Search results for: multi-criteria decision approach
15725 Radar Fault Diagnosis Strategy Based on Deep Learning
Authors: Bin Feng, Zhulin Zong
Abstract:
Radar systems are critical in the modern military, aviation, and maritime operations, and their proper functioning is essential for the success of these operations. However, due to the complexity and sensitivity of radar systems, they are susceptible to various faults that can significantly affect their performance. Traditional radar fault diagnosis strategies rely on expert knowledge and rule-based approaches, which are often limited in effectiveness and require a lot of time and resources. Deep learning has recently emerged as a promising approach for fault diagnosis due to its ability to learn features and patterns from large amounts of data automatically. In this paper, we propose a radar fault diagnosis strategy based on deep learning that can accurately identify and classify faults in radar systems. Our approach uses convolutional neural networks (CNN) to extract features from radar signals and fault classify the features. The proposed strategy is trained and validated on a dataset of measured radar signals with various types of faults. The results show that it achieves high accuracy in fault diagnosis. To further evaluate the effectiveness of the proposed strategy, we compare it with traditional rule-based approaches and other machine learning-based methods, including decision trees, support vector machines (SVMs), and random forests. The results demonstrate that our deep learning-based approach outperforms the traditional approaches in terms of accuracy and efficiency. Finally, we discuss the potential applications and limitations of the proposed strategy, as well as future research directions. Our study highlights the importance and potential of deep learning for radar fault diagnosis. It suggests that it can be a valuable tool for improving the performance and reliability of radar systems. In summary, this paper presents a radar fault diagnosis strategy based on deep learning that achieves high accuracy and efficiency in identifying and classifying faults in radar systems. The proposed strategy has significant potential for practical applications and can pave the way for further research.Keywords: radar system, fault diagnosis, deep learning, radar fault
Procedia PDF Downloads 9015724 Case Study Analysis of 2017 European Railway Traffic Management Incident: The Application of System for Investigation of Railway Interfaces Methodology
Authors: Sanjeev Kumar Appicharla
Abstract:
This paper presents the results of the modelling and analysis of the European Railway Traffic Management (ERTMS) safety-critical incident to raise awareness of biases in the systems engineering process on the Cambrian Railway in the UK using the RAIB 17/2019 as a primary input. The RAIB, the UK independent accident investigator, published the Report- RAIB 17/2019 giving the details of their investigation of the focal event in the form of immediate cause, causal factors, and underlying factors and recommendations to prevent a repeat of the safety-critical incident on the Cambrian Line. The Systems for Investigation of Railway Interfaces (SIRI) is the methodology used to model and analyze the safety-critical incident. The SIRI methodology uses the Swiss Cheese Model to model the incident and identify latent failure conditions (potentially less than adequate conditions) by means of the management oversight and risk tree technique. The benefits of the systems for investigation of railway interfaces methodology (SIRI) are threefold: first is that it incorporates the “Heuristics and Biases” approach advanced by 2002 Nobel laureate in Economic Sciences, Prof Daniel Kahneman, in the management oversight and risk tree technique to identify systematic errors. Civil engineering and programme management railway professionals are aware of the role “optimism bias” plays in programme cost overruns and are aware of bow tie (fault and event tree) model-based safety risk modelling techniques. However, the role of systematic errors due to “Heuristics and Biases” is not appreciated as yet. This overcomes the problems of omission of human and organizational factors from accident analysis. Second, the scope of the investigation includes all levels of the socio-technical system, including government, regulatory, railway safety bodies, duty holders, signaling firms and transport planners, and front-line staff such that lessons are learned at the decision making and implementation level as well. Third, the author’s past accident case studies are supplemented with research pieces of evidence drawn from the practitioner's and academic researchers’ publications as well. This is to discuss the role of system thinking to improve the decision-making and risk management processes and practices in the IEC 15288 systems engineering standard and in the industrial context such as the GB railways and artificial intelligence (AI) contexts as well.Keywords: accident analysis, AI algorithm internal audit, bounded rationality, Byzantine failures, heuristics and biases approach
Procedia PDF Downloads 18815723 Monetary Evaluation of Dispatching Decisions in Consideration of Choice of Transport
Authors: Marcel Schneider, Nils Nießen
Abstract:
Microscopic simulation programs enable the description of the two processes of railway operation and the previous timetabling. Occupation conflicts are often solved based on defined train priorities on both process levels. These conflict resolutions produce knock-on delays for the involved trains. The sum of knock-on delays is commonly used to evaluate the quality of railway operations. It is either compared to an acceptable level-of-service or the delays are evaluated economically by linearly monetary functions. It is impossible to properly evaluate dispatching decisions without a well-founded objective function. This paper presents a new approach for evaluation of dispatching decisions. It uses models of choice of transport and considers the behaviour of the end-costumers. These models evaluate the knock-on delays in more detail than linearly monetary functions and consider other competing modes of transport. The new approach pursues the coupling of a microscopic model of railway operation with the macroscopic model of choice of transport. First it will be implemented for the railway operations process, but it can also be used for timetabling. The evaluation considers the possibility to change over to other transport modes by the end-costumers. The new approach first looks at the rail-mounted and road transport, but it can also be extended to air transport. The split of the end-costumers is described by the modal-split. The reactions by the end-costumers have an effect on the revenues of the railway undertakings. Various travel purposes has different pavement reserves and tolerances towards delays. Longer journey times affect besides revenue changes also additional costs. The costs depend either on time or track and arise from circulation of workers and vehicles. Only the variable values are summarised in the contribution margin, which is the base for the monetary evaluation of the delays. The contribution margin is calculated for different resolution decisions of the same conflict. The conflict resolution is improved until the monetary loss becomes minimised. The iterative process therefore determines an optimum conflict resolution by observing the change of the contribution margin. Furthermore, a monetary value of each dispatching decision can also be determined.Keywords: choice of transport, knock-on delays, monetary evaluation, railway operations
Procedia PDF Downloads 32615722 Budgetary Performance Model for Managing Pavement Maintenance
Authors: Vivek Hokam, Vishrut Landge
Abstract:
An ideal maintenance program for an industrial road network is one that would maintain all sections at a sufficiently high level of functional and structural conditions. However, due to various constraints such as budget, manpower and equipment, it is not possible to carry out maintenance on all the needy industrial road sections within a given planning period. A rational and systematic priority scheme needs to be employed to select and schedule industrial road sections for maintenance. Priority analysis is a multi-criteria process that determines the best ranking list of sections for maintenance based on several factors. In priority setting, difficult decisions are required to be made for selection of sections for maintenance. It is more important to repair a section with poor functional conditions which includes uncomfortable ride etc. or poor structural conditions i.e. sections those are in danger of becoming structurally unsound. It would seem therefore that any rational priority setting approach must consider the relative importance of functional and structural condition of the section. The maintenance priority index and pavement performance models tend to focus mainly on the pavement condition, traffic criteria etc. There is a need to develop the model which is suitably used with respect to limited budget provisions for maintenance of pavement. Linear programming is one of the most popular and widely used quantitative techniques. A linear programming model provides an efficient method for determining an optimal decision chosen from a large number of possible decisions. The optimum decision is one that meets a specified objective of management, subject to various constraints and restrictions. The objective is mainly minimization of maintenance cost of roads in industrial area. In order to determine the objective function for analysis of distress model it is necessary to fix the realistic data into a formulation. Each type of repair is to be quantified in a number of stretches by considering 1000 m as one stretch. A stretch considered under study is having 3750 m length. The quantity has to be put into an objective function for maximizing the number of repairs in a stretch related to quantity. The distress observed in this stretch are potholes, surface cracks, rutting and ravelling. The distress data is measured manually by observing each distress level on a stretch of 1000 m. The maintenance and rehabilitation measured that are followed currently are based on subjective judgments. Hence, there is a need to adopt a scientific approach in order to effectively use the limited resources. It is also necessary to determine the pavement performance and deterioration prediction relationship with more accurate and economic benefits of road networks with respect to vehicle operating cost. The infrastructure of road network should have best results expected from available funds. In this paper objective function for distress model is determined by linear programming and deterioration model considering overloading is discussed.Keywords: budget, maintenance, deterioration, priority
Procedia PDF Downloads 20715721 Data Management System for Environmental Remediation
Authors: Elizaveta Petelina, Anton Sizo
Abstract:
Environmental remediation projects deal with a wide spectrum of data, including data collected during site assessment, execution of remediation activities, and environmental monitoring. Therefore, an appropriate data management is required as a key factor for well-grounded decision making. The Environmental Data Management System (EDMS) was developed to address all necessary data management aspects, including efficient data handling and data interoperability, access to historical and current data, spatial and temporal analysis, 2D and 3D data visualization, mapping, and data sharing. The system focuses on support of well-grounded decision making in relation to required mitigation measures and assessment of remediation success. The EDMS is a combination of enterprise and desktop level data management and Geographic Information System (GIS) tools assembled to assist to environmental remediation, project planning, and evaluation, and environmental monitoring of mine sites. EDMS consists of seven main components: a Geodatabase that contains spatial database to store and query spatially distributed data; a GIS and Web GIS component that combines desktop and server-based GIS solutions; a Field Data Collection component that contains tools for field work; a Quality Assurance (QA)/Quality Control (QC) component that combines operational procedures for QA and measures for QC; Data Import and Export component that includes tools and templates to support project data flow; a Lab Data component that provides connection between EDMS and laboratory information management systems; and a Reporting component that includes server-based services for real-time report generation. The EDMS has been successfully implemented for the Project CLEANS (Clean-up of Abandoned Northern Mines). Project CLEANS is a multi-year, multimillion-dollar project aimed at assessing and reclaiming 37 uranium mine sites in northern Saskatchewan, Canada. The EDMS has effectively facilitated integrated decision-making for CLEANS project managers and transparency amongst stakeholders.Keywords: data management, environmental remediation, geographic information system, GIS, decision making
Procedia PDF Downloads 16115720 Optimizing Nature Protection and Tourism in Urban Parks
Authors: Milena Lakicevic
Abstract:
The paper deals with the problem of optimizing management options for urban parks within different scenarios of nature protection and tourism importance. The procedure is demonstrated on a case study example of urban parks in Novi Sad (Serbia). Six management strategies for the selected area have been processed by the decision support method PROMETHEE. Two criteria used for the evaluation were nature protection and tourism and each of them has been divided into a set of indicators: for nature protection those were biodiversity and preservation of original landscape, while for tourism those were recreation potential, aesthetic values, accessibility and culture features. It was pre-assumed that each indicator in a set is equally important to a corresponding criterion. This way, the research was focused on a sensitivity analysis of criteria weights. In other words, weights of indicators were fixed and weights of criteria altered along the entire scale (from the value of 0 to the value of 1), and the assessment has been performed in two-dimensional surrounding. As a result, one could conclude which management strategy would be the most appropriate along with changing of criteria importance. The final ranking of management alternatives was followed up by investigating the mean PROMETHEE Φ values for all options considered and when altering the importance of nature protection/tourism. This type of analysis enabled detecting an alternative with a solid performance along the entire scale, i.e., regardlessly of criteria importance. That management strategy can be seen as a compromise solution when the weight of criteria is not defined. As a conclusion, it can be said that, in some cases, instead of having criteria importance fixed it is important to test the outputs depending on the different schemes of criteria weighting. The research demonstrates the state of the final decision when the decision maker can estimate criteria importance, but also in cases when the importance of criteria is not established or known.Keywords: criteria weights, PROMETHEE, sensitivity analysis, urban parks
Procedia PDF Downloads 18615719 The Role of Bridging Stakeholder in Water Management: Examining Social Networks in Working Groups and Co-Management
Authors: Fariba Ebrahimi, Mehdi Ghorbani
Abstract:
Comprehensive water management considers economic, environmental, technical and social sustainability of water resources for future generations. Integrated water management implies cooperative approach and involves all stakeholders and also introduces issues to managers and decision makers. Solving these issues needs integrated and system approach according to the recognition of actors or key persons in necessary to apply cooperative management of water resources. Therefore, social network analysis can be used to demonstrate the most effective actors for environmental base decisions. The linkage of diverse sets of actors and knowledge systems across management levels and institutional boundaries often poses one of the greatest challenges in adaptive water management. Bridging stakeholder can facilitate interactions among actors in management settings by lowering the transaction costs of collaboration. This research examines how network connections between group members affect in co- management. Cohesive network structures allow groups to more effectively achieve their goals and objectives Strong; centralized leadership is a better predictor of working group success in achieving goals and objectives. Finally, geometric position of each actor was illustrated in the network. The results of the research based on between centrality index have a key and bridging actor in recognition of cooperative management of water resources in Darbandsar village and also will help managers and planners of water in the case of recognition to organization and implementation of sustainable management of water resources and water security.Keywords: co-management, water management, social network, bridging stakeholder, darbandsar village
Procedia PDF Downloads 30815718 Fitness Apparel and Body Cathexis of Women Consumers When and after Using Virtual Fitting Room
Authors: Almas Athif Fathin Wiyantoro, Fransiskus Xaverius Ivan Budiman, Fithra Faisal Hastiadi
Abstract:
The growth of clothing and technology as a marketing tool has a great influence on online business owners to know how much the characteristics and psychology of consumers in influencing purchasing decisions made by Indonesian women consumers. One of the most important issues faced by Indonesian women consumers is the suitability of clothing. The suitability of clothing can affect the body cathexis, identity, and confidence. So the thematic analysis of clothing fitness and body cathexis of women consumers when and after using virtual fitting room technology to purchase decision is important to do. This research using group method of pre-post treatment and considers how the recruitment technique of snowball sampling, which uses interpersonal relations and connections between people, both includes and excludes individuals into 39 participants' social networks to access specific populations. The results obtained from the study that the results of body scans and photos of virtual fitting room results can be made an intervention in women consumers in assessing their body cathexis objectively in the process of making purchasing decisions. The study also obtained a regression equation Y = 0.830 + 0.290X1 + 0.292X2, showing a positive relationship between suitability of clothing and body cathexis which influenced purchasing decisions on women consumers and after (personal and psychological factors) using virtual fitting room, meaning that all independent variables influence Positive towards the purchasing decision of the women consumers.Keywords: body cathexis, clothing fitness, purchasing decision making and virtual fitting room
Procedia PDF Downloads 21315717 Adopting Flocks of Birds Approach to Predator for Anomalies Detection on Industrial Control Systems
Abstract:
Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA) can be seen in many different critical infrastructures, from nuclear management to utility, medical equipment, power, waste and engine management on ships and planes. The role SCADA plays in critical infrastructure has resulted in a call to secure them. Many lives depend on it for daily activities and the attack vectors are becoming more sophisticated. Hence, the security of ICS is vital as malfunction of it might result in huge risk. This paper describes how the application of Prey Predator (PP) approach in flocks of birds could enhance the detection of malicious activities on ICS. The PP approach explains how these animals in groups or flocks detect predators by following some simple rules. They are not necessarily very intelligent animals but their approach in solving complex issues such as detection through corporation, coordination and communication worth emulating. This paper will emulate flocking behavior seen in birds in detecting predators. The PP approach will adopt six nearest bird approach in detecting any predator. Their local and global bests are based on the individual detection as well as group detection. The PP algorithm was designed following MapReduce methodology that follows a Split Detection Convergence (SDC) approach.Keywords: artificial life, industrial control system (ICS), IDS, prey predator (PP), SCADA, SDC
Procedia PDF Downloads 29915716 Presidential Interactions with Faculty Senates: Expectations and Practices
Authors: Michael T. Miller, G. David Gearhart
Abstract:
Shared governance is an important element in higher education decision making. Through the joint decision making process, faculty members are provided an opportunity to help shape the future of an institution while increasing support for decisions that are made. Presidents, those leaders who are legally bound to guide their institutions, must find ways to collaborate effectively with faculty members in making decisions, and the first step in this process is understanding when and how presidents and faculty leaders interact. In the current study, a national sample of college presidents reported their preparation for the presidency, their perceptions of the functions of a faculty senate, and ultimately, the locations for important interactions between presidents and faculty senates. Results indicated that presidents, regardless of their preparation, found official functions to be the most important for communicating, although, those presidents with academic backgrounds were more likely to perceive faculty senates as having a role in all aspects of an institutions management.Keywords: college faculty, college president, faculty senate, leadership
Procedia PDF Downloads 12315715 Evaluation of Environmental, Technical, and Economic Indicators of a Fused Deposition Modeling Process
Authors: M. Yosofi, S. Ezeddini, A. Ollivier, V. Lavaste, C. Mayousse
Abstract:
Additive manufacturing processes have changed significantly in a wide range of industries and their application progressed from rapid prototyping to production of end-use products. However, their environmental impact is still a rather open question. In order to support the growth of this technology in the industrial sector, environmental aspects should be considered and predictive models may help monitor and reduce the environmental footprint of the processes. This work presents predictive models based on a previously developed methodology for the environmental impact evaluation combined with a technical and economical assessment. Here we applied the methodology to the Fused Deposition Modeling process. First, we present the predictive models relative to different types of machines. Then, we present a decision-making tool designed to identify the optimum manufacturing strategy regarding technical, economic, and environmental criteria.Keywords: additive manufacturing, decision-makings, environmental impact, predictive models
Procedia PDF Downloads 12915714 Predictive Analysis of the Stock Price Market Trends with Deep Learning
Authors: Suraj Mehrotra
Abstract:
The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.Keywords: machine learning, testing set, artificial intelligence, stock analysis
Procedia PDF Downloads 9415713 An Approximation of Daily Rainfall by Using a Pixel Value Data Approach
Authors: Sarisa Pinkham, Kanyarat Bussaban
Abstract:
The research aims to approximate the amount of daily rainfall by using a pixel value data approach. The daily rainfall maps from the Thailand Meteorological Department in period of time from January to December 2013 were the data used in this study. The results showed that this approach can approximate the amount of daily rainfall with RMSE=3.343.Keywords: daily rainfall, image processing, approximation, pixel value data
Procedia PDF Downloads 38615712 Exchange Rate, Market Size and Human Capital Nexus Foreign Direct Investment: A Bound Testing Approach for Pakistan
Authors: Naveed Iqbal Chaudhry, Mian Saqib Mehmood, Asif Mehmood
Abstract:
This study investigates the motivators of foreign direct investment (FDI) which will provide a panacea tool and ground breaking results related to it in case of Pakistan. The study considers exchange rate, market size and human capital as the motivators for attracting FDI. In this regard, time series data on annual basis has been collected for the period 1985–2010 and an Augmented Dickey–Fuller (ADF) and Phillips–Perron (PP) unit root tests are utilized to determine the stationarity of the variables. A bound testing approach to co-integration was applied because the variables included in the model are at I(1) – first level stationary. The empirical findings of this study confirm the long run relationship among the variables. However, market size and human capital have strong positive and significant impact, in short and long-run, for attracting FDI but exchange rate shows negative impact in this regard. The significant negative coefficient of the ECM indicates that it converges towards equilibrium. CUSUM and CUSUMSQ tests plots are with in the lines of critical value, which indicates the stability of the estimated parameters. However, this model can be used by Pakistan in policy and decision making. For achieving higher economic growth and economies of scale, the country should concentrate on the ingredients of this study so that it could attract more FDI as compared to the other countries.Keywords: ARDL, CUSUM and CUSUMSQ tests, ECM, exchange rate, FDI, human capital, market size, Pakistan
Procedia PDF Downloads 38915711 Unveiling the Nexus: A Holistic Investigation on the Role of Cultural Beliefs and Family Dynamics in Shaping Maternal Health in Primigravida Women
Authors: Anum Obaid, Bushra Noor, Zoshia Zainab
Abstract:
In South Asian countries, Pakistan faces significant public health challenges regarding maternal and neonatal health (MNH). Despite global efforts to improve maternal, newborn, child, and health (MNCH) outcomes through initiatives like the Millennium Development Goals (MDGs) and Sustainable Development Goals (SDGs), high maternal and neonatal mortality rates persist. In patriarchal societies, cultural norms, family dynamics, and gender roles heavily influence healthcare accessibility and decision-making processes, often leading to delayed and inadequate maternal care. Addressing these socio-cultural barriers and enhancing healthcare resources is crucial to improving maternal health outcomes in areas like Faisalabad. A qualitative study was conducted involving two groups of informants: gynecologists practicing in private clinics and first-time pregnant women receiving care in government hospitals. Data collection included obtaining institutional permission, conducting semi-structured in-depth interviews, and using non-probability sampling techniques. A proactive strategy to overcome maternal health challenges involves using aversion therapy and disseminating knowledge among family members. This approach aims to foster a deep understanding within the family unit regarding the importance of maternal well-being, thereby creating a supportive environment and facilitating informed decision-making related to healthcare access and lifestyle choices. The findings indicate that maternal health is compromised both physiologically and psychologically, with significant implications for the baby's health. Mental well-being is profoundly affected, largely due to familial behavior and entrenched cultural taboos.Keywords: maternal health, neonatal health, socio-cultural norms, primigravida women, gynecologist, familial conduct, cultural taboos
Procedia PDF Downloads 3915710 Determination of the Bank's Customer Risk Profile: Data Mining Applications
Authors: Taner Ersoz, Filiz Ersoz, Seyma Ozbilge
Abstract:
In this study, the clients who applied to a bank branch for loan were analyzed through data mining. The study was composed of the information such as amounts of loans received by personal and SME clients working with the bank branch, installment numbers, number of delays in loan installments, payments available in other banks and number of banks to which they are in debt between 2010 and 2013. The client risk profile was examined through Classification and Regression Tree (CART) analysis, one of the decision tree classification methods. At the end of the study, 5 different types of customers have been determined on the decision tree. The classification of these types of customers has been created with the rating of those posing a risk for the bank branch and the customers have been classified according to the risk ratings.Keywords: client classification, loan suitability, risk rating, CART analysis
Procedia PDF Downloads 33715709 Person-Led Organizations Nurture Bullying Behavior: A Qualitative Study
Authors: Shreya Mishra, Manosi Chaudhuri, Ajoy K. Dey
Abstract:
Workplace bullying is a social phenomenon which has proved to be hazardous not only for employees’ well-being but also organizations. Despite being prevalent across geographical boundaries, Indian organizations have failed to acknowledge its vices. This paper aims to understand targets’ perception on what makes bullying nurture in organizations. The paper suggests that person-led Indian work settings give birth to bullying behavior as it lacks professional acumen and systems. An analysis of 13 in-depth interviews of employees from the organized sector suggests that organizations, where decision making lies with single individual, may be a hub of hostile behavior due to the culture which promotes ‘yesmanship’, ‘authoritarianism’ and/or blind belief of leaders on certain set of employees. The study used constructivist grounded theory approach, and the data was analyzed using R Based Qualitative Data Analysis (RQDA) software. Respondents reported that bullying behavior is taken lightly by the management with 'just ignore it' attitude. According to the respondents, the behavior prolong as the perpetrator have a direct approach to the top authority. The study concludes that person-led organizations may create a family-like environment which is favored by employees; however, authoritative leaders are unable to gain the trust of employees. Also, employees who are close to the leader may either be a perpetrator or a target of bullying. It is recommended that leaders in such organizations need to acknowledge the presence of bullying which affects an employees’ commitment towards their job and/or organization. They need to have an assertive check on individuals who hide behind ‘yesman’ attitude. This may help employees feel safe in such work settings.Keywords: constructivist grounded theory, person-led organization, RQDA, workplace bullying
Procedia PDF Downloads 20315708 Developmental Social Work: A Derailed Post-Apartheid Development Approach in South Africa
Authors: P. Mbecke
Abstract:
Developmental social welfare implemented through developmental social work is being applauded internationally as an approach that facilitates social development theory and practice. However, twenty-two years into democracy, there are no tangible evidences that the much-desired developmental social welfare approach has assisted the post-apartheid macroeconomic policy frameworks in addressing poverty and inequality, thus, the derailment of the post-apartheid development approach in South Africa. Based on the implementation research theory, and the literature review technique, this paper recognizes social work as a principal role-player in social development. It recommends the redesign and implementation of an effective developmental social welfare approach with specific strategies, programs, activities and sufficient resources aligned to and appropriate in delivering on the promises of the government’s macroeconomic policy frameworks. Such approach should be implemented by skilled and dedicated developmental social workers in order to achieve transformation in South Africa.Keywords: apartheid, developmental social welfare, developmental social work, inequality, poverty alleviation, social development, South Africa
Procedia PDF Downloads 36315707 European and Scandinavian Tourists' Perceptions and Desire to Travel in Ranong Province
Authors: Wipanee Maen-In
Abstract:
The objectives of the research are i) to study the motivations of european and scandinavian tourists who select Ranong province as their destinations ii) to study their perception towards the Ranong Province and iii) to study the visitors’ decision making while visiting Ranong Province. The samples of the study are 220 European and Scandinavian tourists’ visitors at the Ranong by accidental sampling and in clouding online questionnaires for 53 sampling. The data analysis includes Percentage, Frequency and One-way ANOVA. The findings from the research are the motivation level of the visitors is considered prominent, the average score of the motivational factors ranks higher than the average of the pull factors to visit the Ranong province when considering the factors analysis, the research shows that the reason that most tourists visit the Ranong is for relaxation while the purity of the natural mineral hot springs is the most important pull factor.Keywords: European and Scandinavian, Ranong province, tourists’ perceptions, visitors’ decision making
Procedia PDF Downloads 23215706 The Promotion Effects for a Supply Chain System with a Dominant Retailer
Authors: Tai-Yue Wang, Yi-Ho Chen
Abstract:
In this study, we investigate a two-echelon supply chain with two suppliers and three retailers among which one retailer dominates other retailers. A price competition demand function is used to model this dominant retailer, which is leading market. The promotion strategies and negotiation schemes are integrated to form decision-making models under different scenarios. These models are then formulated into different mathematical programming models. The decision variables such as promotional costs, retailer prices, wholesale price, and order quantity are included in these models. At last, the distributions of promotion costs under different cost allocation strategies are discussed. Finally, an empirical example used to validate our models. The results from this empirical example show that the profit model will create the largest profit for the supply chain but with different profit-sharing results. At the same time, the more risk a member can take, the more profits are distributed to that member in the utility model.Keywords: supply chain, price promotion, mathematical models, dominant retailer
Procedia PDF Downloads 39915705 Human-Automation Interaction in Law: Mapping Legal Decisions and Judgments, Cognitive Processes, and Automation Levels
Authors: Dovile Petkeviciute-Barysiene
Abstract:
Legal technologies not only create new ways for accessing and providing legal services but also transform the role of legal practitioners. Both lawyers and users of legal services expect automated solutions to outperform people with objectivity and impartiality. Although fairness of the automated decisions is crucial, research on assessing various characteristics of automated processes related to the perceived fairness has only begun. One of the major obstacles to this research is the lack of comprehensive understanding of what legal actions are automated and could be meaningfully automated, and to what extent. Neither public nor legal practitioners oftentimes cannot envision technological input due to the lack of general without illustrative examples. The aim of this study is to map decision making stages and automation levels which are and/or could be achieved in legal actions related to pre-trial and trial processes. Major legal decisions and judgments are identified during the consultations with legal practitioners. The dual-process model of information processing is used to describe cognitive processes taking place while making legal decisions and judgments during pre-trial and trial action. Some of the existing legal technologies are incorporated into the analysis as well. Several published automation level taxonomies are considered because none of them fit well into the legal context, as they were all created for avionics, teleoperation, unmanned aerial vehicles, etc. From the information processing perspective, analysis of the legal decisions and judgments expose situations that are most sensitive to cognitive bias, among others, also help to identify areas that would benefit from the automation the most. Automation level analysis, in turn, provides a systematic approach to interaction and cooperation between humans and algorithms. Moreover, an integrated map of legal decisions and judgments, information processing characteristics, and automation levels all together provide some groundwork for the research of legal technology perceived fairness and acceptance. Acknowledgment: This project has received funding from European Social Fund (project No 09.3.3-LMT-K-712-19-0116) under grant agreement with the Research Council of Lithuania (LMTLT).Keywords: automation levels, information processing, legal judgment and decision making, legal technology
Procedia PDF Downloads 14115704 Knowledge Discovery and Data Mining Techniques in Textile Industry
Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler
Abstract:
This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.Keywords: data mining, textile production, decision trees, classification
Procedia PDF Downloads 34915703 Employee Assessment Systems in the Structures of Corporate Groups
Authors: D. Bąk-Grabowska, K. Grzesik, A. Iwanicka, A. Jagoda
Abstract:
The process of human resources management in the structures of corporate groups demonstrates certain specificity, resulting from the division of decision-making and executive competencies, which occurs within these structures between a parent company and its subsidiaries. The subprocess of employee assessment is considered crucial, since it provides information for the implementation of personnel function. The empirical studies conducted in corporate groups, within which at least one company is located in Poland, confirmed the critical significance of employee assessment systems in the process of human resources management in corporate groups. Parent companies, most often, retain their decision-making authority within the framework of the discussed process and introduce uniform employee assessment and personnel controlling systems to subsidiary companies. However, the instruments for employee assessment applied in corporate groups do not present such specificity.Keywords: corporate groups, employee periodical assessment system, holding, human resources management
Procedia PDF Downloads 41815702 Determining the Policy Space of the Partido Socialista Obrero Español Government in Managing Spain's Economic and Financial Crisis
Authors: A. Pascual Ramsay
Abstract:
Accounts of the management of the economic and euro crisis in Spain have been dominated by an emphasis on external constraints. However, this approach leaves unanswered important questions about the role of domestic political factors. Using systematic qualitative primary research and employing elite interviewing and process tracing, this paper aims to fill this gap for the period of the Partido Socialista Obrero Español (PSOE) administration. The paper shows that domestic politics played a crucial role in the management of the crisis, most importantly by determining the shape of the measures undertaken. In its three distinct stages – downplaying/inaction, reaction/stimulus, and austerity/reform – the PSOE's response was certainly constrained by external factors, most notably EMU membership and the actions of sovereign-bond investors, the ECB and Germany. Yet while these external constraints forced the government to act, domestic political factors fundamentally shaped the content of key measures: the fiscal stimulus, the labour, financial and pension reforms, the refusal to accept a bailout or the reform of the Constitution. Seven factors were particularly influential: i) electoral and political cost, ii) party and partisanship, iii) organised interests, iv) domestic institutions, v) ideological preferences, vi) ineffective decision-making, and vii) judgement and personal characteristics of decision-makers. In conclusion, domestic politics played an important role in the management of the crisis, a role that has been underestimated by dominant approaches focusing on external constraints and weak domestic policy autonomy. The findings provide empirical evidence to support research agendas that identify significant state discretion in the face of international economic integration and an important role for domestic political factors such as institutions, material interests, partisanship and ideology in shaping economic outcomes.Keywords: economic crisis, Euro, PSOE, Spain
Procedia PDF Downloads 12015701 Classification Based on Deep Neural Cellular Automata Model
Authors: Yasser F. Hassan
Abstract:
Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.Keywords: cellular automata, neural cellular automata, deep learning, classification
Procedia PDF Downloads 19415700 IT and Security Experts' Innovation and Investment Front for IT-Entrepreneurship in Pakistan
