Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 641

Search results for: well stirred reactor

641 Computational Fluid Dynamics and Experimental Evaluation of Two Batch Type Electrocoagulation Stirred Tank Reactors Used in the Removal of Cr (VI) from Waste Water

Authors: Phanindra Prasad Thummala, Umran Tezcan Un


In this study, hydrodynamics analysis of two batch type electrocoagulation stirred tank reactors, used for the electrocoagulation treatment of Cr(VI) wastewater, was carried using computational fluid dynamics (CFD). The aim of the study was to evaluate the impact of mixing characteristics on overall performance of electrocoagulation reactor. The CFD simulations were performed using ANSYS FLUENT 14.4 software. The mixing performance of each reactor was evaluated by numerically modelling tracer dispersion in each reactor configuration. The uniformity in tracer dispersion was assumed when 90% of the ratio of the maximum to minimum concentration of the tracer was realized. In parallel, experimental evaluation of both the electrocoagulation reactors for removal of Cr(VI) from wastewater was also carried out. The results of CFD and experimental analysis clearly show that the reactor which can give higher uniformity in lesser time, will perform better as an electrocoagulation reactor for removal of Cr(VI) from wastewater.

Keywords: CFD, stirred tank reactors, electrocoagulation, Cr(VI) wastewater

Procedia PDF Downloads 334
640 Depyritization of US Coal Using Iron-Oxidizing Bacteria: Batch Stirred Reactor Study

Authors: Ashish Pathak, Dong-Jin Kim, Haragobinda Srichandan, Byoung-Gon Kim


Microbial depyritization of coal using chemoautotrophic bacteria is gaining acceptance as an efficient and eco-friendly technique. The process uses the metabolic activity of chemoautotrophic bacteria in removing sulfur and pyrite from the coal. The aim of the present study was to investigate the potential of Acidithiobacillus ferrooxidans in removing the pyritic sulfur and iron from high iron and sulfur containing US coal. The experiment was undertaken in 8 L bench scale stirred tank reactor having 1% (w/v) pulp density of coal. The reactor was operated at 35ºC and aerobic conditions were maintained by sparging the air into the reactor. It was found that at the end of bio-depyritization process, about 90% of pyrite and 67% of pyritic sulfur was removed from the coal. The results indicate that the bio-depyritization process is an efficient process in treating the high pyrite and sulfur containing coal.

Keywords: At.ferrooxidans, batch reactor, coal desulfurization, pyrite

Procedia PDF Downloads 135
639 Development of Rh/Ce-Zr-La/Al2O3 TWCs’ Wash Coat: Effect of Reactor on Catalytic and Thermal Stability

Authors: Su-Ning Wang, Yao-Qiang Chen


The CeO2-ZrO2-La2O3-Al2O3 composite oxides are synthesized using co-precipitation method by two different reactors (i.e. continuous stirred-tank reactor and batch reactor), and the corresponding Rh-only three-way catalysts are obtained by wet-impregnation approach. The textural, structural, morphology and redox properties of the support materials, as well as the catalytic performance of the Rh-only catalyst are investigated systematically. The results reveal that the materials (CZLA-C) synthesized by continuous stirred-tank reactor have a better physic-chemical properties than the counterpart material (CZLA-B) prepared by batch reactor. After aging treatment at 1000 ℃ for 5 h, the BET surface area and pore volume of S1 reach up to 76 m2 g-1 and 0.36 mL/g, respectively, which is higher than that of S2. The XRD and Raman results demonstrate that a high structural stability is obtained by S1 because of the negligible lattice variation and the slight grain growth after aging treatment. The SEM and TEM images display that the morphology of S1 is assembled by many homogeneous primary nanoparticles (about 6.12 nm) that are connected to form mesoporous structure The TPR measurement shows that S1 possesses a higher reduction ability than S2. Compared with the catalyst supported on the CZLA-B, the as-prepared CZLA-C demonstrates an improved three-way catalytic activity both before and after aging treatment.

Keywords: composite oxides, reactor, catalysis, catalytic performance

Procedia PDF Downloads 200
638 Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic

Authors: Nasser Mohamed Ramli, Mohamad Syafiq Mohamad


Many types of controllers were applied on the continuous stirred tank reactor (CSTR) unit to control the temperature. In this research paper, Proportional-Integral-Derivative (PID) controller are compared with Fuzzy Logic controller for temperature control of CSTR. The control system for temperature non-isothermal of a CSTR will produce a stable response curve to its set point temperature. A mathematical model of a CSTR using the most general operating condition was developed through a set of differential equations into S-function using MATLAB. The reactor model and S-function are developed using m.file. After developing the S-function of CSTR model, User-Defined functions are used to link to SIMULINK file. Results that are obtained from simulation and temperature control were better when using Fuzzy logic control compared to PID control.

