Search results for: divisive hierarchical clustering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1128

Search results for: divisive hierarchical clustering

138 Impact of Ethnic and Religious Identity on Coping Behavior in Young Adults: Cross-Cultural Research

Authors: Yuliya Kovalenko

Abstract:

Given the social nature of people, it is interesting to explore strategies of responding to psycho-traumatic situations in individuals of different ethnic and religious identity. This would allow to substantially expand the idea of human behavior in general, and coping behavior, in particular. This paper investigated the weighted impact of ethnic and religious identities on the patterns of coping behavior. This cross-cultural research empirically revealed intergroup differences in coping strategies and behavior in the samples of young students and teachers of different ethnic identities (Egyptians N=216 and Ukrainians N=109) and different religious identities (Egyptian Muslims N=147 and Christians, including Egyptian Christians N=68 and Ukrainian Christians N = 109). The empirical data were obtained using the questionnaires SACS and COPE. Statistical analysis and interpretation of the results were performed with IBM SPSS-23.0. It was found that, compared to the religious identity, the ethnic identity of the subjects appeared more predictive of coping behavior. It was shown that the constant exchange of information and the unity of biological and social contributed to a more homogeneous picture in the society where Christians and Muslims were integrated into a single cultural space. It was concluded that depending on their ethnic identity, individuals would form a specific hierarchy of coping strategies resulting in a specific pattern of coping with certain stressors. The Egyptian subjects revealed the following pattern of coping with various kinds of academic stress: 'seeking social support', 'problem solving', 'adapting', 'seeking information'. The coping pattern demonstrated by the Ukrainian subjects could be presented as 'seeking information', 'adapting', 'seeking social support', 'problem solving'. There was a tendency in the group of Egyptians to engage in more collectivist coping strategies (with the predominant coping strategy 'religious coping'), in contrast to the Ukrainians who displayed more individualistic coping strategies (with 'planning' and 'active coping' as the mostly used coping strategies). At the same time, it was obvious that Ukrainians should not be unambiguously attributed to the individualistic coping behavior due to their reliance on 'seeking social support' and 'social contact'. The final conclusion was also drawn from the peculiarities of developing religious identity, including religiosity, in Egyptians (formal religious education of both Muslims and Christians) and Ukrainians (more spontaneous process): Egyptians seem to learn to resort to the religious coping, which could be an indication that, in principle, it is possible and necessary to train individuals in desirable coping behavior.

Keywords: coping behavior, cross-cultural research, ethnic and religious identity, hierarchical pattern of coping

Procedia PDF Downloads 162
137 The Role of Knowledge and Institutional Challenges to the Adoption of Sustainable Urban Drainage in Saudi Arabia: Implications for Sustainable Environmental Development

Authors: Ali Alahmari

Abstract:

Saudi Arabia is facing increasing challenges in managing urban drainage, due to a combination of factors including climate change and urban expansion. Traditional drainage systems are unable to cope with demand, resulting in flooding and damage to property. Consequently, new ways of dealing with this issue need to be found and Sustainable Urban Drainage Systems (SUDS) appear to be a possible solution. This paper suggests that knowledge is a central issue in the adoption of Sustainable Urban Drainage approaches, as revealed through qualitative research with representative officials and professionals from key government departments and organisations in Riyadh. Semi-structured interviews were conducted with twenty-six participants. The interviews explored the challenges of adopting sustainable drainage approaches, and grounded theory analysis was used to examine the role of knowledge. However, a number of barriers have been identified with regard to the adoption of sustainable drainage approaches, such as the marginal status of sustainability in drainage decisions; lack of technical standards for other unconventional drainage solutions, and lack of consideration by decision makers of contributions from environmental and geographical studies. Due to centralisation, decision-making processes are complex and time-consuming, resulting in the discouragement of the adoption of new knowledge and approaches. Stakeholders with knowledge of sustainable approaches are often excluded from the hierarchical system of urban planning and drainage management. In addition, the multiplicity of actors involved in the implementation of the drainage system, as well as the different technical standards involved, often causes problems around coordination and cooperation. Although those with procedural and explicit knowledge have revealed a range of opportunities, such as a significant increase in government support for rainwater drainage in urban areas, they also identified a number of obstacles. These are mainly related to the lack of specialists in sustainable approaches, and a reluctance to involve external experts. Therefore, recommendations for overcoming some of these challenges are presented, which include enhancing the decision-making process through applying decentralisation and promoting awareness of sustainability through establishing educational and outreach programmes. This may serve to increase knowledge and facilitate the adoption of sustainable drainage approaches to promote sustainable development in the context of Saudi Arabia.

