Search results for: experimental investigation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11178

Search results for: experimental investigation

10188 Electro-Thermal Imaging of Breast Phantom: An Experimental Study

Authors: H. Feza Carlak, N. G. Gencer

Abstract:

To increase the temperature contrast in thermal images, the characteristics of the electrical conductivity and thermal imaging modalities can be combined. In this experimental study, it is objected to observe whether the temperature contrast created by the tumor tissue can be improved just due to the current application within medical safety limits. Various thermal breast phantoms are developed to simulate the female breast tissue. In vitro experiments are implemented using a thermal infrared camera in a controlled manner. Since experiments are implemented in vitro, there is no metabolic heat generation and blood perfusion. Only the effects and results of the electrical stimulation are investigated. Experimental study is implemented with two-dimensional models. Temperature contrasts due to the tumor tissues are obtained. Cancerous tissue is determined using the difference and ratio of healthy and tumor images. 1 cm diameter single tumor tissue causes almost 40 °mC temperature contrast on the thermal-breast phantom. Electrode artifacts are reduced by taking the difference and ratio of background (healthy) and tumor images. Ratio of healthy and tumor images show that temperature contrast is increased by the current application.

Keywords: medical diagnostic imaging, breast phantom, active thermography, breast cancer detection

Procedia PDF Downloads 422
10187 Comparison of the Effect of Strand Diameters, Providing Beam to Column Connection

Authors: Mustafa Kaya

Abstract:

In this study, the effect of pre-stressed strand diameters, providing the beam-to-column connections, was investigated from both experimental, and analytical aspects. In the experimental studies, the strength and stiffness, the capacities of the precast specimens were compared. The precast specimen with strands of 15.24 mm reached an equal strength of the reference specimen. Parallel results were obtained during the analytical studies from the aspects of strength, and behavior, but in terms of stiffness, it was seen that the initial stiffness of the analytical models was lower than that of the tested specimen.

Keywords: post-tensioned connections, beam to column connections, finite element method, strand diameter

Procedia PDF Downloads 326
10186 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts

Authors: Ş. Karabulut, A. Güllü, A. Güldaş, R. Gürbüz

Abstract:

This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.

Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis

Procedia PDF Downloads 443
10185 Prevalence of Iron Deficiency Anaemia and Its Impact on Nutritional Status of Rural Pregnant Women

Authors: Nuzhat Sultana

Abstract:

Iron deficiency (IDA) is the commonest nutritional anemia present in Indian pregnant women. The overall development of a fetus is determined to a great extent by the type of nourishment mother receives right from its conception. To study the risk factors of iron deficiency anemia, two hundred rural pregnant women in the age of 15-35 years in the second trimester of pregnancy from the countryside of Beed district was selected. These samples were divided into groups 'A' (experimental samples) and 'C' (control samples). Experimental samples were received oral supplementation of iron and folic acid for ninety days, but control samples did not receive any supplementation. All the samples were observed anthropometrically, biochemically and clinically before and after supplementation. The study result shows that maximum numbers of i.e. 75% pregnant women had low levels of weight and hemoglobin as compared to standard weight and HB level. However, after supplementation only in experimental group weight and HB level was increased. It was observed that prevalence of risk factors associated with anemia was higher in rural pregnant women. Poverty, illiteracy, faulty food habits, and poor intake of iron during pregnancy are the main causative factors for iron deficiency anemia in rural pregnant women.

Keywords: iron deficiency, anemia, risk factors, pregnancy

Procedia PDF Downloads 409
10184 Flexural Fatigue Performance of Self-Compacting Fibre Reinforced Concrete

Authors: Surinder Pal Singh, Sanjay Goel

Abstract:

The paper presents results of an investigation conducted to study the flexural fatigue characteristics of Self Compacting Concrete (SCC) and Self Compacting Fibre Reinforced Concrete (SCFRC). In total 360 flexural fatigue tests and 270 static flexural strength tests were conducted on SCC and SCFRC specimens to obtain the fatigue test data. The variability in the distribution of fatigue life of SCC and SCFRC have been analyzed and compared with that of NVC and NVFRC containing steel fibres of comparable size and shape. The experimental coefficients of fatigue equations have been estimated to represent relationship between stress level (S) and fatigue life (N) for SCC and SCFRC containing different fibre volume fractions. The probability of failure (Pf) has been incorporated in S-N relationships to obtain families of S-N-Pf relationships. A good agreement between the predicted curves and those obtained from the test data has been observed. The fatigue performance of SCC and SCFRC has been evaluated in terms of two-million cycles fatigue strength/endurance limit. The theoretic fatigue lives were also estimated using single-log fatigue equation for 10% probability of failure to estimate the enhanced extent of theoretic fatigue lives of SCFRC with reference to SCC and NVC. The reduction in variability in the fatigue life, increased endurance limit and increased theoretiac fatigue lives demonstrates an overall better fatigue performance for SCC and SCFRC.