Keywords: CSTR, temperature, PID, fuzzy logic

Procedia PDF Downloads 193
637 Predicting Mixing Patterns of Overflows from a Square Manhole

Authors: Modupe O. Jimoh


During manhole overflows, its contents pollute the immediate environment. Understanding the pollutant transfer characteristics between manhole’s incoming sewer and the overflow is therefore of great importance. A square manhole with sides 388 mm by 388 mm and height 700 mm with an overflow facility was used in the laboratory to carry out overflow concentration measurements. Two scenarios were investigated using three flow rates. The first scenario corresponded to when the exit of the pipe becomes blocked and the only exit for the flow is the manhole. The second scenario is when there is an overflow in combination with a pipe exit. The temporal concentration measurements showed that the peak concentration of pollutants in the flow was attenuated between the inlet and the overflow. A deconvolution software was used to predict the Residence time distribution (RTD) and consequently the Cumulative Residence time distribution (CRTD). The CRTDs suggest that complete mixing is occurring between the pipe inlet and the overflow, like what is obtained in a low surcharged manhole. The results also suggest that an instantaneous stirred tank reactor model can describe the mixing characteristics.

Keywords: CRTDs, instantaneous stirred tank reactor model, overflow, square manholes, surcharge, temporal concentration profiles

Procedia PDF Downloads 32
636 Application of Chitosan as a Natural Antimicrobial Compound in Stirred Yoghurt

Authors: Javad Hesari, Tahereh Donyatalab, Sodeif Azadmard Damirchi, Reza Rezaii Mokaram, Abbas Rafat


The main objective of this research was to increase shelf life of stirred yoghurt by adding chitosan as a naturally antimicrobial compound. Chitosan were added at different concentrations (0.1, 0.3 and 0.6%) to the stirred yoghurt. Samples were stored at refrigerator and room temperature for 3 weeks and tested with respect of microbial properties (counts of starter bacteria, mold and yeast, coliforms and E. coli). Starter bacteria and yeast counts in samples containing chitosan was significantly (p<0.05) lower than those in control samples and its antibacterial and anti-yeast effects increased with increasing concentration of chitosan. The lowest counts of starter bacteria and yeast were observed at samples whit 0.6% of chitosan. The Results showed Chitosan had a positive effect on increasing shelf life and controlling of yeasts and therefore can be used as a natural preservative in stirred yogurt.

Keywords: chitosan, natural preservative, stirred yoghurt, self-life

Procedia PDF Downloads 354
635 Similitude for Thermal Scale-up of a Multiphase Thermolysis Reactor in the Cu-Cl Cycle of a Hydrogen Production

Authors: Mohammed W. Abdulrahman


The thermochemical copper-chlorine (Cu-Cl) cycle is considered as a sustainable and efficient technology for a hydrogen production, when linked with clean-energy systems such as nuclear reactors or solar thermal plants. In the Cu-Cl cycle, water is decomposed thermally into hydrogen and oxygen through a series of intermediate reactions. This paper investigates the thermal scale up analysis of the three phase oxygen production reactor in the Cu-Cl cycle, where the reaction is endothermic and the temperature is about 530 oC. The paper focuses on examining the size and number of oxygen reactors required to provide enough heat input for different rates of hydrogen production. The type of the multiphase reactor used in this paper is the continuous stirred tank reactor (CSTR) that is heated by a half pipe jacket. The thermal resistance of each section in the jacketed reactor system is studied to examine its effect on the heat balance of the reactor. It is found that the dominant contribution to the system thermal resistance is from the reactor wall. In the analysis, the Cu-Cl cycle is assumed to be driven by a nuclear reactor where two types of nuclear reactors are examined as the heat source to the oxygen reactor. These types are the CANDU Super Critical Water Reactor (CANDU-SCWR) and High Temperature Gas Reactor (HTGR). It is concluded that a better heat transfer rate has to be provided for CANDU-SCWR by 3-4 times than HTGR. The effect of the reactor aspect ratio is also examined in this paper and is found that increasing the aspect ratio decreases the number of reactors and the rate of decrease in the number of reactors decreases by increasing the aspect ratio. Finally, a comparison between the results of heat balance and existing results of mass balance is performed and is found that the size of the oxygen reactor is dominated by the heat balance rather than the material balance.

Keywords: sustainable energy, clean energy, Cu-Cl cycle, heat transfer, hydrogen, oxygen

Procedia PDF Downloads 179
634 Evaluating the Process of Biofuel Generation from Grass

