Search results for: forest restoration project
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6192

Search results for: forest restoration project

5202 Coexistence and Conservation of Sympatric Large Carnivores in Gir Protected Area, Gujarat, Western India

Authors: Nazneen Zehra

Abstract:

Gir Protected Area (PA) is home to two sympatric large carnivores, the Asiatic lion and the common leopard, which share the same habitat. Understanding their interactions and coexistence is crucial for effective conservation management. From 2009 to 2012, we studied the availability and consumption of prey by these two carnivores to understand the dynamics of their interactions and coexistence. Ungulates provided approximately 3634.45 kg/km² of prey biomass, primarily composed of chital (ca. 2711.25 kg/km²), sambar (ca. 411.78 kg/km²), and nilgai (ca. 511.52 kg/km²). Other prey included peafowl (75.76 kg/km²) and langur (ca. 158.72 kg/km²). Both carnivores prioritized chital as their key prey species. The diet of Asiatic lions was predominantly composed of ungulates, with biomass contributions of chital (301.14 kg), sambar (378.75 kg), and nilgai (291.42 kg). Other prey species, such as peafowl and langur, contributed 1.36 kg and 2.40 kg, respectively, to the lions' diet. For leopards, the diet also heavily relied on chital (311.49 kg), followed by sambar (44.03 kg) and nilgai (172.78 kg). The biomass of other prey species in the leopards' diet included peafowl (2.08 kg) and langur (36.07 kg). Both species were found to primarily utilize teak-mixed forest, followed by riverine forest and teak-acacia-zizyphus habitats. The similarities in diet composition and habitat use indicate competition between these sympatric species. This competition may require one predator species to bear certain costs for the benefit of the other, which can influence conservation and management strategies. Effective conservation strategies are necessary to ensure the long-term survival of both the Asiatic lion and the common leopard equally and to maintain ecological balance in Gir PA.

Keywords: large carnivores, Gir PA, coexistence, resource utilization

Procedia PDF Downloads 28
5201 Empowering Volunteers at Tawanchai Centre for Patients with Cleft Lip and Palate

Authors: Suteera Pradubwong, Darawan Augsornwan, Pornpen Pathumwiwathana, Benjamas Prathanee, Bowornsilp Chowchuen

Abstract:

Background: Cleft lip and palate (CLP) congenital anomalies have a high prevalence in the Northeast of Thailand. A care team’s understand of treatment plan would help to guide the family of patients with CLP to achieve the treatment. Objectives: To examine the impact of the empowering volunteer project, established in the northeast Thailand. Materials and Methods: The Empowering Volunteer project was conducted in 2008 under the Tawanchai Royal Granted project. The patients and family’s general information, treatment, the group brainstorming, and satisfaction with the project were analyzed. Results: Participants were 12 children with CLP, their families and five volunteers with CLP; the participating patients were predominantly females and the mean, age was 12.2 years. The treatment comprised of speech training, dental hygiene care, bone graft and orthodontic treatment. Four issues were addressed including: problems in taking care of breast feeding; instructions’ needs for care at birth; difficulty in access information and society impact; and needs in having a network of volunteers. Conclusions: Empowering volunteer is important for holistic care of patients with CLP which provides easy access and multiple channels for patients and their families. It should be developed as part of the self-help and family support group, the development of community based team and comprehensive CLP care program.

Keywords: self-help and family support group, community based model, volunteer, cleft lip-cleft palate

Procedia PDF Downloads 278
5200 The ‘Quartered Head Technique’: A Simple, Reliable Way of Maintaining Leg Length and Offset during Total Hip Arthroplasty

Authors: M. Haruna, O. O. Onafowokan, G. Holt, K. Anderson, R. G. Middleton

Abstract:

Background: Requirements for satisfactory outcomes following total hip arthroplasty (THA) include restoration of femoral offset, version, and leg length. Various techniques have been described for restoring these biomechanical parameters, with leg length restoration being the most predominantly described. We describe a “quartered head technique” (QHT) which uses a stepwise series of femoral head osteotomies to identify and preserve the centre of rotation of the femoral head during THA in order to ensure reconstruction of leg length, offset and stem version, such that hip biomechanics are restored as near to normal as possible. This study aims to identify whether using the QHT during hip arthroplasty effectively restores leg length and femoral offset to within acceptable parameters. Methods: A retrospective review of 206 hips was carried out, leaving 124 hips in the final analysis. Power analysis indicated a minimum of 37 patients required. All operations were performed using an anterolateral approach by a single surgeon. All femoral implants were cemented, collarless, polished double taper CPT® stems (Zimmer, Swindon, UK). Both cemented, and uncemented acetabular components were used (Zimmer, Swindon, UK). Leg length, version, and offset were assessed intra-operatively and reproduced using the QHT. Post-operative leg length and femoral offset were determined and compared with the contralateral native hip, and the difference was then calculated. For the determination of leg length discrepancy (LLD), we used the method described by Williamson & Reckling, which has been shown to be reproducible with a measurement error of ±1mm. As a reference, the inferior margin of the acetabular teardrop and the most prominent point of the lesser trochanter were used. A discrepancy of less than 6mm LLD was chosen as acceptable. All peri-operative radiographs were assessed by two independent observers. Results: The mean absolute post-operative difference in leg length from the contralateral leg was +3.58mm. 84% of patients (104/124) had LLD within ±6mm of the contralateral limb. The mean absolute post-operative difference in offset from contralateral leg was +3.88mm (range -15 to +9mm, median 3mm). 90% of patients (112/124) were within ±6mm offset of the contralateral limb. There was no statistical difference noted between observer measurements. Conclusion: The QHT provides a simple, inexpensive yet effective method of maintaining femoral leg length and offset during total hip arthroplasty. Combining this technique with pre-operative templating or other techniques described may enable surgeons to reduce even further the discrepancies between pre-operative state and post-operative outcome.

