authors: Carlos Arias-Alcaide, Cristina Soguero-Ruiz, Paloma Santos-Álvarez, Adrián García-Romero, Inmaculada Mora-Jiménez
Abstract:
Analysing clinical data with computers in such a way that have an impact on the practitioners’ workflow is a challenge nowadays. This paper provides a first approach for monitoring the health status of COVID-19 patients through the use of some biomarkers (blood tests) and the simplest Naïve Bayes classifier. Data of two Spanish hospitals were considered, showing the potential of our approach to estimate reasonable posterior probabilities even some days before the event.Keywords: Bayesian model, blood biomarkers, classification, health tracing, machine learning, posterior probability
Procedia PDF Downloads 2301245 Using HABIT to Establish the Chemicals Analysis Methodology for Maanshan Nuclear Power Plant
Authors: J. R. Wang, S. W. Chen, Y. Chiang, W. S. Hsu, J. H. Yang, Y. S. Tseng, C. Shih
Abstract:
In this research, the HABIT analysis methodology was established for Maanshan nuclear power plant (NPP). The Final Safety Analysis Report (FSAR), reports, and other data were used in this study. To evaluate the control room habitability under the CO2 storage burst, the HABIT methodology was used to perform this analysis. The HABIT result was below the R.G. 1.78 failure criteria. This indicates that Maanshan NPP habitability can be maintained. Additionally, the sensitivity study of the parameters (wind speed, atmospheric stability classification, air temperature, and control room intake flow rate) was also performed in this research.Keywords: PWR, HABIT, Habitability, Maanshan
Procedia PDF Downloads 4431244 Using HABIT to Estimate the Concentration of CO2 and H2SO4 for Kuosheng Nuclear Power Plant
Authors: Y. Chiang, W. Y. Li, J. R. Wang, S. W. Chen, W. S. Hsu, J. H. Yang, Y. S. Tseng, C. Shih
Abstract:
In this research, the HABIT code was used to estimate the concentration under the CO2 and H2SO4 storage burst conditions for Kuosheng nuclear power plant (NPP). The Final Safety Analysis Report (FSAR) and reports were used in this research. In addition, to evaluate the control room habitability for these cases, the HABIT analysis results were compared with the R.G. 1.78 failure criteria. The comparison results show that the HABIT results are below the criteria. Additionally, some sensitivity studies (stability classification, wind speed and control room intake rate) were performed in this study.Keywords: BWR, HABIT, habitability, Kuosheng
Procedia PDF Downloads 4881243 The Menu Planning Problem: A Systematic Literature Review
Authors: Dorra Kallel, Ines Kanoun, Diala Dhouib
Abstract:
This paper elaborates a Systematic Literature Review SLR) to select the most outstanding studies that address the Menu Planning Problem (MPP) and to classify them according to the to the three following criteria: the used methods, types of patients and the required constraints. At first, a set of 4165 studies was selected. After applying the SLR’s guidelines, this collection was filtered to 13 studies using specific inclusion and exclusion criteria as well as an accurate analysis of each study. Second, the selected papers were invested to answer the proposed research questions. Finally, data synthesis and new perspectives for future works are incorporated in the closing section.Keywords: Menu Planning Problem (MPP), Systematic Literature Review (SLR), classification, exact and approaches methods
Procedia PDF Downloads 2781242 A Virtual Set-Up to Evaluate Augmented Reality Effect on Simulated Driving
Authors: Alicia Yanadira Nava Fuentes, Ilse Cervantes Camacho, Amadeo José Argüelles Cruz, Ana María Balboa Verduzco
Abstract:
Augmented reality promises being present in future driving, with its immersive technology let to show directions and maps to identify important places indicating with graphic elements when the car driver requires the information. On the other side, driving is considered a multitasking activity and, for some people, a complex activity where different situations commonly occur that require the immediate attention of the car driver to make decisions that contribute to avoid accidents; therefore, the main aim of the project is the instrumentation of a platform with biometric sensors that allows evaluating the performance in driving vehicles with the influence of augmented reality devices to detect the level of attention in drivers, since it is important to know the effect that it produces. In this study, the physiological sensors EPOC X (EEG), ECG06 PRO and EMG Myoware are joined in the driving test platform with a Logitech G29 steering wheel and the simulation software City Car Driving in which the level of traffic can be controlled, as well as the number of pedestrians that exist within the simulation obtaining a driver interaction in real mode and through a MSP430 microcontroller achieves the acquisition of data for storage. The sensors bring a continuous analog signal in time that needs signal conditioning, at this point, a signal