Keywords: fatigue life, fibre, probability of failure, self-compacting concrete

Procedia PDF Downloads 350
10183 Surface Erosion and Slope Stability Assessment of Cut and Fill Slope

Authors: Kongrat Nokkaew

Abstract:

This article assessed the surface erosion and stability of cut and fill slope in the excavation of the detention basin, Kalasin Province, Thailand. The large excavation project was built to enlarge detention basin for relieving repeated flooding and drought which usually happen in this area. However, at the end of the 1st rainstorm season, severely erosions slope failures were widespread observed. After investigation, the severity of erosions and slope failure were classified into five level from sheet erosion (Level 1), rill erosion (Level 2, 3), gully erosion (Level 4), and slope failure (Level 5) for proposing slope remediation. The preliminary investigation showed that lack of runoff control were the major factors of the surface erosions while insufficient compacted of the fill slope leaded to slopes failures. The slope stability of four selected slope failure was back calculated by using Simplified Bishop with Seep-W. The result show that factor of safety of slope located on non-plasticity sand was less than one, representing instability of the embankment slope. Such analysis agreed well with the failures observed in the field.

Keywords: surface erosion, slope stability, detention basin, cut and fill

Procedia PDF Downloads 353
10182 Investigation of the NO2 Formation in the Exhaust Duct of a Dual Fuel Test Engine

Authors: Ehsan Arabian, Thomas Sattelmayer

Abstract:

The formation of nitrogen dioxide NO2 in the exhaust duct of a MAN dual fuel test engine has been investigated numerically. The dual fuel engine concept with premixed lean methane combustion ignited through diesel pilot flames reveals high potential for the abatement of the NOx formation. The drawback of this combustion method, however, is the high NO2 formation due to the increasing concentration of unburned hydrocarbons. This promotes the conversion of NO to NO2, which is toxic and characterized through its yellow color. The results presented in this paper cover a wide range of engine operation points from full load to part load for different air to fuel ratios. The effects of temperature, pressure and concentrations of unburned methane and nitric oxide on NO2 formation in the exhaust duct has been investigated on the basis of a zero-dimensional well stirred reactor model implemented in Cantera, which calculates the steady state of a uniform composition for a certain residence time. It can be shown that the simulated conversion of NO to NO2 match the experimental results fairly well. The partial oxidation of methane followed by CO production can be predicted as well. It can also be concluded that the lower temperature limit for which no conversion takes place, depends mainly on the concentration of the unburned hydrocarbons in the exhaust.

Keywords: cantera, dual fuel engines, exhaust tract, numerical modeling of NO2 formation, well stirred reactor

Procedia PDF Downloads 217
10181 Utilization of Bauxite Residue in Construction Materials: An Experimental Study

Authors: Ryan Masoodi, Hossein Rostami

Abstract:

Aluminum has been credited for the massive advancement of many industrial products, from aerospace and automotive to electronics and even household appliances. These developments have come with a cost, which is a toxic by-product. The rise of aluminum production has been accompanied by the rise of a waste material called Bauxite Residue or Red Mud. This toxic material has been proved to be harmful to the environment, yet, there is no proper way to dispose or recycle it. Herewith, a new experimental method to utilize this waste in the building material is proposed. A method to mix red mud, fly ash, and some other ingredients is explored to create a new construction material that can satisfy the minimum required strength for bricks. It concludes that it is possible to produce bricks with enough strength that is suitable for constriction in environments with low to moderate weather conditions.

Keywords: bauxite residue, brick, red mud, recycling

Procedia PDF Downloads 161
10180 Simulation of Scaled Model of Tall Multistory Structure: Raft Foundation for Experimental and Numerical Dynamic Studies

Authors: Omar Qaftan

Abstract:

Earthquakes can cause tremendous loss of human life and can result in severe damage to a several of civil engineering structures especially the tall buildings. The response of a multistory structure subjected to earthquake loading is a complex task, and it requires to be studied by physical and numerical modelling. For many circumstances, the scale models on shaking table may be a more economical option than the similar full-scale tests. A shaking table apparatus is a powerful tool that offers a possibility of understanding the actual behaviour of structural systems under earthquake loading. It is required to use a set of scaling relations to predict the behaviour of the full-scale structure. Selecting the scale factors is the most important steps in the simulation of the prototype into the scaled model. In this paper, the principles of scaling modelling procedure are explained in details, and the simulation of scaled multi-storey concrete structure for dynamic studies is investigated. A procedure for a complete dynamic simulation analysis is investigated experimentally and numerically with a scale factor of 1/50. The frequency domain accounting and lateral displacement for both numerical and experimental scaled models are determined. The procedure allows accounting for the actual dynamic behave of actual size porotype structure and scaled model. The procedure is adapted to determine the effects of the tall multi-storey structure on a raft foundation. Four generated accelerograms were used as inputs for the time history motions which are in complying with EC8. The output results of experimental works expressed regarding displacements and accelerations are compared with those obtained from a conventional fixed-base numerical model. Four-time history was applied in both experimental and numerical models, and they concluded that the experimental has an acceptable output accuracy in compare with the numerical model output. Therefore this modelling methodology is valid and qualified for different shaking table experiments tests.