Keywords: leg length discrepancy, technical tip, total hip arthroplasty, operative technique

Procedia PDF Downloads 81
5199 Using Project MIND - Math Is Not Difficult Strategies to Help Children with Autism Improve Mathematics Skills

Authors: Hui Fang Huang Su, Leanne Lai, Pei-Fen Li, Mei-Hwei Ho, Yu-Wen Chiu

Abstract:

This study aimed to provide a practical, systematic, and comprehensive intervention for children with Autism Spectrum Disorder (ASD). A pilot study of quasi-experimental pre-post intervention with control group design was conducted to evaluate if the mathematical intervention (Project MIND - Math Is Not Difficult) increases the math comprehension of children with ASD Children with ASD in the primary grades (K-1, 2) participated in math interventions to enhance their math comprehension and cognitive ability. The Bracken basic concept scale was used to evaluate subjects’ language skills, cognitive development, and school readiness. The study found that our systemic interventions of Project MIND significantly improved the mathematical and cognitive abilities in children with autism. The results of this study may lead to a major change in effective and adequate health care services for children with ASD and their families. All statistical analyses were performed with the IBM SPSS Statistics Version 25 for Windows. The significant level was set at 0.05 P-value.

Keywords: autism, mathematics, technology, family

Procedia PDF Downloads 105
5198 On the Application of Heuristics of the Traveling Salesman Problem for the Task of Restoring the DNA Matrix

Authors: Boris Melnikov, Dmitrii Chaikovskii, Elena Melnikova

Abstract:

The traveling salesman problem (TSP) is a well-known optimization problem that seeks to find the shortest possible route that visits a set of points and returns to the starting point. In this paper, we apply some heuristics of the TSP for the task of restoring the DNA matrix. This restoration problem is often considered in biocybernetics. For it, we must recover the matrix of distances between DNA sequences if not all the elements of the matrix under consideration are known at the input. We consider the possibility of using this method in the testing of distance calculation algorithms between a pair of DNAs to restore the partially filled matrix.

Keywords: optimization problems, DNA matrix, partially filled matrix, traveling salesman problem, heuristic algorithms

Procedia PDF Downloads 150
5197 Determination of Klebsiella Pneumoniae Susceptibility to Antibiotics Using Infrared Spectroscopy and Machine Learning Algorithms

Authors: Manal Suleiman, George Abu-Aqil, Uraib Sharaha, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman, Mahmoud Huleihel

Abstract:

Klebsiella pneumoniae is one of the most aggressive multidrug-resistant bacteria associated with human infections resulting in high mortality and morbidity. Thus, for an effective treatment, it is important to diagnose both the species of infecting bacteria and their susceptibility to antibiotics. Current used methods for diagnosing the bacterial susceptibility to antibiotics are time-consuming (about 24h following the first culture). Thus, there is a clear need for rapid methods to determine the bacterial susceptibility to antibiotics. Infrared spectroscopy is a well-known method that is known as sensitive and simple which is able to detect minor biomolecular changes in biological samples associated with developing abnormalities. The main goal of this study is to evaluate the potential of infrared spectroscopy in tandem with Random Forest and XGBoost machine learning algorithms to diagnose the susceptibility of Klebsiella pneumoniae to antibiotics within approximately 20 minutes following the first culture. In this study, 1190 Klebsiella pneumoniae isolates were obtained from different patients with urinary tract infections. The isolates were measured by the infrared spectrometer, and the spectra were analyzed by machine learning algorithms Random Forest and XGBoost to determine their susceptibility regarding nine specific antibiotics. Our results confirm that it was possible to classify the isolates into sensitive and resistant to specific antibiotics with a success rate range of 80%-85% for the different tested antibiotics. These results prove the promising potential of infrared spectroscopy as a powerful diagnostic method for determining the Klebsiella pneumoniae susceptibility to antibiotics.