amplifier is incorporated due to the acquired signals having a sensitive range of 1.25 mm/mV, also filtering that consists in eliminating the frequency bands of the signal in order to be interpretative and without noise to convert it from an analog signal into a digital signal to analyze the physiological signals of the drivers, these values are stored in a database. Based on this compilation, we work on the extraction of signal features and implement K-NN (k-nearest neighbor) classification methods and decision trees (unsupervised learning) that enable the study of data for the identification of patterns and determine by classification methods different effects of augmented reality on drivers. The expected results of this project include are a test platform instrumented with biometric sensors for data acquisition during driving and a database with the required variables to determine the effect caused by augmented reality on people in simulated driving.Keywords: augmented reality, driving, physiological signals, test platform
Procedia PDF Downloads 1401241 Linguistic Analysis of Argumentation Structures in Georgian Political Speeches
Authors: Mariam Matiashvili
Abstract:
Argumentation is an integral part of our daily communications - formal or informal. Argumentative reasoning, techniques, and language tools are used both in personal conversations and in the business environment. Verbalization of the opinions requires the use of extraordinary syntactic-pragmatic structural quantities - arguments that add credibility to the statement. The study of argumentative structures allows us to identify the linguistic features that make the text argumentative. Knowing what elements make up an argumentative text in a particular language helps the users of that language improve their skills. Also, natural language processing (NLP) has become especially relevant recently. In this context, one of the main emphases is on the computational processing of argumentative texts, which will enable the automatic recognition and analysis of large volumes of textual data. The research deals with the linguistic analysis of the argumentative structures of Georgian political speeches - particularly the linguistic structure, characteristics, and functions of the parts of the argumentative text - claims, support, and attack statements. The research aims to describe the linguistic cues that give the sentence a judgmental/controversial character and helps to identify reasoning parts of the argumentative text. The empirical data comes from the Georgian Political Corpus, particularly TV debates. Consequently, the texts are of a dialogical nature, representing a discussion between two or more people (most often between a journalist and a politician). The research uses the following approaches to identify and analyze the argumentative structures Lexical Classification & Analysis - Identify lexical items that are relevant in argumentative texts creating process - Creating the lexicon of argumentation (presents groups of words gathered from a semantic point of view); Grammatical Analysis and Classification - means grammatical analysis of the words and phrases identified based on the arguing lexicon. Argumentation Schemas - Describe and identify the Argumentation Schemes that are most likely used in Georgian Political Speeches. As a final step, we analyzed the relations between the above mentioned components. For example, If an identified argument scheme is “Argument from Analogy”, identified lexical items semantically express analogy too, and they are most likely adverbs in Georgian. As a result, we created the lexicon with the words that play a significant role in creating Georgian argumentative structures. Linguistic analysis has shown that verbs play a crucial role in creating argumentative structures.Keywords: georgian, argumentation schemas, argumentation structures, argumentation lexicon
Procedia PDF Downloads 691240 Effects of Drying and Extraction Techniques on the Profile of Volatile Compounds in Banana Pseudostem
Authors: Pantea Salehizadeh, Martin P. Bucknall, Robert Driscoll, Jayashree Arcot, George Srzednicki
Abstract:
Banana is one of the most important crops produced in large quantities in tropical and sub-tropical countries. Of the total plant material grown, approximately 40% is considered waste and left in the field to decay. This practice allows fungal diseases such as Sigatoka Leaf Spot to develop, limiting plant growth and spreading spores in the air that can cause respiratory problems in the surrounding population. The pseudostem is considered a waste residue of production (60 to 80 tonnes/ha/year), although it is a good source of dietary fiber and volatile organic compounds (VOC’s). Strategies to process banana pseudostem into palatable, nutritious and marketable food materials could provide significant social and economic benefits. Extraction of VOC’s with desirable odor from dried and fresh pseudostem could improve the smell of products from the confectionary and bakery