Authors: Ahmed Mateen, Zhu Qingsheng, Muhammad Awais, Muhammad Yahya Saeed
Abstract:
This paper targets the rising factor of entrepreneurship innovation, which lacks in Pakistan as compared to the other countries or the regions like China, India, and Malaysia, etc. This is an exploratory and explanatory study. Major aspects have identified as the direction for the policymakers while highlighting the issues in true spirit. IT needs to be considered not only as a technology but also as itself growing as a new community. IT management processes are complex and broad, so generally requires extensive attention to the collective aspects of human variables, capital and technology. In addition, projects tend to have a special set of critical success factors, and if these are processed and given attention, it will improve the chances of successful implementation. This is only possible with state of the art intelligent decision support systems and accumulating IT staff to some extent in decision processes. This paper explores this issue carefully and discusses six issues to observe the implemented strength and possible enhancement.Keywords: security and defense forces, IT-incentives, big IT-players, IT-entrepreneurial-culture
Procedia PDF Downloads 21915699 Application of Deep Learning in Top Pair and Single Top Quark Production at the Large Hadron Collider
Authors: Ijaz Ahmed, Anwar Zada, Muhammad Waqas, M. U. Ashraf
Abstract:
We demonstrate the performance of a very efficient tagger applies on hadronically decaying top quark pairs as signal based on deep neural network algorithms and compares with the QCD multi-jet background events. A significant enhancement of performance in boosted top quark events is observed with our limited computing resources. We also compare modern machine learning approaches and perform a multivariate analysis of boosted top-pair as well as single top quark production through weak interaction at √s = 14 TeV proton-proton Collider. The most relevant known background processes are incorporated. Through the techniques of Boosted Decision Tree (BDT), likelihood and Multlayer Perceptron (MLP) the analysis is trained to observe the performance in comparison with the conventional cut based and count approachKeywords: top tagger, multivariate, deep learning, LHC, single top
Procedia PDF Downloads 11015698 PRISM: An Analytical Tool for Forest Plan Development
Authors: Dung Nguyen, Yu Wei, Eric Henderson
Abstract:
Analytical tools have been used for decades to assist in the development of forest plans. In 2016, a new decision support system, PRISM, was jointly developed by United States Forest Service (USFS) Northern Region and Colorado State University to support the forest planning process. Prism has a friendly user interface with functionality for database management, model development, data visualization, and sensitivity analysis. The software is tailored for USFS planning, but it is flexible enough to support planning efforts by other forestland owners and managers. Here, the core capability of PRISM and its applications in developing plans for several United States national forests are presented. The strengths of PRISM are also discussed to show its potential of being a preferable tool for managers and experts in the domain of forest management and planning.Keywords: decision support, forest management, forest plan, graphical user interface, software
Procedia PDF Downloads 10915697 The Relationship between Confidence, Accuracy, and Decision Making in a Mobile Review Program
Authors: Carla Van De Sande, Jana Vandenberg
Abstract:
Just like physical skills, cognitive skills grow rusty over time unless they are regularly used and practiced, so academic breaks can have negative consequences on student learning and success. The Keeping in School Shape (KiSS) program is an engaging, accessible, and cost-effective intervention that harnesses the benefits of retrieval practice by using technology to help students maintain proficiency over breaks from school by delivering a daily review problem via text message or email. A growth mindset is promoted through feedback messages encouraging students to try again if they get a problem wrong and to take on a challenging problem if they get a problem correct. This paper reports on the relationship between confidence, accuracy, and decision-making during the implementation of the KiSS Program at a large university during winter break for students enrolled in an engineering introductory Calculus course sequence.Keywords: growth mindset, learning loss, on-the-go learning, retrieval practice
Procedia PDF Downloads 20415696 Cognitive Characteristics of Industrial Workers in Fuzzy Risk Assessment
Authors: Hyeon-Kyo Lim, Sang-Hun Byun
Abstract:
Risk assessment is carried out in most industrial plants for accident prevention, but there exists insufficient data for statistical decision making. It is commonly said that risk can be expressed as a product of consequence and likelihood of a corresponding hazard factor. Eventually, therefore, risk assessment involves human decision making which cannot be objective per se. This study was carried out to comprehend perceptive characteristics of human beings in industrial plants. Subjects were shown a set of illustrations describing scenes of industrial plants, and were asked to assess the risk of each scene with not only linguistic variables but also numeric scores in the aspect of consequence and likelihood. After that, their responses were formulated as fuzzy membership functions, and compared with those of university students who had no experience of industrial works. The results showed that risk level of industrial workers were lower than those of any other groups, which implied that the workers might generally have a tendency to neglect more hazard factors in their work fields.Keywords: fuzzy, hazard, linguistic variable, risk assessment
Procedia PDF Downloads 253