Keywords: urinary tract infection (UTI), Klebsiella pneumoniae, bacterial susceptibility, infrared spectroscopy, machine learning

Procedia PDF Downloads 168
5196 The Role of Urban Development Patterns for Mitigating Extreme Urban Heat: The Case Study of Doha, Qatar

Authors: Yasuyo Makido, Vivek Shandas, David J. Sailor, M. Salim Ferwati

Abstract:

Mitigating extreme urban heat is challenging in a desert climate such as Doha, Qatar, since outdoor daytime temperature area often too high for the human body to tolerate. Recent studies demonstrate that cities in arid and semiarid areas can exhibit ‘urban cool islands’ - urban areas that are cooler than the surrounding desert. However, the variation of temperatures as a result of the time of day and factors leading to temperature change remain at the question. To address these questions, we examined the spatial and temporal variation of air temperature in Doha, Qatar by conducting multiple vehicle-base local temperature observations. We also employed three statistical approaches to model surface temperatures using relevant predictors: (1) Ordinary Least Squares, (2) Regression Tree Analysis and (3) Random Forest for three time periods. Although the most important determinant factors varied by day and time, distance to the coast was the significant determinant at midday. A 70%/30% holdout method was used to create a testing dataset to validate the results through Pearson’s correlation coefficient. The Pearson’s analysis suggests that the Random Forest model more accurately predicts the surface temperatures than the other methods. We conclude with recommendations about the types of development patterns that show the greatest potential for reducing extreme heat in air climates.

Keywords: desert cities, tree-structure regression model, urban cool Island, vehicle temperature traverse

Procedia PDF Downloads 392
5195 Determining the Sources of Sediment at Different Areas of the Catchment: A Case Study of Welbedacht Reservoir, South Africa

Authors: D. T. Chabalala, J. M. Ndambuki, M. F. Ilunga

Abstract:

Sedimentation includes the processes of erosion, transportation, deposition, and the compaction of sediment. Sedimentation in reservoir results in a decrease in water storage capacity, downstream problems involving aggregation and degradation, blockage of the intake, and change in water quality. A study was conducted in Caledon River catchment in the upstream of Welbedacht Reservoir located in the South Eastern part of Free State province, South Africa. The aim of this research was to investigate and develop a model for an Integrated Catchment Modelling of Sedimentation processes and management for the Welbedacht reservoir. Revised Universal Soil Loss Equation (RUSLE) was applied to determine sources of sediment at different areas of the catchment. The model has been also used to determine the impact of changes from management practice on erosion generation. The results revealed that the main sources of sediment in the watershed are cultivated land (273 ton per hectare), built up and forest (103.3 ton per hectare), and grassland, degraded land, mining and quarry (3.9, 9.8 and 5.3 ton per hectare) respectively. After application of soil conservation practices to developed Revised Universal Soil Loss Equation model, the results revealed that the total average annual soil loss in the catchment decreased by 76% and sediment yield from cultivated land decreased by 75%, while the built up and forest area decreased by 42% and 99% respectively. Thus, results of this study will be used by government departments in order to develop sustainable policies.

Keywords: Welbedacht reservoir, sedimentation, RUSLE, Caledon River

Procedia PDF Downloads 194
5194 Object-Based Image Analysis for Gully-Affected Area Detection in the Hilly Loess Plateau Region of China Using Unmanned Aerial Vehicle

Authors: Hu Ding, Kai Liu, Guoan Tang

Abstract:

The Chinese Loess Plateau suffers from serious gully erosion induced by natural and human causes. Gully features detection including gully-affected area and its two dimension parameters (length, width, area et al.), is a significant task not only for researchers but also for policy-makers. This study aims at gully-affected area detection in three catchments of Chinese Loess Plateau, which were selected in Changwu, Ansai, and Suide by using unmanned aerial vehicle (UAV). The methodology includes a sequence of UAV data generation, image segmentation, feature calculation and selection, and random forest classification. Two experiments were conducted to investigate the influences of segmentation strategy and feature selection. Results showed that vertical and horizontal root-mean-square errors were below 0.5 and 0.2 m, respectively, which were ideal for the Loess Plateau region. The segmentation strategy adopted in this paper, which considers the topographic information, and optimal parameter combination can improve the segmentation results. Besides, the overall extraction accuracy in Changwu, Ansai, and Suide achieved was 84.62%, 86.46%, and 93.06%, respectively, which indicated that the proposed method for detecting gully-affected area is more objective and effective than traditional methods. This study demonstrated that UAV can bridge the gap between field measurement and satellite-based remote sensing, obtaining a balance in resolution and efficiency for catchment-scale gully erosion research.