industries. Incorporation of banana pseudostem flour into bakery products could provide cost savings and improve nutritional value. The aim of this study was to determine the effects of drying methods and different banana species on the profile of volatile aroma compounds in dried banana pseudostem. The banana species analyzed were Musa acuminata and Musa balbisiana. Fresh banana pseudostem samples were processed by either freeze-drying (FD) or heat pump drying (HPD). The extraction of VOC’s was performed at ambient temperature using vacuum distillation and the resulting, mostly aqueous, distillates were analyzed using headspace solid phase microextraction (SPME) gas chromatography – mass spectrometry (GC-MS). Optimal SPME adsorption conditions were 50 °C for 60 min using a Supelco 65 μm PDMS/DVB Stableflex fiber1. Compounds were identified by comparison of their electron impact mass spectra with those from the Wiley 9 / NIST 2011 combined mass spectral library. The results showed that the two species have notably different VOC profiles. Both species contained VOC’s that have been established in literature to have pleasant appetizing aromas. These included l-Menthone, D-Limonene, trans-linlool oxide, 1-Nonanol, CIS 6 Nonen-1ol, 2,6 Nonadien-1-ol, Benzenemethanol, 4-methyl, 1-Butanol, 3-methyl, hexanal, 1-Propanol, 2-methyl- acid، 2-Methyl-2-butanol. Results show banana pseudostem VOC’s are better preserved by FD than by HPD. This study is still in progress and should lead to the optimization of processing techniques that would promote the utilization of banana pseudostem in the food industry.Keywords: heat pump drying, freeze drying, SPME, vacuum distillation, VOC analysis
Procedia PDF Downloads 3331239 Possibility of Membrane Filtration to Treatment of Effluent from Digestate
Authors: Marcin Debowski, Marcin Zielinski, Magdalena Zielinska, Paulina Rusanowska
Abstract:
The problem with digestate management is one of the most important factors influencing on the development and operation of biogas plant. Turbidity and bacterial contamination negatively affect the growth of algae, which can limit the use of the effluent in the production of algae biomass on a large scale. These problems can be overcome by cultivating of algae species resistant to environmental factors, such as Chlorella sp., Scenedesmus sp., or reducing load of organic compounds to prevent bacterial contamination. The effluent requires dilution and/or purification. One of the methods of effluent treatment is the use of a membrane technology such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), depending on the membrane pore size and the cut off point. Membranes are a physical barrier to solids and particles larger than the size of the pores. MF membranes have the largest pores and are used to remove turbidity, suspensions, bacteria and some viruses. UF membranes remove also color, odor and organic compounds with high molecular weight. In treatment of wastewater or other waste streams, MF and UF can provide a sufficient degree of purification. NF membranes are used to remove natural organic matter from waters, water disinfection products and sulfates. RO membranes are applied to remove monovalent ions such as Na⁺ or K⁺. The effluent was used in UF for medium to cultivation of two microalgae: Chlorella sp. and Phaeodactylum tricornutum. Growth rates of Chlorella sp. and P. tricornutum were similar: 0.216 d⁻¹ and 0.200 d⁻¹ (Chlorella sp.); 0.128 d⁻¹ and 0.126 d⁻¹ (P. tricornutum), on synthetic medium and permeate from UF, respectively. The final biomass composition was also similar, regardless of the medium. Removal of nitrogen was 92% and 71% by Chlorella sp. and P. tricornutum, respectively. The fermentation effluents after UF and dilution were also used for cultivation of algae Scenedesmus sp. that is resistant to environmental conditions. The authors recommended the development of biorafinery based on the production of algae for the biogas production. There are examples of using a multi-stage membrane system to purify the liquid fraction from digestate. After the initial UF, RO is used to remove ammonium nitrogen and COD. To obtain a permeate with a concentration of ammonium nitrogen allowing to discharge it into the environment, it was necessary to apply three-stage RO. The composition of the permeate after two-stage RO was: COD 50–60 mg/dm³, dry solids 0 mg/dm³, ammonium nitrogen 300–320 mg/dm³, total nitrogen 320–340 mg/dm³, total phosphorus 53 mg/dm³. However compostion of permeate after three-stage RO was: COD < 5 mg/dm³, dry solids 0 mg/dm³, ammonium nitrogen 0 mg/dm³, total nitrogen 3.5 mg/dm³, total phosphorus < 0,05 mg/dm³. Last stage of RO might be replaced by ion exchange process. The negative aspect of membrane filtration systems is the fact that the permeate is about 50% of the introduced volume, the remainder is the retentate. The management of a retentate might involve recirculation to a biogas plant.Keywords: digestate, membrane filtration, microalgae cultivation, Chlorella sp.