Keywords: structure, raft, soil, interaction

Procedia PDF Downloads 129
10179 Optimization of Sequential Thermophilic Bio-Hydrogen/Methane Production from Mono-Ethylene Glycol via Anaerobic Digestion: Impact of Inoculum to Substrate Ratio and N/P Ratio

Authors: Ahmed Elreedy, Ahmed Tawfik

Abstract:

This investigation aims to assess the effect of inoculum to substrate ratio (ISR) and nitrogen to phosphorous balance on simultaneous biohydrogen and methane production from anaerobic decomposition of mono-ethylene glycol (MEG). Different ISRs were applied in the range between 2.65 and 13.23 gVSS/gCOD, whereas the tested N/P ratios were changed from 4.6 to 8.5; both under thermophilic conditions (55°C). The maximum obtained methane and hydrogen yields (MY and HY) of 151.86±10.8 and 22.27±1.1 mL/gCODinitial were recorded at ISRs of 5.29 and 3.78 gVSS/gCOD, respectively. Unlikely, the ammonification process, in terms of net ammonia produced, was found to be ISR and COD/N ratio dependent, reaching its peak value of 515.5±31.05 mgNH4-N/L at ISR and COD/N ratio of 13.23 gVSS/gCOD and 11.56. The optimum HY was enhanced by more than 1.45-fold with declining N/P ratio from 8.5 to 4.6; whereas, the MY was improved (1.6-fold), while increasing N/P ratio from 4.6 to 5.5 with no significant impact at N/P ratio of 8.5. The results obtained revealed that the methane production was strongly influenced by initial ammonia, compared to initial phosphate. Likewise, the generation of ammonia was markedly deteriorated from 535.25±41.5 to 238.33±17.6 mgNH4-N/L with increasing N/P ratio from 4.6 to 8.5. The kinetic study using Modified Gompertz equation was successfully fitted to the experimental outputs (R2 > 0.9761).

Keywords: mono-ethylene glycol, biohydrogen and methane, inoculum to substrate ratio, nitrogen to phosphorous balance, ammonification

Procedia PDF Downloads 376
10178 Hydraulic Performance of Curtain Wall Breakwaters Based on Improved Moving Particle Semi-Implicit Method

Authors: Iddy Iddy, Qin Jiang, Changkuan Zhang

Abstract:

This paper addresses the hydraulic performance of curtain wall breakwaters as a coastal structure protection based on the particles method modelling. The hydraulic functions of curtain wall as wave barriers by reflecting large parts of incident waves through the vertical wall, a part transmitted and a particular part was dissipating the wave energies through the eddy flows formed beneath the lower end of the plate. As a Lagrangian particle, the Moving Particle Semi-implicit (MPS) method which has a robust capability for numerical representation has proven useful for design of structures application that concern free-surface hydrodynamic flow, such as wave breaking and overtopping. In this study, a vertical two-dimensional numerical model for the simulation of violent flow associated with the interaction between the curtain-wall breakwaters and progressive water waves is developed by MPS method in which a higher precision pressure gradient model and free surface particle recognition model were proposed. The wave transmission, reflection, and energy dissipation of the vertical wall were experimentally and theoretically examined. With the numerical wave flume by particle method, very detailed velocity and pressure fields around the curtain-walls under the action of waves can be computed in each calculation steps, and the effect of different wave and structural parameters on the hydrodynamic characteristics was investigated. Also, the simulated results of temporal profiles and distributions of velocity and pressure in the vicinity of curtain-wall breakwaters are compared with the experimental data. Herein, the numerical investigation of hydraulic performance of curtain wall breakwaters indicated that the incident wave is largely reflected from the structure, while the large eddies or turbulent flows occur beneath the curtain-wall resulting in big energy losses. The improved MPS method shows a good agreement between numerical results and analytical/experimental data which are compared to related researches. It is thus verified that the improved pressure gradient model and free surface particle recognition methods are useful for enhancement of stability and accuracy of MPS model for water waves and marine structures. Therefore, it is possible for particle method (MPS method) to achieve an appropriate level of correctness to be applied in engineering fields through further study.

Keywords: curtain wall breakwaters, free surface flow, hydraulic performance, improved MPS method

Procedia PDF Downloads 146
10177 Numerical Investigation of Supertall Buildings and Using Aerodynamic Characteristics to Create New Wind Power Sources

Authors: Mohammad A. Masoumi, Mohammad Zare, Soroush Sabouki

Abstract:

This study investigates the aerodynamic characteristics of supertall buildings to evaluate wind turbine installation at high altitudes. Most recent studies have investigated supertall buildings at a horizontal plane, while a vertical plan could be as important, especially to install wind turbines. A typical square-plan building with a height of 500 m is investigated numerically at horizontal and vertical plans to evaluate wind power generation potentials. The results show good agreement with experimental data and past studies. Then four new geometries are proposed to improvise regions at high altitudes to install wind turbines. Evaluating the simulations shows two regions with high power density, which have the possibility to install wind turbines. Results show that improvised regions to install wind turbines at high altitudes contain significant power density while higher power density is found behind buildings in a far distance. In addition, power density fluctuations behind buildings are investigated, which show decreasing fluctuations by reaching 50 m altitude while altitudes lower than 20 m have the most fluctuations.