Authors: Karan Bhandari


Almost quarter region of Indian terrain is covered by grasslands. Grass being a low maintenance perennial crop is in abundance. Farmers are well acquainted with its nature, yield and storage. The aim of this paper is to study and identify the applicability of grass as a source of bio fuel. Anaerobic break down is a well-recognized technology. This process is vital for harnessing bio fuel from grass. Grass is a lignocellulosic material which is fibrous and can readily cause problems with parts in motion. Further, it also has a tendency to float. This paper also deals with the ideal digester configuration for biogas generation from grass. Intensive analysis of the literature is studied on the optimum production of grass storage in accordance with bio digester specifications. Subsequent to this two different digester systems were designed, fabricated, analyzed. The first setup was a double stage wet continuous arrangement usually known as a Continuously Stirred Tank Reactor (CSTR). The next was a double stage, double phase system implementing Sequentially Fed Leach Beds using an Upflow Anaerobic Sludge Blanket (SLBR-UASB). The above methodologies were carried for the same feedstock acquired from the same field. Examination of grass silage was undertaken using Biomethane Potential values. The outcomes portrayed that the Continuously Stirred Tank Reactor system produced about 450 liters of methane per Kg of volatile solids, at a detention period of 48 days. The second method involving Leach Beds produced about 340 liters of methane per Kg of volatile solids with a detention period of 28 days. The results showcased that CSTR when designed exclusively for grass proved to be extremely efficient in methane production. The SLBR-UASB has significant potential to allow for lower detention times with significant levels of methane production. This technology has immense future for research and development in India in terms utilizing of grass crop as a non-conventional source of fuel.

Keywords: biomethane potential values, bio digester specifications, continuously stirred tank reactor, upflow anaerobic sludge blanket

Procedia PDF Downloads 125
633 Investigation of the NO2 Formation in the Exhaust Duct of a Dual Fuel Test Engine

Authors: Ehsan Arabian, Thomas Sattelmayer


The formation of nitrogen dioxide NO2 in the exhaust duct of a MAN dual fuel test engine has been investigated numerically. The dual fuel engine concept with premixed lean methane combustion ignited through diesel pilot flames reveals high potential for the abatement of the NOx formation. The drawback of this combustion method, however, is the high NO2 formation due to the increasing concentration of unburned hydrocarbons. This promotes the conversion of NO to NO2, which is toxic and characterized through its yellow color. The results presented in this paper cover a wide range of engine operation points from full load to part load for different air to fuel ratios. The effects of temperature, pressure and concentrations of unburned methane and nitric oxide on NO2 formation in the exhaust duct has been investigated on the basis of a zero-dimensional well stirred reactor model implemented in Cantera, which calculates the steady state of a uniform composition for a certain residence time. It can be shown that the simulated conversion of NO to NO2 match the experimental results fairly well. The partial oxidation of methane followed by CO production can be predicted as well. It can also be concluded that the lower temperature limit for which no conversion takes place, depends mainly on the concentration of the unburned hydrocarbons in the exhaust.

Keywords: cantera, dual fuel engines, exhaust tract, numerical modeling of NO2 formation, well stirred reactor

Procedia PDF Downloads 84
632 Oxygen Transfer in Viscous Non-Newtonian Liquid in a Hybrid Bioreactor

Authors: Sérgio S. de Jesus, Aline Santana, Rubens Maciel Filho


Global oxygen transfer coefficient (kLa) was characterized in a mechanically agitated airlift bio reactor. The experiments were carried out in an airlift bio reactor (3.2 L) with internal re circulation (a concentric draft-tube airlift vessel device); the agitation is carried out through a turbine Rushton impeller located along with the gas sparger in the region comprised in the riser. The experiments were conducted using xanthan gum (0.6%) at 250 C and a constant rotation velocity of 0 and 800 rpm, as well as in the absence of agitation (airlift mode); the superficial gas velocity varied from 0.0157 to 0.0262 ms-1. The volumetric oxygen transfer coefficient dependence of the rotational speed revealed that the presence of agitation increased up to two times the kLa value.

Keywords: aeration, mass transfer, non-Newtonian fluids, stirred airlift bioreactor

Procedia PDF Downloads 336
631 Process Evaluation for a Trienzymatic System

Authors: C. Müller, T. Ortmann, S. Scholl, H. J. Jördening


Multienzymatic catalysis can be used as an alternative to chemical synthesis or hydrolysis of polysaccharides for the production of high value oligosaccharides from cheap resources such as sucrose. However, development of multienzymatic processes is complex, especially with respect to suitable conditions for enzymes originating from different organisms. Furthermore, an optimal configuration of the catalysts in a reaction cascade has to be found. These challenges can be approached by design of experiments. The system investigated in this study is a trienzymatic catalyzed reaction which results in laminaribiose production from sucrose and comprises covalently immobilized sucrose phosphorylase (SP), glucose isomerase (GI) and laminaribiose phosphorylase (LP). Operational windows determined with design of experiments and kinetic data of the enzymes were used to optimize the enzyme ratio for maximum product formation and minimal production of byproducts. After adjustment of the enzyme activity ratio to 1: 1.74: 2.23 (SP: LP: GI), different process options were investigated in silico. The considered options included substrate dependency, the use of glucose as co-substrate and substitution of glucose isomerase by glucose addition. Modeling of batch operation in a stirred tank reactor led to yields of 44.4% whereas operation in a continuous stirred tank reactor resulted in product yields of 22.5%. The maximum yield in a bienzymatic system comprised of sucrose phosphorylase and laminaribiose phosphorylase was 67.7% with sucrose and different amounts of glucose as substrate. The experimental data was in good compliance with the process model for batch operation. The continuous operation will be investigated in further studies. Simulation of operational process possibilities enabled us to compare various operational modes regarding different aspects such as cost efficiency, with the minimum amount of expensive and time-consuming practical experiments. This gives us more flexibility in process implementation and allows us, for example, to change the production goal from laminaribiose to higher oligosaccharides.