Keywords: unmanned aerial vehicle (UAV), object-analysis image analysis, gully erosion, gully-affected area, Loess Plateau, random forest

Procedia PDF Downloads 218
5193 Techniques for Seismic Strengthening of Historical Monuments from Diagnosis to Implementation

Authors: Mircan Kaya

Abstract:

A multi-disciplinary approach is required in any intervention project for historical monuments. Due to the complexity of their geometry, the variable and unpredictable characteristics of original materials used in their creation, heritage structures are peculiar. Their histories are often complex, and they require correct diagnoses to decide on the techniques of intervention. This approach should not only combine technical aspects but also historical research that may help discover phenomena involving structural issues, and acquire a knowledge of the structure on its concept, method of construction, previous interventions, process of damage, and its current state. In addition to the traditional techniques like bed joint reinforcement, the repairing, strengthening and restoration of historical buildings may require several other modern methods which may be described as innovative techniques like pre-stressing and post-tensioning, use of shape memory alloy devices and shock transmission units, shoring, drilling, and the use of stainless steel or titanium. Regardless of the method to be incorporated in the strengthening process, which can be traditional or innovative, it is crucial to recognize that structural strengthening is the process of upgrading the structural system of the existing building with the aim of improving its performance under existing and additional loads like seismic loads. This process is much more complex than dealing with a new construction, owing to the fact that there are several unknown factors associated with the structural system. Material properties, load paths, previous interventions, existing reinforcement are especially important matters to be considered. There are several examples of seismic strengthening with traditional and innovative techniques around the world, which will be discussed in this paper in detail, including their pros and cons. Ultimately, however, the main idea underlying the philosophy of a successful intervention with the most appropriate techniques of strengthening a historic monument should be decided by a proper assessment of the specific needs of the building.

Keywords: bed joint reinforcement, historical monuments, post-tensioning, pre-stressing, seismic strengthening, shape memory alloy devices, shock transmitters, tie rods

Procedia PDF Downloads 264
5192 Intrusion Detection in Cloud Computing Using Machine Learning

Authors: Faiza Babur Khan, Sohail Asghar

Abstract:

With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.

Keywords: cloud security, threats, machine learning, random forest, classification

Procedia PDF Downloads 320
5191 Effectiveness of Project Grit in Building Resilience among At-Risk Adolescents: A Case Study

Authors: Narash Narasimman, Calvin Leong Jia Jun, Raksha Karthik, Paul Englert

Abstract:

Background: Project Grit, a 12-week youth resilience program implemented by Impart and Spartans Boxing Club, aimed to help at-risk adolescents develop resilience through psychoeducation and mental health techniques for dealing with everyday stressors and adversity. The programme consists of two parts-1.5 hours of group therapy followed by 1 hour of boxing. Due to the novelty of the study, 6 male participants, aged 13 to 18, were recruited to participate in the study. Aim: This case study aims to examine the effectiveness of Project Grit in building resilience among at-risk adolescents. Methods: A case study design was employed to capture the complexity and uniqueness of the intervention, without oversimplifying or generalizing it. A 15-year-old male participant with a history of behavioural challenges, delinquency and gang involvement was selected for the study. Teacher, parent and child versions of the Strengths and Difficulties Questionnaire (SDQ) were administered to the facilitators, parents and participants respectively before and after the programme. Relevant themes from the qualitative interviews will be discussed. Results: Scores from all raters revealed improvements in most domains of the SDQ. Total difficulties scores across all raters improved from “very high” to “close to average”. High interrater reliability was observed (κ= .81). The participant reported learning methods to effectively deal with his everyday concerns using healthy coping strategies, developing a supportive social network, and building on his self efficacy. Themes from the subject’s report concurred with the improvement in SDQ scores. Conclusions: The findings suggest that Project Grit is a promising intervention for promoting resilience among at-risk adolescents. The teleological behaviourism framework and the combination of sports engagement and future orientation may be particularly effective in fostering resilience among this population. Further studies need to be conducted with a larger sample size to further validate the effectiveness of Project Grit.

Keywords: resilience, project grit, adolescents, at-risk, boxing, future orientation

Procedia PDF Downloads 63
5190 A Critical Examination of the Iranian National Legal Regulation of the Ecosystem of Lake Urmia

Authors: Siavash Ostovar

Abstract:

The Iranian national Law on the Ramsar Convention (officially known as the Convention of International Wetlands and Aquatic Birds' Habitat Wetlands) was approved by the Senate and became a law in 1974 after the ratification of the National Council. There are other national laws with the aim of preservation of environment in the country. However, Lake Urmia which is declared a wetland of international importance by the Ramsar Convention in 1971 and designated a UNESCO Biosphere Reserve in 1976 is now at the brink of total disappearance due mainly to the climate change, water mismanagement, dam construction, and agricultural deficiencies. Lake Urmia is located in the north western corner of Iran. It is the third largest salt water lake in the world and the largest lake in the Middle East. Locally, it is designated as a National Park. It is, indeed, a unique lake both nationally and internationally. This study investigated how effective the national legal regulation of the ecosystem of Lake Urmia is in Iran. To do so, the Iranian national laws as Enforcement of Ramsar Convention in the country including three nationally established laws of (i) Five sets of laws for the programme of economic, social and cultural development of Islamic Republic of Iran, (ii) The Iranian Penal Code, (iii) law of conservation, restoration and management of the country were investigated. Using black letter law methods, it was revealed that (i) regarding the national five sets of laws; the benchmark to force the implementation of the legislations and policies is not set clearly. In other words, there is no clear guarantee to enforce these legislations and policies at the time of deviation and violation; (ii) regarding the Penal Code, there is lack of determining the environmental crimes, determining appropriate penalties for the environmental crimes, implementing those penalties appropriately, monitoring and training programmes precisely; (iii) regarding the law of conservation, restoration and management, implementation of this regulation is adjourned to preparation, announcement and approval of several categories of enactments and guidelines. In fact, this study used a national environmental catastrophe caused by drying up of Lake Urmia as an excuse to direct the attention to the weaknesses of the existing national rules and regulations. Finally, as we all depend on the natural world for our survival, this study recommended further research on every environmental issue including the Lake Urmia.