Keywords: wind power, supertall building, power density, aerodynamic characteristics, wind turbine mobile, quality assurance, testing, applications

Procedia PDF Downloads 162
10176 Oryzanol Recovery from Rice Bran Oil: Adsorption Equilibrium Models Through Kinetics Data Approachments

Authors: A.D. Susanti, W. B. Sediawan, S.K. Wirawan, Budhijanto, Ritmaleni

Abstract:

Oryzanol content in rice bran oil (RBO) naturally has high antioxidant activity. Its reviewed has several health properties and high interested in pharmacy, cosmetics, and nutrition’s. Because of the low concentration of oryzanol in crude RBO (0.9-2.9%) then its need to be further processed for practical usage, such as via adsorption process. In this study, investigation and adjustment of adsorption equilibrium models were conducted through the kinetic data approachments. Mathematical modeling on kinetics of batch adsorption of oryzanol separation from RBO has been set-up and then applied for equilibrium results. The size of adsorbent particles used in this case are usually relatively small then the concentration in the adsorbent is assumed to be not different. Hence, the adsorption rate is controlled by the rate of oryzanol mass transfer from the bulk fluid of RBO to the surface of silica gel. In this approachments, the rate of mass transfer is assumed to be proportional to the concentration deviation from the equilibrium state. The equilibrium models applied were Langmuir, coefficient distribution, and Freundlich with the values of the parameters obtained from equilibrium results. It turned out that the models set-up can quantitatively describe the experimental kinetics data and the adjustment of the values of equilibrium isotherm parameters significantly improves the accuracy of the model. And then the value of mass transfer coefficient per unit adsorbent mass (kca) is obtained by curve fitting.

Keywords: adsorption equilibrium, adsorption kinetics, oryzanol, rice bran oil

Procedia PDF Downloads 316
10175 The Effect of Sea Buckthorn (Hippophae rhamnoides L.) Berries on Some Quality Characteristics of Cooked Pork Sausages

Authors: Anna M. Salejda, Urszula Tril, Grażyna Krasnowska

Abstract:

The aim of this study was to analyze selected quality characteristics of cooked pork sausages manufactured with the addition of Sea buckthorn (Hippophae rhamnoides L.) berries preparations. Stuffings of model sausages consisted of pork, backfat, water and additives such a curing salt and sodium isoascorbate. Functional additives used in production process were two preparations obtained from dried Sea buckthorn berries in form of powder and brew. Powder of dried berries was added in amount of 1 and 3 g, while water infusion as a replacement of 50 and 100% ice water included in meat products formula. Control samples were produced without functional additives. Experimental stuffings were heat treated in water bath and stored for 4 weeks under cooled conditions (4±1ºC). Physical parameters of colour, texture profile and technological parameters as acidity, weight losses and water activity were estimated. The effect of Sea buckthorn berries preparations on lipid oxidation during storage of final products was determine by TBARS method. Studies have shown that addition of Sea buckthorn preparations to meat-fatty batters significant (P≤0.05) reduced the pH values of sausages samples after thermal treatment. Moreover, the addition of berries powder caused significant differences (P ≤ 0.05) in weight losses after cooking process. Analysis of results of texture profile analysis indicated, that utilization of infusion prepared from Sea buckthorn dried berries caused increase of springiness, gumminess and chewiness of final meat products. At the same time, the highest amount of Sea buckthorn berries powder in recipe caused the decrease of all measured texture parameters. Utilization of experimental preparations significantly decreased (P≤0.05) lightness (L* parameter of color) of meat products. Simultaneously, introduction of 1 and 3 grams of Sea buckthorn berries powder to meat-fatty batter increased redness (a* parameter) of samples under investigation. Higher content of substances reacting with thiobarbituric acid was observed in meat products produced without functional additives. It was observed that powder of Sea buckthorn berries added to meat-fatty batters caused higher protection against lipid oxidation in cooked sausages.

Keywords: sea buckthorn, meat products, texture, color parameters, lipid oxidation

Procedia PDF Downloads 292
10174 Thermodynamics of Random Copolymers in Solution

Authors: Maria Bercea, Bernhard A. Wolf

Abstract:

The thermodynamic behavior for solutions of poly (methyl methacrylate-ran-t-butyl methacrylate) of variable composition as compared with the corresponding homopolymers was investigated by light scattering measurements carried out for dilute solutions and vapor pressure measurements of concentrated solutions. The complex dependencies of the Flory Huggins interaction parameter on concentration and copolymer composition in solvents of different polarity (toluene and chloroform) can be understood by taking into account the ability of the polymers to rearrange in a response to changes in their molecular surrounding. A recent unified thermodynamic approach was used for modeling the experimental data, being able to describe the behavior of the different solutions by means of two adjustable parameters, one representing the effective number of solvent segments and another one accounting for the interactions between the components. Thus, it was investigated how the solvent quality changes with the composition of the copolymers through the Gibbs energy of mixing as a function of polymer concentration. The largest reduction of the Gibbs energy at a given composition of the system was observed for the best solvent. The present investigation proves that the new unified thermodynamic approach is a general concept applicable to homo- and copolymers, independent of the chain conformation or shape, molecular and chemical architecture of the components and of other dissimilarities, such as electrical charges.