Keywords: design of experiments, enzyme kinetics, multi-enzymatic system, in silico process development

Procedia PDF Downloads 231
630 Prediction of Product Size Distribution of a Vertical Stirred Mill Based on Breakage Kinetics

Authors: C. R. Danielle, S. Erik, T. Patrick, M. Hugh


In the last decade there has been an increase in demand for fine grinding due to the depletion of coarse-grained orebodies and an increase of processing fine disseminated minerals and complex orebodies. These ores have provided new challenges in concentrator design because fine and ultra-fine grinding is required to achieve acceptable recovery rates. Therefore, the correct design of a grinding circuit is important for minimizing unit costs and increasing product quality. The use of ball mills for grinding in fine size ranges is inefficient and, therefore, vertical stirred grinding mills are becoming increasingly popular in the mineral processing industry due to its already known high energy efficiency. This work presents a hypothesis of a methodology to predict the product size distribution of a vertical stirred mill using a Bond ball mill. The Population Balance Model (PBM) was used to empirically analyze the performance of a vertical mill and a Bond ball mill. The breakage parameters obtained for both grinding mills are compared to determine the possibility of predicting the product size distribution of a vertical mill based on the results obtained from the Bond ball mill. The biggest advantage of this methodology is that most of the minerals processing laboratories already have a Bond ball mill to perform the tests suggested in this study. Preliminary results show the possibility of predicting the performance of a laboratory vertical stirred mill using a Bond ball mill.

Keywords: bond ball mill, population balance model, product size distribution, vertical stirred mill

Procedia PDF Downloads 188
629 Pollutants Removal from Synthetic Wastewater by the Combined Electrochemical Sequencing Batch Reactor

Authors: Amin Mojiri, Akiyoshi Ohashi, Tomonori Kindaichi


Synthetic domestic wastewater was treated via combining treatment methods, including electrochemical oxidation, adsorption, and sequencing batch reactor (SBR). In the upper part of the reactor, an anode and a cathode (Ti/RuO2-IrO2) were organized in parallel for the electrochemical oxidation procedure. Sodium sulfate (Na2SO4) with a concentration of 2.5 g/L was applied as the electrolyte. The voltage and current were fixed on 7.50 V and 0.40 A, respectively. Then, 15% working value of the reactor was filled by activated sludge, and 85% working value of the reactor was added with synthetic wastewater. Powdered cockleshell, 1.5 g/L, was added in the reactor to do ion-exchange. Response surface methodology was employed for statistical analysis. Reaction time (h) and pH were considered as independent factors. A total of 97.0% biochemical oxygen demand, 99.9% phosphorous and 88.6% cadmium were eliminated at the optimum reaction time (80.0 min) and pH (6.4).

Keywords: adsorption, electrochemical oxidation, metals, SBR

Procedia PDF Downloads 87
628 Hydraulic Studies on Core Components of PFBR

Authors: G. K. Pandey, D. Ramadasu, I. Banerjee, V. Vinod, G. Padmakumar, V. Prakash, K. K. Rajan


Detailed thermal hydraulic investigations are very essential for safe and reliable functioning of liquid metal cooled fast breeder reactors. These investigations are further more important for components with complex profile, since there is no direct correlation available in literature to evaluate the hydraulic characteristics of such components directly. In those cases available correlations for similar profile or geometries may lead to significant uncertainty in the outcome. Hence experimental approach can be adopted to evaluate these hydraulic characteristics more precisely for better prediction in reactor core components. Prototype Fast Breeder Reactor (PFBR), a sodium cooled pool type reactor is under advanced stage of construction at Kalpakkam, India. Several components of this reactor core require hydraulic investigation before its usage in the reactor. These hydraulic investigations on full scale models, carried out by experimental approaches using water as simulant fluid are discussed in the paper.

Keywords: fast breeder reactor, cavitation, pressure drop, reactor components

Procedia PDF Downloads 288
627 Numerical Analysis of the Computational Fluid Dynamics of Co-Digestion in a Large-Scale Continuous Stirred Tank Reactor