Keywords: conservation, environmental law, Lake Urmia, national laws, Ramsar Convention, water management, wetlands

Procedia PDF Downloads 201
5189 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 134
5188 Bubble Scrum: How to Run in Organizations That Only Know How to Walk

Authors: Zaheer A. Ali, George Szabo

Abstract:

SCRUM has roots in software and web development and works very well on that in that space. However, any technical person who has watched a typical waterfall managed project spiral out of control or into an abyss, has thought: "there must be a better way". I will discuss how that thought leads naturally to adopting Agile principles and SCRUM, as well as how Agile and SCRUM can be implemented in large institutions with long histories via a method I developed: Bubble Scrum. We will also see how SCRUM can be implemented in interesting places outside of the technical sphere and also discuss where and how to subtly bring Agility and SCRUM into large, rigid, institutions.

Keywords: agile, enterprise-agile, agile at scale, agile transition, project management, scrum

Procedia PDF Downloads 162
5187 The Contemporary Format of E-Learning in Teaching Foreign Languages

Authors: Nataliya G. Olkhovik

Abstract:

Nowadays in the system of Russian higher medical education there have been undertaken initiatives that resulted in focusing on the resources of e-learning in teaching foreign languages. Obviously, the face-to-face communication in foreign languages bears much more advantages in terms of effectiveness in comparison with the potential of e-learning. Thus, we’ve faced the necessity of strengthening the capacity of e-learning via integration of active methods into the process of teaching foreign languages, such as project activity of students. Successful project activity of students should involve the following components: monitoring, control, methods of organizing the student’s activity in foreign languages, stimulating their interest in the chosen project, approaches to self-assessment and methods of raising their self-esteem. The contemporary methodology assumes the project as a specific method, which activates potential of a student’s cognitive function, emotional reaction, ability to work in the team, commitment, skills of cooperation and, consequently, their readiness to verbalize ideas, thoughts and attitudes. Verbal activity in the foreign language is a complex conception that consolidates both cognitive (involving speech) capacity and individual traits and attitudes such as initiative, empathy, devotion, responsibility etc. Once we organize the project activity by the means of e-learning within the ‘Foreign language’ discipline we have to take into consideration all mentioned above characteristics and work out an effective way to implement it into the teaching practice to boost its educational potential. We have integrated into the e-platform Moodle the module of project activity consisting of the following blocks of tasks that lead students to research, cooperate, strive to leadership, chase the goal and finally verbalize their intentions. Firstly, we introduce the project through activating self-activity of students by the tasks of the phase ‘Preparation of the project’: choose the topic and justify it; find out the problematic situation and its components; set the goals; create your team, choose the leader, distribute the roles in your team; make a written report on grounding the validity of your choices. Secondly, in the ‘Planning the project’ phase we ask students to represent the analysis of the problem in terms of reasons, ways and methods of solution and define the structure of their project (here students may choose oral or written presentation by drawing up the claim in the e-platform about their wish, whereas the teacher decides what form of presentation to prefer). Thirdly, the students have to design the visual aids, speech samples (functional phrases, introductory words, keywords, synonyms, opposites, attributive constructions) and then after checking, discussing and correcting with a teacher via the means of Moodle present it in front of the audience. And finally, we introduce the phase of self-reflection that aims to awake the inner desire of students to improve their verbal activity in a foreign language. As a result, by implementing the project activity into the e-platform and project activity, we try to widen the frameworks of a traditional lesson of foreign languages through tapping the potential of personal traits and attitudes of students.

Keywords: active methods, e-learning, improving verbal activity in foreign languages, personal traits and attitudes

Procedia PDF Downloads 105
5186 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 231
5185 Production and Valorization of Nano Lignins by Organosolv and Steam Explosion

Authors: V. Girard, I. Ziegler-Devin, H. Chapuis, N. Canilho, L. Marchal-Heussler, N. Brosse

Abstract:

Lignocellulosic biomass is made up of the three polymeric fractions that are cellulose, hemicellulose, and lignin, which are highly entangled. In this project, we are particularly interested in the under-valued lignin polymer, which is mainly used for thermal valorization. Lignin from Macro to Nanosize (LIMINA) project will first focus on the extraction of macro lignin from forestry waste (hardwood and softwood) by the mean of eco-friendly processes (organosolv and steam explosion) and then the valorization of nano lignins produced by using anti-solvent precipitation (UV-blocker, cosmetic, food products).