Keywords: random copolymers, Flory Huggins interaction parameter, Gibbs energy of mixing, chemical architecture

Procedia PDF Downloads 277
10173 Effect of Instructional Materials on Academic Performance in Heat Transfer Concept among Secondary School Physics Students in Fagge Educational Zone, Kano State, Nigeria

Authors: Shehu Aliyu

Abstract:

This study investigated the effects of instructional materials on academic achievement among senior secondary school students on the concept of Heat Transfer in physics in Fagge Educational Zone, Kano State Nigeria. The population consisted of SSII students from 10 public schools. Out of this, 87 students were randomly selected from which 24 males and 22 females formed the experimental group and 41 students as control group. A quasi experiential design with pretest and post-test for both the groups was adopted. Two research questions and null hypotheses guided the conduct of the study. The experimental group was exposed to teaching using instructional materials while the control group was taught using the normal lecture mode. Head Transfer Performance Test (HTPT) was used for data collection. The instrument was validated by experts in the science education field. A Pearson Product Moment Correlation (PPMC) was used to determine the reliability co-efficient and was found to be r=0.83. The research questions were answered using descriptive statistics while the hypotheses were tested at p≤ 0.05 level of significance using t-test. The result obtained from the data analysis showed that students in experimental group performed significantly better than those in the control group and that there was no significant difference in the academic performance between male and female students in the experimental group. Based on the findings of this study, it was recommended among others that the physics teachers should be receiving regular training on the importance of using instructional materials whether ready made or improved in their teaching.

Keywords: heat transfer, physics, instructional materials, academic performance

Procedia PDF Downloads 175
10172 Experimental Verification of the Relationship between Physiological Indexes and the Presence or Absence of an Operation during E-learning

Authors: Masaki Omata, Shumma Hosokawa

Abstract:

An experiment to verify the relationships between physiological indexes of an e-learner and the presence or absence of an operation during e-learning is described. Electroencephalogram (EEG), hemoencephalography (HEG), skin conductance (SC), and blood volume pulse (BVP) values were measured while participants performed experimental learning tasks. The results show that there are significant differences between the SC values when reading with clicking on learning materials and the SC values when reading without clicking, and between the HEG ratio when reading (with and without clicking) and the HEG ratio when resting for four of five participants. We conclude that the SC signals can be used to estimate whether or not a learner is performing an active task and that the HEG ratios can be used to estimate whether a learner is learning.

Keywords: e-learning, physiological index, physiological signal, state of learning

Procedia PDF Downloads 373
10171 Investigation of the Multiaxial Pedicle Screw Tulip Design Using Finite Element Analysis

Authors: S. Daqiqeh Rezaei, S. Mohajerzadeh, M. R. Sharifi

Abstract:

Pedicle screws are used to stabilize vertebrae and treat several types of spinal diseases and injuries. Multiaxial pedicle screws are a type of pedicle screw that increase surgical versatility, but they also increase design complexity. Failure of multiaxial pedicle screws caused by static loading, dynamic loading and fatigue can lead to irreparable damage to the patient. Inappropriate deformation of the multiaxial pedicle screw tulip can cause system failure. Investigation of deformation and stress in these tulips can be employed to optimize multiaxial pedicle screw design. The sensitivity of this matter necessitates precise analyzing and modeling of pedicle screws. In this work, three commercial multiaxial pedicle screw tulips and a newly designed tulip are investigated using finite element analysis. Employing video measuring machine (VMM), tulips are modeled. Afterwards, utilizing ANSYS, static analysis is performed on these models. In the end, stresses and displacements of the models are compared.

Keywords: pedicle screw, multiaxial pedicle screw, finite element analysis, static analysis

Procedia PDF Downloads 356
10170 Thermodynamic Behaviour of Binary Mixtures of 1, 2-Dichloroethane with Some Cyclic Ethers: Experimental Results and Modelling

Authors: Fouzia Amireche-Ziar, Ilham Mokbel, Jacques Jose

Abstract:

The vapour pressures of the three binary mixtures: 1, 2- dichloroethane + 1,3-dioxolane, + 1,4-dioxane or + tetrahydropyrane, are carried out at ten temperatures ranging from 273 to 353.15 K. An accurate static device was employed for these measurements. The VLE data were reduced using the Redlich-Kister equation by taking into consideration the vapour pressure non-ideality in terms of the second molar virial coefficient. The experimental data were compared to the results predicted with the DISQUAC and Dortmund UNIFAC group contribution models for the total pressures P and the excess molar Gibbs energies GE.

Keywords: disquac model, dortmund UNIFAC model, excess molar Gibbs energies GE, VLE

Procedia PDF Downloads 255
10169 Use of EPR in Experimental Mechanics

Authors: M. Sikoń, E. Bidzińska

Abstract:

An attempt to apply EPR (Electron Paramagnetic Resonance) spectroscopy to experimental analysis of the mechanical state of the loaded material is considered in this work. Theory concerns the participation of electrons in transfer of mechanical action. The model of measurement is shown by applying classical mechanics and quantum mechanics. Theoretical analysis is verified using EPR spectroscopy twice, once for the free spacemen and once for the mechanical loaded spacemen. Positive results in the form of different spectra for free and loaded materials are used to describe the mechanical state in continuum based on statistical mechanics. Perturbation of the optical electrons in the field of the mechanical interactions inspires us to propose new optical properties of the materials with mechanical stresses.