Keywords: climate change, decision-making processes, new knowledge and approaches, resistance to change, Saudi Arabia, SUDS, urban expansion

Procedia PDF Downloads 149
136 Variables, Annotation, and Metadata Schemas for Early Modern Greek

Authors: Eleni Karantzola, Athanasios Karasimos, Vasiliki Makri, Ioanna Skouvara

Abstract:

Historical linguistics unveils the historical depth of languages and traces variation and change by analyzing linguistic variables over time. This field of linguistics usually deals with a closed data set that can only be expanded by the (re)discovery of previously unknown manuscripts or editions. In some cases, it is possible to use (almost) the entire closed corpus of a language for research, as is the case with the Thesaurus Linguae Graecae digital library for Ancient Greek, which contains most of the extant ancient Greek literature. However, concerning ‘dynamic’ periods when the production and circulation of texts in printed as well as manuscript form have not been fully mapped, representative samples and corpora of texts are needed. Such material and tools are utterly lacking for Early Modern Greek (16th-18th c.). In this study, the principles of the creation of EMoGReC, a pilot representative corpus of Early Modern Greek (16th-18th c.) are presented. Its design follows the fundamental principles of historical corpora. The selection of texts aims to create a representative and balanced corpus that gives insight into diachronic, diatopic and diaphasic variation. The pilot sample includes data derived from fully machine-readable vernacular texts, which belong to 4-5 different textual genres and come from different geographical areas. We develop a hierarchical linguistic annotation scheme, further customized to fit the characteristics of our text corpus. Regarding variables and their variants, we use as a point of departure the bundle of twenty-four features (or categories of features) for prose demotic texts of the 16th c. Tags are introduced bearing the variants [+old/archaic] or [+novel/vernacular]. On the other hand, further phenomena that are underway (cf. The Cambridge Grammar of Medieval and Early Modern Greek) are selected for tagging. The annotated texts are enriched with metalinguistic and sociolinguistic metadata to provide a testbed for the development of the first comprehensive set of tools for the Greek language of that period. Based on a relational management system with interconnection of data, annotations, and their metadata, the EMoGReC database aspires to join a state-of-the-art technological ecosystem for the research of observed language variation and change using advanced computational approaches.

Keywords: early modern Greek, variation and change, representative corpus, diachronic variables.

Procedia PDF Downloads 67
135 Agricultural Knowledge Management System Design, Use, and Consequence for Knowledge Sharing and Integration

Authors: Dejen Alemu, Murray E. Jennex, Temtim Assefa

Abstract:

This paper is investigated to understand the design, the use, and the consequence of Knowledge Management System (KMS) for knowledge systems sharing and integration. A KMS for knowledge systems sharing and integration is designed to meet the challenges raised by knowledge management researchers and practitioners: the technical, the human, and social factors. Agricultural KMS involves various members coming from different Communities of Practice (CoPs) who possess their own knowledge of multiple practices which need to be combined in the system development. However, the current development of the technology ignored the indigenous knowledge of the local communities, which is the key success factor for agriculture. This research employed the multi-methodological approach to KMS research in action research perspective which consists of four strategies: theory building, experimentation, observation, and system development. Using the KMS development practice of Ethiopian agricultural transformation agency as a case study, this research employed an interpretive analysis using primary qualitative data acquired through in-depth semi-structured interviews and participant observations. The Orlikowski's structuration model of technology has been used to understand the design, the use, and the consequence of the KMS. As a result, the research identified three basic components for the architecture of the shared KMS, namely, the people, the resources, and the implementation subsystems. The KMS were developed using web 2.0 tools to promote knowledge sharing and integration among diverse groups of users in a distributed environment. The use of a shared KMS allows users to access diverse knowledge from a number of users in different groups of participants, enhances the exchange of different forms of knowledge and experience, and creates high interaction and collaboration among participants. The consequences of a shared KMS on the social system includes, the elimination of hierarchical structure, enhance participation, collaboration, and negotiation among users from different CoPs having common interest, knowledge and skill development, integration of diverse knowledge resources, and the requirement of policy and guideline. The research contributes methodologically for the application of system development action research for understanding a conceptual framework for KMS development and use. The research have also theoretical contribution in extending structuration model of technology for the incorporation of variety of knowledge and practical implications to provide management understanding in developing strategies for the potential of web 2.0 tools for sharing and integration of indigenous knowledge.