Authors: Sylvana A. Vega, Cesar E. Huilinir, Carlos J. Gonzalez


Co-digestion in anaerobic biodigesters is a technology improving hydrolysis by increasing methane generation. In the present study, the dimensional computational fluid dynamics (CFD) is numerically analyzed using Ansys Fluent software for agitation in a full-scale Continuous Stirred Tank Reactor (CSTR) biodigester during the co-digestion process. For this, a rheological study of the substrate is carried out, establishing rotation speeds of the stirrers depending on the microbial activity and energy ranges. The substrate is organic waste from industrial sources of sanitary water, butcher, fishmonger, and dairy. Once the rheological behavior curves have been obtained, it is obtained that it is a non-Newtonian fluid of the pseudoplastic type, with a solids rate of 12%. In the simulation, the rheological results of the fluid are considered, and the full-scale CSTR biodigester is modeled. It was coupling the second-order continuity differential equations, the three-dimensional Navier Stokes, the power-law model for non-Newtonian fluids, and three turbulence models: k-ε RNG, k-ε Realizable, and RMS (Reynolds Stress Model), for a 45° tilt vane impeller. It is simulated for three minutes since it is desired to study an intermittent mixture with a saving benefit of energy consumed. The results show that the absolute errors of the power number associated with the k-ε RNG, k-ε Realizable, and RMS models were 7.62%, 1.85%, and 5.05%, respectively, the numbers of power obtained from the analytical-experimental equation of Nagata. The results of the generalized Reynolds number show that the fluid dynamics have a transition-turbulent flow regime. Concerning the Froude number, the result indicates there is no need to implement baffles in the biodigester design, and the power number provides a steady trend close to 1.5. It is observed that the levels of design speeds within the biodigester are approximately 0.1 m/s, which are speeds suitable for the microbial community, where they can coexist and feed on the substrate in co-digestion. It is concluded that the model that more accurately predicts the behavior of fluid dynamics within the reactor is the k-ε Realizable model. The flow paths obtained are consistent with what is stated in the referenced literature, where the 45° inclination PBT impeller is the right type of agitator to keep particles in suspension and, in turn, increase the dispersion of gas in the liquid phase. If a 24/7 complete mix is considered under stirred agitation, with a plant factor of 80%, 51,840 kWh/year are estimated. On the contrary, if intermittent agitations of 3 min every 15 min are used under the same design conditions, reduce almost 80% of energy costs. It is a feasible solution to predict the energy expenditure of an anaerobic biodigester CSTR. It is recommended to use high mixing intensities, at the beginning and end of the joint phase acetogenesis/methanogenesis. This high intensity of mixing, in the beginning, produces the activation of the bacteria, and once reaching the end of the Hydraulic Retention Time period, it produces another increase in the mixing agitations, favoring the final dispersion of the biogas that may be trapped in the biodigester bottom.

Keywords: anaerobic co-digestion, computational fluid dynamics, CFD, net power, organic waste

Procedia PDF Downloads 17
626 Modeling of Oxygen Supply Profiles in Stirred-Tank Aggregated Stem Cells Cultivation Process

Authors: Vytautas Galvanauskas, Vykantas Grincas, Rimvydas Simutis


This paper investigates a possible practical solution for reasonable oxygen supply during the pluripotent stem cells expansion processes, where the stem cells propagate as aggregates in stirred-suspension bioreactors. Low glucose and low oxygen concentrations are preferred for efficient proliferation of pluripotent stem cells. However, strong oxygen limitation, especially inside of cell aggregates, can lead to cell starvation and death. In this research, the oxygen concentration profile inside of stem cell aggregates in a stem cell expansion process was predicted using a modified oxygen diffusion model. This profile can be realized during the stem cells cultivation process by manipulating the oxygen concentration in inlet gas or inlet gas flow. The proposed approach is relatively simple and may be attractive for installation in a real pluripotent stem cell expansion processes.

Keywords: aggregated stem cells, dissolved oxygen profiles, modeling, stirred-tank, 3D expansion

Procedia PDF Downloads 201
625 Performance of an Anaerobic Baffled Reactor (ABR) during Start-Up Period

Authors: D. M. Bassuney, W. A. Ibrahim, Medhat A. E. Moustafa


Appropriate start-up of an anaerobic baffled reactor (ABR) is considered to be the most delicate and important issue in the anaerobic process, and depends on several factors such as wastewater composition, reactor configuration, inoculum and operating conditions. In this work, the start-up performance of an ABR with working volume of 30 liters, fed continuously with synthetic food industrial wastewater along with semi-batch study to measure the methangenic activity by specific methanogenic activity (SMA) test were carried out at various organic loading rates (OLRs) to determine the best OLR used to start up the reactor. The comparison was based on COD removal efficiencies, start-up time, pH stability and methane production. An OLR of 1.8 Kg COD/m3d (5400 gCOD/m3 and 3 days HRT) showed best overall performance with COD removal efficiency of 94.44% after four days from the feeding and methane production of 3802 ml/L with an overall SMA of 0.36 gCH4-COD/gVS.d

Keywords: anaerobic baffled reactor, anaerobic reactor start-up, food industrial wastewater, specific methanogenic activity

Procedia PDF Downloads 228
624 Validation of Codes Dragon4 and Donjon4 by Calculating Keff of a Slowpoke-2 Reactor

Authors: Otman Jai, Otman Elhajjaji, Jaouad Tajmouati


Several neutronic calculation codes must be used to solve the equation for different levels of discretization which all necessitate a specific modelisation. This chain of such models, known as a calculation scheme, leads to the knowledge of the neutron flux in a reactor from its own geometry, its isotopic compositions and a cross-section library. Being small in size, the 'Slowpoke-2' reactor is difficult to model due to the importance of the leaking neutrons. In the paper, the simulation model is presented (geometry, cross section library, assumption, etc.), and the results obtained by DRAGON4/DONJON4 codes were compared to the calculations performed with Monte Carlo code MCNP using detailed geometrical model of the reactor and the experimental data. Criticality calculations have been performed to verify and validate the model. Since created model properly describes the reactor core, it can be used for calculations of reactor core parameters and for optimization of research reactor application.