Keywords: nanolignin, nanoparticles, organosolv, steam explosion

Procedia PDF Downloads 130
5184 Financial Management Skills of Supreme Student Government Officers in the Schools Division of Quezon: Basis for Project Financial Literacy Information Program

Authors: Edmond Jaro Malihan

Abstract:

This study aimed to develop and propose Project Financial Literacy Information Program (FLIP) for the Schools Division of Quezon to improve the financial management skills of Supreme Student Government (SSG) officers across different school sizes. This employed a descriptive research design covering the participation of 424 selected SSG officers using purposive sampling procedures from the SDO-Quezon. The consultation was held with DepEd officials, budget officers, and financial advisors to validate the design of the self-made questionnaires in which the computed mean was verbally interpreted using the four-point Likert scale. The data gathered were presented and analyzed using weighted arithmetic mean and ANOVA test. Based on the findings, generally, SSG officers in the SDO-Quezon possess high financial management skills in terms of budget preparation, resource mobilization, and auditing and evaluation. The size of schools has no significant difference and does not contribute to the financial management skills of SSG officers, which they apply in implementing their mandated programs, projects, and activities (PPAs). The Project Financial Literacy Information Program (FLIP) was developed considering their general level of financial management skills and the launched PPAs by the organization. The project covered the suggested training program vital in conducting the Virtual Division Training on Financial Management Skills of the SSG officers.

Keywords: financial management skills, SSG officers, school size, financial literacy information program

Procedia PDF Downloads 73
5183 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors

Authors: Sudhir Kumar Singh, Debashish Chakravarty

Abstract:

Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.

Keywords: finite element method, geotechnical engineering, machine learning, slope stability

Procedia PDF Downloads 101
5182 Development of Industry Oriented Undergraduate Research Program

Authors: Sung Ryong Kim, Hyung Sup Han, Jae-Yup Kim

Abstract:

Many engineering students feel uncomfortable in solving the industry related problems. There are many ways to strengthen the engineering student’s ability to solve the assigned problem when they get a job. Korea National University of Transportation has developed an industry-oriented undergraduate research program (URP). An URP program is designed for engineering students to provide an experience of solving a company’s research problem. The URP project is carried out for 6 months. Each URP team consisted of 1 company mentor, 1 professor, and 3-4 engineering students. A team of different majors is strongly encouraged to integrate different perspectives of multidisciplinary background. The corporate research projects proposed by companies are chosen by the major-related student teams. A company mentor gives the detailed technical background of the project to the students, and he/she also provides a basic data, raw materials and so forth. The company allows students to use the company's research equipment. An assigned professor has adjusted the project scope and level to the student’s ability after discussing with a company mentor. Monthly meeting is used to check the progress, to exchange ideas, and to help the students. It is proven as an effective engineering education program not only to provide an experience of company research but also to motivate the students in their course work. This program provides a premier interdisciplinary platform for undergraduate students to perform the practical challenges encountered in their major-related companies and it is especially helpful for students who want to get a job from a company that proposed the project.

Keywords: company mentor, industry oriented, interdisciplinary platform, undergraduate research program

Procedia PDF Downloads 245
5181 Beyond Classic Program Evaluation and Review Technique: A Generalized Model for Subjective Distributions with Flexible Variance

Authors: Byung Cheol Kim

Abstract:

The Program Evaluation and Review Technique (PERT) is widely used for project management, but it struggles with subjective distributions, particularly due to its assumptions of constant variance and light tails. To overcome these limitations, we propose the Generalized PERT (G-PERT) model, which enhances PERT by incorporating variability in three-point subjective estimates. Our methodology extends the original PERT model to cover the full range of unimodal beta distributions, enabling the model to handle thick-tailed distributions and offering formulas for computing mean and variance. This maintains the simplicity of PERT while providing a more accurate depiction of uncertainty. Our empirical analysis demonstrates that the G-PERT model significantly improves performance, particularly when dealing with heavy-tail subjective distributions. In comparative assessments with alternative models such as triangular and lognormal distributions, G-PERT shows superior accuracy and flexibility. These results suggest that G-PERT offers a more robust solution for project estimation while still retaining the user-friendliness of the classic PERT approach.

Keywords: PERT, subjective distribution, project management, flexible variance

Procedia PDF Downloads 18
5180 Neural Network Based Approach of Software Maintenance Prediction for Laboratory Information System

Authors: Vuk M. Popovic, Dunja D. Popovic

Abstract:

Software maintenance phase is started once a software project has been developed and delivered. After that, any modification to it corresponds to maintenance. Software maintenance involves modifications to keep a software project usable in a changed or a changing environment, to correct discovered faults, and modifications, and to improve performance or maintainability. Software maintenance and management of software maintenance are recognized as two most important and most expensive processes in a life of a software product. This research is basing the prediction of maintenance, on risks and time evaluation, and using them as data sets for working with neural networks. The aim of this paper is to provide support to project maintenance managers. They will be able to pass the issues planned for the next software-service-patch to the experts, for risk and working time evaluation, and afterward to put all data to neural networks in order to get software maintenance prediction. This process will lead to the more accurate prediction of the working hours needed for the software-service-patch, which will eventually lead to better planning of budget for the software maintenance projects.