Keywords: communities of practice, indigenous knowledge, participation, structuration model of technology, Web 2.0 tools

Procedia PDF Downloads 253
134 A Study on the Effect of the Work-Family Conflict on Work Engagement: A Mediated Moderation Model of Emotional Exhaustion and Positive Psychology Capital

Authors: Sungeun Hyun, Sooin Lee, Gyewan Moon

Abstract:

Work-Family Conflict has been an active research area for the past decades. Work-Family Conflict harms individuals and organizations, it is ultimately expected to bring the cost of losses to the company in the long run. WFC has mainly focused on effects of organizational effectiveness and job attitude such as Job Satisfaction, Organizational Commitment, and Turnover Intention variables. This study is different from consequence variable with previous research. For this purpose, we selected the positive job attitude 'Work Engagement' as a consequence of WFC. This research has its primary research purpose in identifying the negative effects of the Work-Family Conflict, and started out from the recognition of the problem that the research on the direct relationship on the influence of the WFC on Work Engagement is lacking. Based on the COR(Conservation of resource theory) and JD-R(Job Demand- Resource model), the empirical study model to examine the negative effects of WFC with Emotional Exhaustion as the link between WFC and Work Engagement was suggested and validated. Also, it was analyzed how much Positive Psychological Capital may buffer the negative effects arising from WFC within this relationship, and the Mediated Moderation model controlling the indirect effect influencing the Work Engagement by the Positive Psychological Capital mediated by the WFC and Emotional Exhaustion was verified. Data was collected by using questionnaires distributed to 500 employees engaged manufacturing, services, finance, IT industry, education services, and other sectors, of which 389 were used in the statistical analysis. The data are analyzed by statistical package, SPSS 21.0, SPSS macro and AMOS 21.0. The hierarchical regression analysis, SPSS PROCESS macro and Bootstrapping method for hypothesis testing were conducted. Results showed that all hypotheses are supported. First, WFC showed a negative effect on Work Engagement. Specifically, WIF appeared to be on more negative effects than FIW. Second, Emotional exhaustion found to mediate the relationship between WFC and Work Engagement. Third, Positive Psychological Capital showed to moderate the relationship between WFC and Emotional Exhaustion. Fourth, the effect of mediated moderation through the integration verification, Positive Psychological Capital demonstrated to buffer the relationship among WFC, Emotional Exhastion, and Work Engagement. Also, WIF showed a more negative effects than FIW through verification of all hypotheses. Finally, we discussed the theoretical and practical implications on research and management of the WFC, and proposed limitations and future research directions of research.

Keywords: emotional exhaustion, positive psychological capital, work engagement, work-family conflict

Procedia PDF Downloads 222
133 Simons, Ehrlichs and the Case for Polycentricity – Why Growth-Enthusiasts and Growth-Sceptics Must Embrace Polycentricity

Authors: Justus Enninga

Abstract:

Enthusiasts and skeptics about economic growth have not much in common in their preference for institutional arrangements that solve ecological conflicts. This paper argues that agreement between both opposing schools can be found in the Bloomington Schools’ concept of polycentricity. Growth-enthusiasts who will be referred to as Simons after the economist Julian Simon and growth-skeptics named Ehrlichs after the ecologist Paul R. Ehrlich both profit from a governance structure where many officials and decision structures are assigned limited and relatively autonomous prerogatives to determine, enforce and alter legal relationships. The paper advances this argument in four steps. First, it will provide clarification of what Simons and Ehrlichs mean when they talk about growth and what the arguments for and against growth-enhancing or degrowth policies are for them and for the other site. Secondly, the paper advances the concept of polycentricity as first introduced by Michael Polanyi and later refined to the study of governance by the Bloomington School of institutional analysis around the Nobel Prize laureate Elinor Ostrom. The Bloomington School defines polycentricity as a non-hierarchical, institutional, and cultural framework that makes possible the coexistence of multiple centers of decision making with different objectives and values, that sets the stage for an evolutionary competition between the complementary ideas and methods of those different decision centers. In the third and fourth parts, it is shown how the concept of polycentricity is of crucial importance for growth-enthusiasts and growth-skeptics alike. The shorter third part demonstrates the literature on growth-enhancing policies and argues that large parts of the literature already accept that polycentric forms of governance like markets, the rule of law and federalism are an important part of economic growth. Part four delves into the more nuanced question of how a stagnant steady-state economy or even an economy that de-grows will still find polycentric governance desirable. While the majority of degrowth proposals follow a top-down approach by requiring direct governmental control, a contrasting bottom-up approach is advanced. A decentralized, polycentric approach is desirable because it allows for the utilization of tacit information dispersed in society and an institutionalized discovery process for new solutions to the problem of ecological collective action – no matter whether you belong to the Simons or Ehrlichs in a green political economy.

Keywords: degrowth, green political theory, polycentricity, institutional robustness

Procedia PDF Downloads 183
132 Recommendations for Data Quality Filtering of Opportunistic Species Occurrence Data

Authors: Camille Van Eupen, Dirk Maes, Marc Herremans, Kristijn R. R. Swinnen, Ben Somers, Stijn Luca

Abstract:

In ecology, species distribution models are commonly implemented to study species-environment relationships. These models increasingly rely on opportunistic citizen science data when high-quality species records collected through standardized recording protocols are unavailable. While these opportunistic data are abundant, uncertainty is usually high, e.g., due to observer effects or a lack of metadata. Data quality filtering is often used to reduce these types of uncertainty in an attempt to increase the value of studies relying on opportunistic data. However, filtering should not be performed blindly. In this study, recommendations are built for data quality filtering of opportunistic species occurrence data that are used as input for species distribution models. Using an extensive database of 5.7 million citizen science records from 255 species in Flanders, the impact on model performance was quantified by applying three data quality filters, and these results were linked to species traits. More specifically, presence records were filtered based on record attributes that provide information on the observation process or post-entry data validation, and changes in the area under the receiver operating characteristic (AUC), sensitivity, and specificity were analyzed using the Maxent algorithm with and without filtering. Controlling for sample size enabled us to study the combined impact of data quality filtering, i.e., the simultaneous impact of an increase in data quality and a decrease in sample size. Further, the variation among species in their response to data quality filtering was explored by clustering species based on four traits often related to data quality: commonness, popularity, difficulty, and body size. Findings show that model performance is affected by i) the quality of the filtered data, ii) the proportional reduction in sample size caused by filtering and the remaining absolute sample size, and iii) a species ‘quality profile’, resulting from a species classification based on the four traits related to data quality. The findings resulted in recommendations on when and how to filter volunteer generated and opportunistically collected data. This study confirms that correctly processed citizen science data can make a valuable contribution to ecological research and species conservation.

Keywords: citizen science, data quality filtering, species distribution models, trait profiles

Procedia PDF Downloads 202
131 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System

Authors: Ben Soltane Cheima, Ittansa Yonas Kelbesa

Abstract:

Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.