Procedia PDF Downloads 3511238 Review of Modern Gas turbine Blade Cooling Technologies used in Aircraft
Authors: Arun Prasath Subramanian
Abstract:
The turbine Inlet Temperature is an important parameter which determines the efficiency of a gas turbine engine. The increase in this parameter is limited by material constraints of the turbine blade.The modern Gas turbine blade has undergone a drastic change from a simple solid blade to a modern multi-pass blade with internal and external cooling techniques. This paper aims to introduce the reader the concept of turbine blade cooling, the classification of techniques and further explain some of the important internal cooling technologies used in a modern gas turbine blade along with the various factors that affect the cooling effectiveness.Keywords: gas turbine blade, cooling technologies, internal cooling, pin-fin cooling, jet impingement cooling, rib turbulated cooling, metallic foam cooling
Procedia PDF Downloads 3171237 Multiperson Drone Control with Seamless Pilot Switching Using Onboard Camera and Openpose Real-Time Keypoint Detection
Authors: Evan Lowhorn, Rocio Alba-Flores
Abstract:
Traditional classification Convolutional Neural Networks (CNN) attempt to classify an image in its entirety. This becomes problematic when trying to perform classification with a drone’s camera in real-time due to unpredictable backgrounds. Object detectors with bounding boxes can be used to isolate individuals and other items, but the original backgrounds remain within these boxes. These basic detectors have been regularly used to determine what type of object an item is, such as “person” or “dog.” Recent advancement in computer vision, particularly with human imaging, is keypoint detection. Human keypoint detection goes beyond bounding boxes to fully isolate humans and plot points, or Regions of Interest (ROI), on their bodies within an image. ROIs can include shoulders, elbows, knees, heads, etc. These points can then be related to each other and used in deep learning methods such as pose estimation. For drone control based on human motions, poses, or signals using the onboard camera, it is important to have a simple method for pilot identification among multiple individuals while also giving the pilot fine control options for the drone. To achieve this, the OpenPose keypoint detection network was used with body and hand keypoint detection enabled. OpenPose supports the ability to combine multiple keypoint detection methods in real-time with a single network. Body keypoint detection allows simple poses to act as the pilot identifier. The hand keypoint detection with ROIs for each finger can then offer a greater variety of signal options for the pilot once identified. For this work, the individual must raise their non-control arm to be identified as the operator and send commands with the hand on their other arm. The drone ignores all other individuals in the onboard camera feed until the current operator lowers their non-control arm. When another individual wish to operate the drone, they simply raise their arm once the current operator relinquishes control, and then they can begin controlling the drone with their other hand. This is all performed mid-flight with no landing or script editing required. When using a desktop with a discrete NVIDIA GPU, the drone’s 2.4 GHz Wi-Fi connection combined with OpenPose restrictions to only body and hand allows this control method to perform as intended while maintaining the responsiveness required for practical use.Keywords: computer vision, drone control, keypoint detection, openpose
Procedia PDF Downloads 1831236 Clustering-Based Detection of Alzheimer's Disease Using Brain MR Images
Authors: Sofia Matoug, Amr Abdel-Dayem
Abstract:
This paper presents a comprehensive survey of recent research studies to segment and classify brain MR (magnetic resonance) images in order to detect significant changes to brain ventricles. The paper also presents a general framework for detecting regions that atrophy, which can help neurologists in detecting and staging Alzheimer. Furthermore, a prototype was implemented to segment brain MR images in order to extract the region of interest (ROI) and then, a classifier was employed to differentiate between normal and abnormal brain tissues. Experimental results show that the proposed scheme can provide a reliable second opinion that neurologists can benefit from.Keywords: Alzheimer, brain images, classification techniques, Magnetic Resonance Images MRI
Procedia PDF Downloads 3001235 Simulation of 3-D Direction-of-Arrival Estimation Using MUSIC Algorithm
Authors: Duckyong Kim, Jong Kang Park, Jong Tae Kim
Abstract:
DOA (Direction of Arrival) estimation is an important method in array signal processing and has a wide range of applications such as direction finding, beam forming, and so on. In this paper, we briefly introduce the MUSIC (Multiple Signal Classification) Algorithm, one of DOA estimation methods for analyzing several targets. Then we apply the MUSIC algorithm to the two-dimensional antenna array to analyze DOA estimation in 3D space through MATLAB simulation. We also analyze the design factors that can affect the accuracy of DOA estimation through simulation, and proceed with further consideration on how to apply the system.Keywords: DOA estimation, MUSIC algorithm, spatial spectrum, array signal processing
Procedia PDF Downloads 3771234 Interpretation of the Russia-Ukraine 2022 War via N-Gram Analysis
Authors: Elcin Timur Cakmak, Ayse Oguzlar
Abstract:
This study presents the results of the tweets sent by Twitter users on social media about the Russia-Ukraine war by bigram and trigram methods. On February 24, 2022, Russian President Vladimir Putin declared a military operation against Ukraine, and all eyes were turned to this war. Many people living in Russia and Ukraine reacted to this war and protested and also expressed their deep concern about this war as they felt the safety of their families and their futures were at stake. Most people, especially those living in Russia and Ukraine, express their views on the war in different ways. The most popular way to do this is through social media. Many people prefer to convey their feelings using Twitter, one of the most frequently used social media tools. Since the beginning of the war, it is seen that there have been thousands of tweets about the war from many countries of the world on Twitter. These tweets accumulated in data sources are extracted using various codes for analysis through Twitter API and analysed by Python programming language. The aim of the study is to find the word sequences in these tweets by the n-gram method, which is known for its widespread use in computational linguistics and natural language processing. The tweet language used in the study is English. The data set consists of the data obtained from Twitter between February 24, 2022, and April 24, 2022. The tweets obtained from Twitter using the #ukraine, #russia, #war, #putin, #zelensky hashtags together were captured as raw data, and the remaining tweets were included in the analysis stage after they were cleaned through the preprocessing stage. In the data analysis part, the sentiments are found to present what people send as a message about the war on Twitter. Regarding this, negative messages make up the majority of all the tweets as a ratio of %63,6. Furthermore, the most frequently used bigram and trigram word groups are found. Regarding the results, the most frequently used word groups are “he, is”, “I, do”, “I, am” for bigrams. Also, the most frequently used word groups are “I, do, not”, “I, am, not”, “I, can, not” for trigrams. In the machine learning phase, the accuracy of classifications is measured by Classification and Regression Trees (CART) and Naïve Bayes (NB) algorithms. The algorithms are used separately for bigrams and trigrams. We gained the highest accuracy and F-measure values by the NB algorithm and the highest precision and recall values by the CART algorithm for bigrams. On the other hand, the highest values for accuracy, precision, and F-measure values are achieved by the CART algorithm, and the highest value for the recall is gained by NB for trigrams.Keywords: classification algorithms, machine learning, sentiment analysis, Twitter
Procedia PDF Downloads 731233 Quantitative Texture Analysis of Shoulder Sonography for Rotator Cuff Lesion Classification
Authors: Chung-Ming Lo, Chung-Chien Lee
Abstract:
In many countries, the lifetime prevalence of shoulder pain is up to 70%. In America, the health care system spends 7 billion per year about the healthy issues of shoulder pain. With respect to the origin, up to 70% of shoulder pain is attributed to rotator cuff lesions This study proposed a computer-aided diagnosis (CAD) system to assist radiologists classifying rotator cuff lesions with less operator dependence. Quantitative features were extracted from the shoulder ultrasound images acquired using an ALOKA alpha-6 US scanner (Hitachi-Aloka Medical, Tokyo, Japan) with linear array probe (scan width: 36mm) ranging from 5 to 13 MHz. During examination, the postures of the examined patients are standard sitting position and are followed by the regular routine. After acquisition, the shoulder US images were drawn out from the scanner and stored as 8-bit images with pixel value ranging from 0 to 255. Upon the sonographic appearance, the boundary of each lesion was delineated by a physician to indicate the specific pattern for analysis. The three lesion categories for classification were composed of 20 cases of tendon inflammation, 18 cases of calcific tendonitis, and 18 cases of supraspinatus tear. For each lesion, second-order statistics were quantified in the feature extraction. The second-order statistics were the texture features describing