Keywords: laboratory information system, maintenance engineering, neural networks, software maintenance, software maintenance costs

Procedia PDF Downloads 358
5179 Schedule Risk Management for Complex Projects: The Royal Research Ship: Sir David Attenborough Case Study

Authors: Chatelier Charlene, Oyegoke Adekunle, Ajayi Saheed, Jeffries Andrew

Abstract:

This study seeks to understand Schedule Risk Assessments as a priori for better performance whilst exploring the strategies employed to deliver complex projects like the New Polar research ship. This high-profile vessel was offered to Natural Environment Research Council and British Antarctic Survey (BAS) by Cammell Laird Shipbuilders. The Research Ship was designed to support science in extreme environments, with the expectancy to provide a wide range of specialist scientific facilities, instruments, and laboratories to conduct research over multiple disciplines. Aim: The focus is to understand the allocation and management of schedule risk on such a Major Project. Hypothesising that "effective management of schedule risk management" could be the most critical factor in determining whether the intended benefits mentioned are delivered within time and cost constraints. Objective 1: Firstly, the study seeks to understand the allocation and management of schedule risk in Major Projects. Objective 2: Secondly, it explores "effective management of schedule risk management" as the most critical factor determining the delivery of intended benefits. Methodology: This study takes a retrospective review of schedule risk management and how it influences project performance using a case study approach for the RRS (Royal Research Ship) Sir David Attenborough. Research Contribution: The outcomes of this study will contribute to a better understanding of project performance whilst building on its under-researched relationship to schedule risk management for complex projects. The outcomes of this paper will guide further research on project performance and enable the understanding of how risk-based estimates over time impact the overall risk management of the project.

Keywords: complexity, major projects, performance management, schedule risk management, uncertainty

Procedia PDF Downloads 97
5178 Comparison of Different Machine Learning Algorithms for Solubility Prediction

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.

Keywords: random forest, machine learning, comparison, feature extraction

Procedia PDF Downloads 40
5177 An Inclusion Project for Deaf Children into a Northern Italy Contest

Authors: G. Tamanza, A. Bossoni

Abstract:

84 deaf students (from primary school to college) and their families participated in this inclusion project in cooperation with numerous institutions in northern Italy (Brescia-Lombardy). Participants were either congenitally deaf or their deafness was related to other pathologies. This research promoted the integration of deaf students as they pass from primary school to high school to college. Learning methods and processes were studied that focused on encour­aging individual autonomy and socialization. The research team and its collaborators included school teachers, speech ther­apists, psychologists and home tutors, as well as teaching assistants, child neuropsychiatrists and other external authorities involved with deaf persons social inclusion programs. Deaf children and their families were supported, in terms of inclusion, and were made aware of the research team that focused on the Bisogni Educativi Speciali (BES or Special Educational Needs) (L.170/2010 - DM 5669/2011). This project included a diagnostic and evaluative phase as well as an operational one. Results demonstrated that deaf children were highly satisfied and confident; academic performance improved and collaboration in school increased. Deaf children felt that they had access to high school and college. Empowerment for the families of deaf children in terms of networking among local services that deal with the deaf also improved while family satisfaction also improved. We found that teachers and those who gave support to deaf children increased their professional skills. Achieving autonomy, instrumental, communicative and relational abilities were also found to be crucial. Project success was determined by temporal continuity, clear theoretical methodology, strong alliance for the project direction and a resilient team response.

Keywords: autonomy, inclusion, skills, well-being

Procedia PDF Downloads 288
5176 The Post-Hegemony of Post-Capitalism: Towards a Political Theory of Open Cooperativism

Authors: Vangelis Papadimitropoulos

Abstract:

The paper is part of the research project “Techno-Social Innovation in the Collaborative Economy'', funded by the Hellenic Foundation of Research and Innovation for the years 2022-2024. The research project examines the normative and empirical conditions of grassroots technologically driven innovation, potentially enabling the transition towards a commons-oriented post-capitalist economy. The project carries out a conceptually led and empirically grounded multi-case study of the digital commons, open-source technologies, platform cooperatives, open cooperatives and Distributed Autonomous Organizations (DAOs) on the Blockchain. The methodological scope of research is interdisciplinary inasmuch as it comprises political theory, economics, sustainability science and computer science, among others. The research draws specifically on Michel Bauwens and Vasilis Kostakis' model of open cooperativism between the commons, ethical market entities and a partner state. Bauwens and Kostakis advocate for a commons-based counter-hegemonic post-capitalist transition beyond and against neoliberalism. The research further employs Laclau and Mouffe's discourse theory of hegemony to introduce a post-hegemonic conceptualization of the model of open cooperativism. Thus, the paper aims to outline the theoretical contribution of the research project to contemporary political theory debates on post-capitalism and the collaborative economy.