Keywords: feature extraction, speaker modeling, feature matching, Mel frequency cepstrum coefficient (MFCC), Gaussian mixture model (GMM), vector quantization (VQ), Linde-Buzo-Gray (LBG), expectation maximization (EM), pre-processing, voice activity detection (VAD), short time energy (STE), background noise statistical modeling, closed-set tex-independent speaker identification system (CISI)

Procedia PDF Downloads 309
130 Atomic Layer Deposition of Metal Oxide Inverse Opals: A Tailorable Platform for Unprecedented Photocatalytic Performance

Authors: Hamsasew Hankebo Lemago, Dóra Hessz, Zoltán Erdélyi, Imre Miklós Szilágyi

Abstract:

Metal oxide inverse opals are a unique class of photocatalysts with a hierarchical structure that mimics the natural opal gemstone. They are composed of a network of interconnected pores, which provides a large surface area and efficient pathways for the transport of light and reactants. Atomic layer deposition (ALD) is a versatile technique for the synthesis of high-precision metal oxide thin films, including inverse opals. ALD allows for precise control over the thickness, composition, and morphology of the synthesized films, making it an ideal technique for the fabrication of photocatalysts with tailored properties. In this study, we report the synthesis of TiO2, ZnO, and Al2O3 inverse opal photocatalysts using thermal or plasma-enhanced ALD. The synthesized photocatalysts were characterized using a variety of techniques, including scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL), ellipsometry, and UV-visible spectroscopy. The results showed that the ALD-synthesized metal oxide inverse opals had a highly ordered structure and a tunable pore size. The PL spectroscopy results showed low recombination rates of photogenerated electron-hole pairs, while the ellipsometry and UV-visible spectroscopy results showed tunable optical properties and band gap energies. The photocatalytic activity of the samples was evaluated by the degradation of methylene blue under visible light irradiation. The results showed that the ALD-synthesized metal oxide inverse opals exhibited high photocatalytic activity, even under visible light irradiation. The composites photocatalysts showed even higher activity than the individual metal oxide inverse opals. The enhanced photocatalytic activity of the composites can be attributed to the synergistic effect between the different metal oxides. For example, Al2O3 can act as a charge carrier scavenger, which can reduce the recombination of photogenerated electron-hole pairs. The ALD-synthesized metal oxide inverse opals and their composites are promising photocatalysts for a variety of applications, such as wastewater treatment, air purification, and energy production. For example, they can be used to remove organic pollutants from wastewater, decompose harmful gases in the air, and produce hydrogen fuel from water.

Keywords: ALD, metal oxide inverse opals, composites, photocatalysis

Procedia PDF Downloads 84
129 Using GIS and AHP Model to Explore the Parking Problem in Khomeinishahr

Authors: Davood Vatankhah, Reza Mokhtari Malekabadi, Mohsen Saghaei

Abstract:

Function of urban transportation systems depends on the existence of the required infrastructures, appropriate placement of different components, and the cooperation of these components with each other. Establishing various neighboring parking spaces in city neighborhood in order to prevent long-term and inappropriate parking of cars in the allies is one of the most effective operations in reducing the crowding and density of the neighborhoods. Every place with a certain application attracts a number of daily travels which happen throughout the city. A large percentage of the people visiting these places go to these travels by their own cars; therefore, they need a space to park their cars. The amount of this need depends on the usage function and travel demand of the place. The study aims at investigating the spatial distribution of the public parking spaces, determining the effective factors in locating, and their combination in GIS environment in Khomeinishahr of Isfahan city. Ultimately, the study intends to create an appropriate pattern for locating parking spaces, determining the request for parking spaces of the traffic areas, choosing the proper places for providing the required public parking spaces, and also proposing new spots in order to promote quality and quantity aspects of the city in terms of enjoying public parking spaces. Regarding the method, the study is based on applied purpose and regarding nature, it is analytic-descriptive. The population of the study includes people of the center of Khomeinishahr which is located on Northwest of Isfahan having about 5000 hectares of geographic area and the population of 241318 people are in the center of Komeinishahr. In order to determine the sample size, Cochran formula was used and according to the population of 26483 people of the studied area, 231 questionnaires were used. Data analysis was carried out by usage of SPSS software and after estimating the required space for parking spaces, initially, the effective criteria in locating the public parking spaces are weighted by the usage of Analytic Hierarchical Process in the Arc GIS software. Then, appropriate places for establishing parking spaces were determined by fuzzy method of Order Weighted Average (OWA). The results indicated that locating of parking spaces in Khomeinishahr have not been carried out appropriately and per capita of the parking spaces is not desirable in relation to the population and request; therefore, in addition to the present parking lots, 1434 parking lots are needed in the area of the study for each day; therefore, there is not a logical proportion between parking request and the number of parking lots in Khomeinishahr.