the correlations between adjacent pixels in a lesion. Because echogenicity patterns were expressed via grey-scale. The grey-scale co-occurrence matrixes with four angles of adjacent pixels were used. The texture metrics included the mean and standard deviation of energy, entropy, correlation, inverse different moment, inertia, cluster shade, cluster prominence, and Haralick correlation. Then, the quantitative features were combined in a multinomial logistic regression classifier to generate a prediction model of rotator cuff lesions. Multinomial logistic regression classifier is widely used in the classification of more than two categories such as the three lesion types used in this study. In the classifier, backward elimination was used to select a feature subset which is the most relevant. They were selected from the trained classifier with the lowest error rate. Leave-one-out cross-validation was used to evaluate the performance of the classifier. Each case was left out of the total cases and used to test the trained result by the remaining cases. According to the physician’s assessment, the performance of the proposed CAD system was shown by the accuracy. As a result, the proposed system achieved an accuracy of 86%. A CAD system based on the statistical texture features to interpret echogenicity values in shoulder musculoskeletal ultrasound was established to generate a prediction model for rotator cuff lesions. Clinically, it is difficult to distinguish some kinds of rotator cuff lesions, especially partial-thickness tear of rotator cuff. The shoulder orthopaedic surgeon and musculoskeletal radiologist reported greater diagnostic test accuracy than general radiologist or ultrasonographers based on the available literature. Consequently, the proposed CAD system which was developed according to the experiment of the shoulder orthopaedic surgeon can provide reliable suggestions to general radiologists or ultrasonographers. More quantitative features related to the specific patterns of different lesion types would be investigated in the further study to improve the prediction.Keywords: shoulder ultrasound, rotator cuff lesions, texture, computer-aided diagnosis
Procedia PDF Downloads 2841232 Assessment of Agricultural Land Use Land Cover, Land Surface Temperature and Population Changes Using Remote Sensing and GIS: Southwest Part of Marmara Sea, Turkey
Authors: Melis Inalpulat, Levent Genc
Abstract:
Land Use Land Cover (LULC) changes due to human activities and natural causes have become a major environmental concern. Assessment of temporal remote sensing data provides information about LULC impacts on environment. Land Surface Temperature (LST) is one of the important components for modeling environmental changes in climatological, hydrological, and agricultural studies. In this study, LULC changes (September 7, 1984 and July 8, 2014) especially in agricultural lands together with population changes (1985-2014) and LST status were investigated using remotely sensed and census data in South Marmara Watershed, Turkey. LULC changes were determined using Landsat TM and Landsat OLI data acquired in 1984 and 2014 summers. Six-band TM and OLI images were classified using supervised classification method to prepare LULC map including five classes including Forest (F), Grazing Land (G), Agricultural Land (A), Water Surface (W), and Residential Area-Bare Soil (R-B) classes. The LST image was also derived from thermal bands of the same dates. LULC classification results showed that forest areas, agricultural lands, water surfaces and residential area-bare soils were increased as 65751 ha, 20163 ha, 1924 ha and 20462 ha respectively. In comparison, a dramatic decrement occurred in grazing land (107985 ha) within three decades. The population increased % 29 between years 1984-2014 in whole study area. Along with the natural causes, migration also caused this increase since the study area has an important employment potential. LULC was transformed among the classes due to the expansion in residential, commercial and industrial areas as well as political decisions. In the study, results showed that agricultural lands around the settlement areas transformed to residential areas in 30 years. The LST images showed that mean temperatures were ranged between 26-32 °C in 1984 and 27-33 °C in 2014. Minimum temperature of agricultural lands was increased 3 °C and reached to 23 °C. In contrast, maximum temperature of A class decreased to 41 °C from 44 °C. Considering temperatures of the 2014 R-B class and 1984 status of same areas, it was seen that mean, min and max temperatures increased by 2 °C. As a result, the dynamism of population, LULC and LST resulted in increasing mean and maximum surface temperatures, living spaces/industrial areas and agricultural lands.Keywords: census data, landsat, land surface temperature (LST), land use land cover (LULC)
Procedia PDF Downloads 391