Keywords: Cosserat medium, EPR spectroscopy, optical active electrons, optical activity

Procedia PDF Downloads 369
10168 Numerical Investigation of Entropy Signatures in Fluid Turbulence: Poisson Equation for Pressure Transformation from Navier-Stokes Equation

Authors: Samuel Ahamefula Mba

Abstract:

Fluid turbulence is a complex and nonlinear phenomenon that occurs in various natural and industrial processes. Understanding turbulence remains a challenging task due to its intricate nature. One approach to gain insights into turbulence is through the study of entropy, which quantifies the disorder or randomness of a system. This research presents a numerical investigation of entropy signatures in fluid turbulence. The work is to develop a numerical framework to describe and analyse fluid turbulence in terms of entropy. This decomposes the turbulent flow field into different scales, ranging from large energy-containing eddies to small dissipative structures, thus establishing a correlation between entropy and other turbulence statistics. This entropy-based framework provides a powerful tool for understanding the underlying mechanisms driving turbulence and its impact on various phenomena. This work necessitates the derivation of the Poisson equation for pressure transformation of Navier-Stokes equation and using Chebyshev-Finite Difference techniques to effectively resolve it. To carry out the mathematical analysis, consider bounded domains with smooth solutions and non-periodic boundary conditions. To address this, a hybrid computational approach combining direct numerical simulation (DNS) and Large Eddy Simulation with Wall Models (LES-WM) is utilized to perform extensive simulations of turbulent flows. The potential impact ranges from industrial process optimization and improved prediction of weather patterns.

Keywords: turbulence, Navier-Stokes equation, Poisson pressure equation, numerical investigation, Chebyshev-finite difference, hybrid computational approach, large Eddy simulation with wall models, direct numerical simulation

Procedia PDF Downloads 87
10167 Investigation on the Changes in the Chemical Composition and Ecological State of Soils Contaminated with Heavy Metals

Authors: Metodi Mladenov

Abstract:

Heavy metals contamination of soils is a big problem mainly as a result of industrial production. From this point of view, this is of interests the processes for decontamination of soils for crop of production with low content of heavy metals and suitable for consumption from the animals and the peoples. In the current article, there are presented data for established changes in chemical composition and ecological state on soils contaminated from non-ferrous metallurgy manufacturing, for seven years time period. There was done investigation on alteration of pH, conductivity and contain of the next elements: As, Cd, Cu, Cr, Ni, Pb, Zn, Co, Mn and Al. Also, there was done visual observations under the processes of recovery of root-inhabitable soil layer and reforestation. Obtained data show friendly changes for the investigated indicators pH and conductivity and decreasing of content of some form analyzed elements. Visual observations show augmentation of plant cover areas and change in species structure with increase of number of shrubby and wood specimens.

Keywords: conductivity, contamination of soils, chemical composition, inductively coupled plasma–optical emission spectrometry, heavy metals, visual observation

Procedia PDF Downloads 166
10166 The Effects of Implementing Platform Strategy for Craft Industry Development: A Case Study on Economic Value-Added of Taiwan Bamboo Village

Authors: Kuo-Wei Hsu, Shu-Fang Huang

Abstract:

Global trend in creative economies promoted the modernization process of the development of cultural and creative industries and technology coincided with the craft industry towards value-added industrial restructuring. Due to government support and economic motivation in the private sector, regional craft products have emerged across counties and cities all over Taiwan which have led to an increased focus on craft culture promotion. However, most craft industry corporations in Taiwan are micro-enterprise, restricted operating profitability. This phenomenon shows the weakness of craft industry constitution when facing the rapid expansion of global economic commerce and manufacturing. In recent years, combining public and private enterprise, Platform business models revolutionary changed in craft industries’ original operation and transaction models. Therefore, this study attempts to explore the effects by implementing platform strategy on bamboo industry development in Nantou, the hometown of crafts in Taiwan, with an experimental investigation. This study concluded that platform strategy increases essence and insubstantial value for the bamboo industry in Taiwan. This study explored the economic value added of Taiwan bamboo village with three perspectives: Community participation, Culture Conservation, Regional Rejuvenation.

Keywords: platform strategy, craft industry, economic value-added

Procedia PDF Downloads 337
10165 A Method to Predict the Thermo-Elastic Behavior of Laser-Integrated Machine Tools

Authors: C. Brecher, M. Fey, F. Du Bois-Reymond, S. Neus

Abstract:

Additive manufacturing has emerged into a fast-growing section within the manufacturing technologies. Established machine tool manufacturers, such as DMG MORI, recently presented machine tools combining milling and laser welding. By this, machine tools can realize a higher degree of flexibility and a shorter production time. Still there are challenges that have to be accounted for in terms of maintaining the necessary machining accuracy - especially due to thermal effects arising through the use of high power laser processing units. To study the thermal behavior of laser-integrated machine tools, it is essential to analyze and simulate the thermal behavior of machine components, individual and assembled. This information will help to design a geometrically stable machine tool under the influence of high power laser processes. This paper presents an approach to decrease the loss of machining precision due to thermal impacts. Real effects of laser machining processes are considered and thus enable an optimized design of the machine tool, respective its components, in the early design phase. Core element of this approach is a matched FEM model considering all relevant variables arising, e.g. laser power, angle of laser beam, reflective coefficients and heat transfer coefficient. Hence, a systematic approach to obtain this matched FEM model is essential. Indicating the thermal behavior of structural components as well as predicting the laser beam path, to determine the relevant beam intensity on the structural components, there are the two constituent aspects of the method. To match the model both aspects of the method have to be combined and verified empirically. In this context, an essential machine component of a five axis machine tool, the turn-swivel table, serves as the demonstration object for the verification process. Therefore, a turn-swivel table test bench as well as an experimental set-up to measure the beam propagation were developed and are described in the paper. In addition to the empirical investigation, a simulative approach of the described types of experimental examination is presented. Concluding, it is shown that the method and a good understanding of the two core aspects, the thermo-elastic machine behavior and the laser beam path, as well as their combination helps designers to minimize the loss of precision in the early stages of the design phase.

Keywords: additive manufacturing, laser beam machining, machine tool, thermal effects

Procedia PDF Downloads 259
10164 Studying on Pile Seismic Operation with Numerical Method by Using FLAC 3D Software

Authors: Hossein Motaghedi, Kaveh Arkani, Siavash Salamatpoor

Abstract:

Usually the piles are important tools for safety and economical design of high and heavy structures. For this aim the response of single pile under dynamic load is so effective. Also, the agents which have influence on single pile response are properties of pile geometrical, soil and subjected loads. In this study the finite difference numerical method and by using FLAC 3D software is used for evaluation of single pile behavior under peak ground acceleration (PGA) of El Centro earthquake record in California (1940). The results of this models compared by experimental results of other researchers and it will be seen that the results of this models are approximately coincide by experimental data's. For example the maximum moment and displacement in top of the pile is corresponding to the other experimental results of pervious researchers. Furthermore, in this paper is tried to evaluate the effective properties between soil and pile. The results is shown that by increasing the pile diagonal, the pile top displacement will be decreased. As well as, by increasing the length of pile, the top displacement will be increased. Also, by increasing the stiffness ratio of pile to soil, the produced moment in pile body will be increased and the taller piles have more interaction by soils and have high inertia. So, these results can help directly to optimization design of pile dimensions.

Keywords: pile seismic response, interaction between soil and pile, numerical analysis, FLAC 3D

Procedia PDF Downloads 381
10163 An Experimental Study on Evacuated Tube Solar Collector for Steam Generation in India

Authors: Avadhesh Yadav, Anunaya Saraswat

Abstract:

An evacuated tube solar collector is experimentally studied for steam generation. When the solar radiation falls on evacuated tubes, this energy is absorbed by the tubes and transferred to water with natural conduction and convection. A natural circulation of water occurs due to the inclination in tubes and header. In this experimental study, the efficiency of collector has been calculated. The result shows that the collector attains the maximum efficiency of 46.26% during 14:00 to 15:00h. Steam has been generated for two hours from 13:30 to 15:30 h on a winter day. Maximum solar intensity and maximum ambient temperatures are 795W/m2 and 19oC respectively on this day.

Keywords: evacuated tube, solar collector, hot water, steam generation

Procedia PDF Downloads 290
10162 The Impact of Teaching Critical Reading Strategies on Students' Performance in English and Communication Skills in College of Education, Azare, Bauchi State Nigeria

Authors: Musa Galadima Toro

Abstract:

The study focused on the impact of teaching critical reading strategies on students’ performance in English and communication skills at the college of education Azare Bauchi state, Nigeria. It adopted a pre-test, post-test experimental group design. A sample of two hundred and forty (240) students was randomly selected from four departments within the school. The students were randomized into two groups: experimental and control groups. The experimental group was taught critical reading strategies as a form of treatment, while the control group involved in normal reading comprehension exercises. The findings of the study showed a significant difference in the performance of students who were taught critical reading strategies at the post- test level. Recommendations based on the findings of the study were proffered such as placing more emphasis on teaching critical reading strategies in order to improve students’ creative thinking skills and also encouraging students to read articles in science and humanities to improve their reading skills among others.

Keywords: English, communication skill, critical reading, strategies

Procedia PDF Downloads 266
10161 Reflective Thinking and Experiential Learning – A Quasi-Experimental Quanti-Quali Response to Greater Diversification of Activities, Greater Integration of Student Profiles

Authors: Paulo Sérgio Ribeiro de Araújo Bogas

Abstract:

Although several studies have assumed (at least implicitly) that learners' approaches to learning develop into deeper approaches to higher education, there appears to be no clear theoretical basis for this assumption and no empirical evidence. As a scientific contribution to this discussion, a pedagogical intervention of a quasi-experimental nature was developed, with a mixed methodology, evaluating the intervention within a single curricular unit of Marketing, using cases based on real challenges of brands, business simulation, and customer projects. Primary and secondary experiences were incorporated in the intervention: the primary experiences are the experiential activities themselves; the secondary experiences result from the primary experience, such as reflection and discussion in work teams. A diversified learning relationship was encouraged through the various connections between the different members of the learning community. The present study concludes that in the same context, the student's responses can be described as students who reinforce the initial deep approach, students who maintain the initial deep approach level, and others who change from an emphasis on the deep approach to one closer to superficial. This typology did not always confirm studies reported in the literature, namely, whether the initial level of deep processing would influence the superficial and the opposite. The result of this investigation points to the inclusion of pedagogical and didactic activities that integrate different motivations and initial strategies, leading to the possible adoption of deep approaches to learning since it revealed statistically significant differences in the difference in the scores of the deep/superficial approach and the experiential level. In the case of real challenges, the categories of “attribution of meaning and meaning of studied” and the possibility of “contact with an aspirational context” for their future professional stand out. In this category, the dimensions of autonomy that will be required of them were also revealed when comparing the classroom context of real cases and the future professional context and the impact they may have on the world. Regarding the simulated practice, two categories of response stand out: on the one hand, the motivation associated with the possibility of measuring the results of the decisions taken, an awareness of oneself, and, on the other hand, the additional effort that this practice required for some of the students.

Keywords: experiential learning, higher education, mixed methods, reflective learning, marketing

Procedia PDF Downloads 78
10160 The Situation in Afghanistan as a Step Forward in Putting an End to Impunity

Authors: Jelena Radmanovic

Abstract:

On 5 March 2020, the International Criminal Court has decided to authorize the investigation into the crimes allegedly committed on the territory of Afghanistan after 1 May 2003. The said determination has raised several controversies, including the recently imposed sanctions by the United States, furthering the United States' long-standing rejection of the authority of the International Criminal Court. The purpose of this research is to address the said investigation in light of its importance for the prevention of impunity in the cases where the perpetrators are nationals of Non-Party States to the Rome Statute. Difficulties that the International Criminal Court has been facing, concerning the establishment of its jurisdiction in those instances where an involved state is not a Party to the Rome Statute, have become the most significant stumbling block undermining the importance, integrity, and influence of the Court. The Situation in Afghanistan raises even further concern, bearing in mind that the Prosecutor’s Request for authorization of an investigation pursuant to article 15 from 20 November 2017 has initially been rejected with the ‘interests of justice’ as an applied rationale. The first method used for the present research is the description of the actual events regarding the aforementioned decisions and the following reactions in the international community, while with the second method – the method of conceptual analysis, the research will address the decisions pertaining to the International Criminal Court’s jurisdiction and will attempt to address the mentioned Decision of 5 March 2020 as an example of good practice and a precedent that should be followed in all similar situations. The research will attempt parsing the reasons used by the International Criminal Court, giving rather greater attention to the latter decision that has authorized the investigation and the points raised by the officials of the United States. It is a find of this research that the International Criminal Court, together with other similar judicial instances (Nuremberg and Tokyo Tribunals, The International Criminal Tribunal for the former Yugoslavia, The International Criminal Tribunal for Rwanda), has presented the world with the possibility of non-impunity, attempting to prosecute those responsible for the gravest of crimes known to the humanity and has shown that such persons should not enjoy the benefits of their immunities, with its focus primarily on the victims of such crimes. Whilst it is an issue that will most certainly be addressed further in the future, with the situations that will be brought before the International Criminal Court, the present research will make an attempt at pointing to the significance of the situation in Afghanistan, the International Criminal Court as such and the international criminal justice as a whole, for the purpose of putting an end to impunity.

Keywords: Afghanistan, impunity, international criminal court, sanctions, United States

Procedia PDF Downloads 118
10159 Experimental Study of LPG Diffusion Flame at Elevated Preheated Air Temperatures

Authors: Ahmed A. El-Kafy Amer, H. M. Gad, A. I. Ibrahim, S. I. Abdel-Mageed, T. M. Farag

Abstract:

This paper represents an experimental study of LPG diffusion flame at elevated air preheated temperatures. The flame is stabilized in a vertical water-cooled combustor by using air swirler. An experimental test rig was designed to investigate the different operating conditions. The burner head is designed so that the LPG fuel issued centrally and surrounded by the swirling air issues from an air swirler. There are three air swirlers having the same dimensions but having different blade angles to give different swirl numbers of 0.5, 0.87 and 1.5. The combustion air was heated electrically before entering the combustor up to a temperature about 500 K. Three air to fuel mass ratios of 30, 40 and 50 were also studied. The effect of air preheated temperature, swirl number and air to fuel mass ratios on the temperature maps, visible flame length, high temperature region (size) and exhaust species concentrations are studied. Some results show that as the air preheated temperature increases, the volume of high temperature region also increased but the flame length decreased. Increasing the air preheated temperature, EINOx, EICO2 and EIO2 increased, while EICO decreased. Increasing the air preheated temperature from 300 to 500 K, for all air swirl numbers used, the highest increase in EINOx, EICO2 and EIO2 are 141, 4 and 65%, respectively.

Keywords: air preheated temperature, air swirler, flame length, emission index

Procedia PDF Downloads 475