Keywords: GIS, locating, parking, khomeinishahr

Procedia PDF Downloads 308
128 Predictors of Quality of Life among Older Refugees Aging out of Place

Authors: Jonix Owino, Heather Fuller

Abstract:

Refugees flee from their home countries due to civil unrest, war, persecution and migrate to Western countries such as the United States in search of a safe haven. Transitioning into a new society and culture can be challenging, thereby affecting refugee’s quality of life and well-being in the host communities. Moreover, as individuals age, they experience physical, cognitive and socioemotional changes that may impact their quality of life. However, little is known about the predictors of quality of life among aging refugees. It is not clear how quality of life varies by age, that is, between midlife refugees in comparison to their older counterparts. In addition to age, other sociodemographic factors such as gender, socioeconomic status, or country of origin are likely to have differential associations to quality of life, yet research on such variations among older refugees is sparse. Thus the present study seeks to explore factors associated with quality of life by asking the following research questions: 1) Do sociodemographic factors (such as age and gender) predict quality of life among older refugees, 2) Is there an association between social integration and quality of life, and 3) Is there an association between migratory related experiences (such as post migratory adjustments) and quality of life. The present study recruited 90 refugees (primarily originating from Bhutan, Somalia, Burundi, and Sudan) aged 50 or older living in the US. The participants completed a structured questionnaire which assessed factors such as participant’s sociodemographic attributes (e.g., age, gender, length of residence in the US, country of origin, employment, level of education, and marital status), and validated measures of social integration, post-migration living difficulties, and quality of life. Preliminary results suggest sociodemographic variability in quality of life among these refugees. Further analyses will be conducted using hierarchical regression analyses to address the following hypotheses: first, it is hypothesized that quality of life will vary by age and gender such that younger refugees and men will report higher quality of life. Second, it is expected that refugees with greater levels of social integration will also report better quality of life. Finally, post-migration factors such as language barriers and family stress are hypothesized to predict poorer quality of life. Further results will be analyzed, including potential moderating effects of age and gender, and resulting findings will be interpreted and discussed. The findings from this study have potential implications for communities on how they can better support older refugees as well as develop social programs that can effectively cater to their well-being. Conclusions will be drawn and discussed in light of policies related to both aging and refugee migration within the context of the US.

Keywords: aging out of place, migration, older refugees, quality of life, social integration

Procedia PDF Downloads 100
127 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model

Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho

Abstract:

Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.

Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem

Procedia PDF Downloads 294
126 Statistical Pattern Recognition for Biotechnological Process Characterization Based on High Resolution Mass Spectrometry

Authors: S. Fröhlich, M. Herold, M. Allmer

Abstract:

Early stage quantitative analysis of host cell protein (HCP) variations is challenging yet necessary for comprehensive bioprocess development. High resolution mass spectrometry (HRMS) provides a high-end technology for accurate identification alongside with quantitative information. Hereby we describe a flexible HRMS assay platform to quantify HCPs relevant in microbial expression systems such as E. Coli in both up and downstream development by means of MVDA tools. Cell pellets were lysed and proteins extracted, purified samples not further treated before applying the SMART tryptic digest kit. Peptides separation was optimized using an RP-UHPLC separation platform. HRMS-MSMS analysis was conducted on an Orbitrap Velos Elite applying CID. Quantification was performed label-free taking into account ionization properties and physicochemical peptide similarities. Results were analyzed using SIEVE 2.0 (Thermo Fisher Scientific) and SIMCA (Umetrics AG). The developed HRMS platform was applied to an E. Coli expression set with varying productivity and the corresponding downstream process. Selected HCPs were successfully quantified within the fmol range. Analysing HCP networks based on pattern analysis facilitated low level quantification and enhanced validity. This approach is of high relevance for high-throughput screening experiments during upstream development, e.g. for titer determination, dynamic HCP network analysis or product characterization. Considering the downstream purification process, physicochemical clustering of identified HCPs is of relevance to adjust buffer conditions accordingly. However, the technology provides an innovative approach for label-free MS based quantification relying on statistical pattern analysis and comparison. Absolute quantification based on physicochemical properties and peptide similarity score provides a technological approach without the need of sophisticated sample preparation strategies and is therefore proven to be straightforward, sensitive and highly reproducible in terms of product characterization.