Keywords: transport equation, Dragon4, Donjon4, neutron flux, effective multiplication factor

Procedia PDF Downloads 356
623 Hydrodynamic Analysis with Heat Transfer in Solid Gas Fluidized Bed Reactor for Solar Thermal Applications

Authors: Sam Rasoulzadeh, Atefeh Mousavi


Fluidized bed reactors are known as highly exothermic and endothermic according to uniformity in temperature as a safe and effective mean for catalytic reactors. In these reactors, a wide range of catalyst particles can be used and by using a continuous operation proceed to produce in succession. Providing optimal conditions for the operation of these types of reactors will prevent the exorbitant costs necessary to carry out laboratory work. In this regard, a hydrodynamic analysis was carried out with heat transfer in the solid-gas fluidized bed reactor for solar thermal applications. The results showed that in the fluid flow the input of the reactor has a lower temperature than the outlet, and when the fluid is passing from the reactor, the heat transfer happens between cylinder and solar panel and fluid. It increases the fluid temperature in the outlet pump and also the kinetic energy of the fluid has been raised in the outlet areas.

Keywords: heat transfer, solar reactor, fluidized bed reactor, CFD, computational fluid dynamics

Procedia PDF Downloads 42
622 Performance of an Anaerobic Baffled Reactor (ABR) Treating High-Strength Food Industrial Wastewater with Fluctuating pH

Authors: D. M. Bassuney, W. A. Ibrahim, Medhat A. E. Moustafa


As awareness of the variable nature of food industrial wastewater and its environmental impact grows, a more stable treatment reactor is needed to treat such wastewater. In this paper, a performance of 5-compartment lab-scale Anaerobic Baffled Reactor (ABR) treating high strength wastewater with high pH variation was studied under three organic loading rates (OLRs). The reactor showed high COD removal efficiencies: 92.67, 97.44, and 98.19% corresponding to OLRs of 2.0, 3.0, and 4.8 KgCOD/m3 d, respectively. The first compartment showed a good buffering capacity and a distinct phase separation occurred in the ABR.

Keywords: anaerobic baffled reactor, food industrial wastewater, high strength wastewater, organic loading, pH

Procedia PDF Downloads 277
621 Heat Transfer Analysis of a Multiphase Oxygen Reactor Heated by a Helical Tube in the Cu-Cl Cycle of a Hydrogen Production

Authors: Mohammed W. Abdulrahman


In the thermochemical water splitting process by Cu-Cl cycle, oxygen gas is produced by an endothermic thermolysis process at a temperature of 530oC. Oxygen production reactor is a three-phase reactor involving cuprous chloride molten salt, copper oxychloride solid reactant and oxygen gas. To perform optimal performance, the oxygen reactor requires accurate control of heat transfer to the molten salt and decomposing solid particles within the thermolysis reactor. In this paper, the scale up analysis of the oxygen reactor that is heated by an internal helical tube is performed from the perspective of heat transfer. A heat balance of the oxygen reactor is investigated to analyze the size of the reactor that provides the required heat input for different rates of hydrogen production. It is found that the helical tube wall and the service side constitute the largest thermal resistances of the oxygen reactor system. In the analysis of this paper, the Cu-Cl cycle is assumed to be heated by two types of nuclear reactor, which are HTGR and CANDU SCWR. It is concluded that using CANDU SCWR requires more heat transfer rate by 3-4 times than that when using HTGR. The effect of the reactor aspect ratio is also studied and it is found that increasing the aspect ratio decreases the number of reactors and the rate of decrease in the number of reactors decreases by increasing the aspect ratio. Comparisons between the results of this study and pervious results of material balances in the oxygen reactor show that the size of the oxygen reactor is dominated by the heat balance rather than the material balance.

Keywords: heat transfer, Cu-Cl cycle, hydrogen production, oxygen, clean energy

Procedia PDF Downloads 145
620 Synthesis of Nano Iron Copper Core-Shell by Using K-M Reactor

Authors: Mohamed Ahmed AbdelKawy, A. H. El-Shazly


In this study, Nano iron-copper core-shell was synthesized by using Kinetic energy micro reactor ( K-M reactor). The reaction between nano-pure iron with copper sulphate pentahydrate (CuSO4.5H2O) beside NaCMC as a stabilizer at K-M reactor gives many advantages in comparison with the traditional chemical method for production of nano iron-Copper core-shell in batch reactor. Many factors were investigated for its effect on the process performance such as initial concentrations of nano iron and copper sulphate pentahydrate solution. Different techniques were used for investigation and characterization of the produced nano iron particles such as SEM, XRD, UV-Vis, XPS, TEM and PSD. The produced Nano iron-copper core-shell particle using micro mixer showed better characteristics than those produced using batch reactor in different aspects such as homogeneity of the produced particles, particle size distribution and size, as core diameter 10nm particle size were obtained. The results showed that 10 nm core diameter were obtained using Micro mixer as compared to 80 nm core diameter in one-fourth the time required by using traditional batch reactor and high thickness of copper shell and good stability.