Keywords: open cooperativism, techno-social innovation, post-hegemony, post-capitalism

Procedia PDF Downloads 66
5175 The Pedagogical Functions of Arts and Cultural-Heritage Education with ICTs in Museums – A Case Study of FINNA and Google Art

Authors: Pei Zhao, Sara Sintonen, Heikki Kynäslahti

Abstract:

Digital museums and arts galleries have become popular in museum education and management. Museum and arts galleries website is one of the most effective and efficient ways. Google, a corporation specializing in Internet-related services and projects, not only puts high-resolution arts images online, but also uses augmented-reality in digital art gallery. The Google Art Project, Google’s production, provides users a platform in appreciating and learning arts. After Google Art Project, more and more countries released their own museum and arts gallery websites, like British Paining in BBC, and FINNA in Finland. Pedagogical function in these websites is one of the most important functions. In this paper, we use Google Art Project and FINNA as the case studies to investigate what kinds of pedagogical functions exist in these websites. Finally, this paper will give the recommendation to digital museums and websites development, especially the pedagogical functions development, in the future.

Keywords: arts education, cultural-heritage education, education with ICTs, pedagogical functions

Procedia PDF Downloads 548
5174 Coprophagus Beetles (Scarabaeidae: Coleoptera) of Buxa Tiger Reserve, West Bengal, India

Authors: Subhankar Kumar Sarkar

Abstract:

Scarab beetles composing the family Scarabaeidae is one of the largest families in the order Coleoptera. The family is comprised of 11 subfamilies. Of these, the subfamily Scarabaeinae includes 13 tribes globally. Indian species are however considered within 2 tribes Scarabaeini and Coprini. Scarab beetles under this subfamily also known as Coprophagus beetles play an indispensable role in forestry and agriculture. Both adults and larvae of these beetles do a remarkable job of carrying excrement into the soil thus enriching the soil to a great extent. Eastern and North Eastern states of India are heavily rich in diversity of organisms as this region exhibits the tropical rain forests of the eastern Himalayas, which exhibits one of the 18 biodiversity hotspots of the world and one of the three of India. Buxa Tiger Reserve located in Dooars between latitudes 26°30” to 26°55” North & longitudes 89°20” to 89°35” East is one such fine example of rain forests of the eastern Himalayas. Despite this, the subfamily is poorly known, particularly from this part of the globe and demands serious revisionary studies. It is with this background; the attempt is being made to assess the Scarabaeinae fauna of the forest. Both extensive and intensive surveys were conducted in different beats under different ranges of Buxa Tiger Reserve. For collection sweep nets, bush beating and collection in inverted umbrella, hand picking techniques were used. Several pit fall traps were laid in the collection localities of the Reserve to trap ground dwelling scarabs. Dung of various animals was also examined to make collections. In the evening hours UV light, trap was used to collect nocturnal beetles. The collected samples were studied under Stereozoom Binocular Microscopes Zeiss SV6, SV11 and Olympus SZ 30. The faunistic investigation of the forest revealed in the recognition of 19 species under 6 genera distributed over 2 tribes. Of these Heliocopris tyrannus Thomson, 1859 was recorded new from the Country, while Catharsius javanus Lansberge, 1886, Copris corpulentus Gillet, 1910, C. doriae Harold, 1877 and C. sarpedon Harold, 1868 from the state. 4 species are recorded as endemic to India. The forest is dominated by the members of the Genus Onthophagus, of which Onthophagus (Colobonthophagus) dama (Fabricius, 1798) is represented by highest number of individuals. Their seasonal distribution is most during Premonsoon followed by Monsoon and Postmonsoon. Zoogeographically all the recorded species are of oriental distribution.

Keywords: buxa tiger reserve, diversity, India, new records, scarabaeinae, scarabaeidae

Procedia PDF Downloads 241
5173 The Implementation of the Lean Six Sigma Production Process in a Telecommunications Company in Brazil

Authors: Carlos Fontanillas

Abstract:

The implementation of the lean six sigma methodology aims to implement practices to systematically improve processes by eliminating defects, making them cheaper. The implementation of projects with the methodology uses a division into five phases: definition, measurement, analysis, implementation, and control. In this process, it is understood that the implementation of said methodology generates benefits to organizations that adhere through the improvement of their processes. In the case of a telecommunications company, it was realized that the implementation of a lean six sigma project contributed to the improvement of the presented process, generating a financial return with the avoided cost. However, such study has limitations such as a specific segment of performance and procedure, i.e., it can not be defined that return under other circumstances will be the same. It is also concluded that lean six sigma projects tend to contribute to improved processes evaluated due to their methodology that is based on statistical analysis and quality management tools and can generate a financial return. It is hoped that the present study can be used to provide a clearer view of the methodology for entrepreneurs who wish to implement process improvement actions in their companies, as well as to provide a foundation for professionals working with lean six sigma projects. After the review of the processes, the completion of the project stages and the monitoring for three months in partnership with the owner of the process to ensure the effectiveness of the actions, the project was completed with the objective reached. There was an average of 60% reduction with the issuance of undue invoices generated after the deactivation and it was possible to extend the project to other companies, which allowed a reduction well above the initially stipulated target.

Keywords: quality, process, lean six sigma, organization

Procedia PDF Downloads 129