Keywords: nano iron, core-shell, reduction reaction, K-M reactor

Procedia PDF Downloads 190
619 Simulation of Photocatalytic Degradation of Rhodamine B in Annular Photocatalytic Reactor

Authors: Jatinder Kumar, Ajay Bansal


Simulation of a photocatalytic reactor helps in understanding the complex behavior of the photocatalytic degradation. Simulation also aids the designing and optimization of the photocatalytic reactor. Lack of simulation strategies is a huge hindrance in the commercialization of the photocatalytic technology. With the increased performance of computational resources, and development of simulation software, computational fluid dynamics (CFD) is becoming an affordable engineering tool to simulate and optimize reactor designs. In the present paper, a CFD (Computational fluid dynamics) model for simulating the performance of an immobilized-titanium dioxide based annular photocatalytic reactor was developed. The computational model integrates hydrodynamics, species mass transport, and chemical reaction kinetics using a commercial CFD code Fluent 6.3.26. The CFD model was based on the intrinsic kinetic parameters determined experimentally in a perfectly mixed batch reactor. Rhodamine B, a complex organic compound, was selected as a test pollutant for photocatalytic degradation. It was observed that CFD could become a valuable tool to understand and improve the photocatalytic systems.

Keywords: simulation, computational fluid dynamics (CFD), annular photocatalytic reactor, titanium dioxide

Procedia PDF Downloads 423
618 Aspen Plus Simulation of Saponification of Ethyl Acetate in the Presence of Sodium Hydroxide in a Plug Flow Reactor

Authors: U. P. L. Wijayarathne, K. C. Wasalathilake


This work presents the modelling and simulation of saponification of ethyl acetate in the presence of sodium hydroxide in a plug flow reactor using Aspen Plus simulation software. Plug flow reactors are widely used in the industry due to the non-mixing property. The use of plug flow reactors becomes significant when there is a need for continuous large scale reaction or fast reaction. Plug flow reactors have a high volumetric unit conversion as the occurrence for side reactions is minimum. In this research Aspen Plus V8.0 has been successfully used to simulate the plug flow reactor. In order to simulate the process as accurately as possible HYSYS Peng-Robinson EOS package was used as the property method. The results obtained from the simulation were verified by the experiment carried out in the EDIBON plug flow reactor module. The correlation coefficient (r2) was 0.98 and it proved that simulation results satisfactorily fit for the experimental model. The developed model can be used as a guide for understanding the reaction kinetics of a plug flow reactor.

Keywords: aspen plus, modelling, plug flow reactor, simulation

Procedia PDF Downloads 297
617 Comparative Study for Biodiesel Production Using a Batch and a Semi-Continuous Flow Reactor

Authors: S. S. L. Andrade, E. A. Souza, L. C. L. Santos, C. Moraes, A. K. C. L. Lobato


Biodiesel may be produced through transesterification reaction (or alcoholysis), that is the transformation of a long chain fatty acid in an alkyl ester. This reaction can occur in the presence of acid catalysts, alkali, or enzyme. Currently, for industrial processes, biodiesel is produced by alkaline route. The alkali most commonly used in these processes is hydroxides and methoxides of sodium and potassium. In this work, biodiesel production was conducted in two different systems. The first consisted of a batch reactor operating with a traditional washing system and the second consisted of a semi-continuous flow reactor operating with a membrane separation system. Potassium hydroxides was used as catalyst at a concentration of 1% by weight, the molar ratio oil/alcohol was 1/9 and temperature of 55 °C. Tests were performed using soybeans and palm oil and the ester conversion results were compared for both systems. It can be seen that the results for both oils are similar when using the batch reator or the semi-continuous flow reactor. The use of the semi-continuous flow reactor allows the removal of the formed products. Thus, in the case of a reversible reaction, with the removal of reaction products, the concentration of the reagents becomes higher and the equilibrium reaction is shifted towards the formation of more products. The higher conversion to ester with soybean and palm oil using the batch reactor was approximately 98%. In contrast, it was observed a conversion of 99% when using the same operating condition on a semi-continuous flow reactor.

Keywords: biodiesel, batch reactor, semi-continuous flow reactor, transesterification

Procedia PDF Downloads 250
616 Contribution of Soluble Microbial Products on Dissolved Organic Nitrogen in Wastewater Effluent from Moving Bed Biofilm Reactor

Authors: Boonsiri Dandumrongsin, Halis Simsek, Chaiwat Rongsayamanont


Dissolved organic nitrogen (DON) is known as one of the persistence nitrogenous pollutant being originated from secondary treated effluent of municipal sewage treatment plant. However, effect of key system operating condition on the fate and behavior of residual DON in the treated effluent is still not known. This study aims to investigate effect of organic loading rate (OLR) on the residual level of DON in the biofilm reactor effluent. Synthetic municipal wastewater was fed into moving bed biofilm reactors at OLR of 1.6x10-3 and 3.2x10-3 kg SCOD/m3-d. The results showed higher organic removal efficiency was found in the reactor operating at higher OLR. However, DON was observed at higher value in the effluent of the higher OLR reactor than that of the lower OLR reactor evidencing a clear influence of OLR on the residual DON level in the treated effluent of the biofilm reactors. It is possible that the lower DON being observed in the reactor at lower OLR is likely to be a result of providing the microbe with the additional period for utilizing the refractory DON molecules during operation at lower organic loading. All the experiments were repeated using raw wastewaters and similar trend was obtained.

Keywords: dissolved organic nitrogen, hydraulic retention time, moving bed biofilm reactor, soluble microbial products

Procedia PDF Downloads 171
615 Up-Flow Sponge Submerged Biofilm Reactor for Municipal Sewage Treatment

Authors: Saber A. El-Shafai, Waleed M. Zahid


An up-flow submerged biofilm reactor packed with sponge was investigated for sewage treatment. The reactor was operated two cycles as single aerobic (1-1 at 3.5 L/L.d HLR and 1-2 at 3.8 L/ HLR) and four cycles as single anaerobic/aerobic reactor; 2-1 and 2-2 at low HLR (3.7 and 3.5 L/ and 2-3 and 2-4 at high HLR (5.1 and 5.4 L/ During the aerobic cycles, 50% effluent recycling significantly reduces the system performance except for phosphorous. In case of the anaerobic/aerobic reactor, the effluent recycling, significantly improves system performance at low HLR while at high HLR only phosphorous removal was improved. Excess sludge production was limited to 0.133 g TSS/g COD with better sludge volume index (SVI) in case of anaerobic/aerobic cycles; (54.7 versus 58.5 ml/g).

Keywords: aerobic, anaerobic/aerobic, up-flow, submerged biofilm, sponge

Procedia PDF Downloads 170
614 Heavy Liquid Metal Coolant – the Key Safety Element in the Complex of New Nuclear Energy Technologies

Authors: A. Orlov, V. Rachkov


The future of Nuclear Energetics is seen in fast reactors with inherent safety working in the closed nuclear fuel cycle. The concept of inherent safety, which lies in deterministic elimination of the most severe accidents due to inherent properties of the reactor rather than through building up engineered barriers, is a cornerstone of success in ensuring safety and economic efficiency of future Nuclear Energetics. The focus of this paper is one of the key elements of inherent safety - the lead coolant of a nuclear reactor. Advantages of lead coolant for reactor application, influence on safety are reviewed. BREST-OD-300 fast reactor, currently being developed in Russia withing the “Proryv” Project utilizes lead coolant and a special set of measures and devices, called technology of lead coolant that ensures safe operation in a wide range of temperatures. Here these technological elements are reviewed, and current progress in their development is discussed.

Keywords: BREST-OD-300. , fast reactor, inherent safety, lead coolant

Procedia PDF Downloads 19
613 Temperature Control Improvement of Membrane Reactor

Authors: Pornsiri Kaewpradit, Chalisa Pourneaw


Temperature control improvement of a membrane reactor with exothermic and reversible esterification reaction is studied in this work. It is well known that a batch membrane reactor requires different control strategies from a continuous one due to the fact that it is operated dynamically. Due to the effect of the operating temperature, the suitable control scheme has to be designed based reliable predictive model to achieve a desired objective. In the study, the optimization framework has been preliminary formulated in order to determine an optimal temperature trajectory for maximizing a desired product. In model predictive control scheme, a set of predictive models have been initially developed corresponding to the possible operating points of the system. The multiple predictive control moves have been further calculated on-line using the developed models corresponding to current operating point. It is obviously seen in the simulation results that the temperature control has been improved compared to the performance obtained by the conventional predictive controller. Further robustness tests have also been investigated in this study.

Keywords: model predictive control, batch reactor, temperature control, membrane reactor

Procedia PDF Downloads 347
612 The Main Steamline Break Transient Analysis for Advanced Boiling Water Reactor Using TRACE, PARCS, and SNAP Codes

Authors: H. C. Chang, J. R. Wang, A. L. Ho, S. W. Chen, J. H. Yang, C. Shih, L. C. Wang


To confirm the reactor and containment integrity of the Advanced Boiling Water Reactor (ABWR), we perform the analysis of main steamline break (MSLB) transient by using the TRACE, PARCS, and SNAP codes. The process of the research has four steps. First, the ABWR nuclear power plant (NPP) model is developed by using the above codes. Second, the steady state analysis is performed by using this model. Third, the ABWR model is used to run the analysis of MSLB transient. Fourth, the predictions of TRACE and PARCS are compared with the data of FSAR. The results of TRACE/PARCS and FSAR are similar. According to the TRACE/PARCS results, the reactor and containment integrity of ABWR can be maintained in a safe condition for MSLB.

Keywords: advanced boiling water reactor, TRACE, PARCS, SNAP

Procedia PDF Downloads 71