Keywords: process analytical technology, mass spectrometry, process characterization, MVDA, pattern recognition

Procedia PDF Downloads 249
125 Happiness Levels and Factors Affect Happiness in Thailand: A Comparative Study of 4 Periods

Authors: Kalayanee Senasu

Abstract:

Research on happiness has been growing in recent decades. In the early stages, scholars were primarily concerned with establishing the validity of happiness measures and with exploring socio-economic correlates of happiness. More recent studies have focused on outcomes of happiness as well as the identification of happiness policies. This research investigates the happiness levels and influences of quality of life in terms of mental health satisfaction, family satisfaction, community satisfaction, and work satisfaction as determinants of happiness in Thailand during 2009-2014. The data collected by the National Statistic Office of Thailand in the project of Socio-economic Survey inclusion of Mental Health Survey in 2009, 2010, and 2012; and in the project of Labor Force Survey inclusion of Mental Health Survey in August 2014 were employed. There was a total of 59,430, 64,720, 54,736, and 9,997 respondents who were at least 15 years old in the survey during 2009-2014. Statistical analyses include both descriptive and inferential statistics. All research hypotheses were tested by means of hierarchical regression analysis. The analysis results reveal that happiness means during the studied period are quite at high levels (in the range of 7.42 to 7.60 from the scale 0-10). And the results indicate that all model variables (i.e., mental health satisfaction, family satisfaction, community satisfaction, and work satisfaction), have positive effects on happiness in Thailand. Additionally, the mental health satisfaction plays the most important role in predicting happiness. Further, our results indicate significant positive relationship between education, and income/expense and happiness, while other socio-economic variables reveal variety relationships during the studied period. Our results not only validate research findings in other countries but also verify the importance of quality of life (in terms of mental health satisfaction, family satisfaction, community satisfaction, and work satisfaction) as important factors of happiness for public policy makers. One conclusion stands firm in our study: happiness can be advanced in many ways. At the society level, greater happiness for people can be achieved by policies that aim to promote good health, an engaged family relationship, a high community as well as work qualities. A contented population is advantaged in many ways over one that is not. Government or policy makers should understand and realize that happiness is a valuable and tangible aspect of the population for which they are responsible. Therefore, they should include happiness issues in their political agenda.

Keywords: community satisfaction, family satisfaction, mental health satisfaction, work satisfaction, happiness, Thailand

Procedia PDF Downloads 328
124 Towards Real-Time Classification of Finger Movement Direction Using Encephalography Independent Components

Authors: Mohamed Mounir Tellache, Hiroyuki Kambara, Yasuharu Koike, Makoto Miyakoshi, Natsue Yoshimura

Abstract:

This study explores the practicality of using electroencephalographic (EEG) independent components to predict eight-direction finger movements in pseudo-real-time. Six healthy participants with individual-head MRI images performed finger movements in eight directions with two different arm configurations. The analysis was performed in two stages. The first stage consisted of using independent component analysis (ICA) to separate the signals representing brain activity from non-brain activity signals and to obtain the unmixing matrix. The resulting independent components (ICs) were checked, and those reflecting brain-activity were selected. Finally, the time series of the selected ICs were used to predict eight finger-movement directions using Sparse Logistic Regression (SLR). The second stage consisted of using the previously obtained unmixing matrix, the selected ICs, and the model obtained by applying SLR to classify a different EEG dataset. This method was applied to two different settings, namely the single-participant level and the group-level. For the single-participant level, the EEG dataset used in the first stage and the EEG dataset used in the second stage originated from the same participant. For the group-level, the EEG datasets used in the first stage were constructed by temporally concatenating each combination without repetition of the EEG datasets of five participants out of six, whereas the EEG dataset used in the second stage originated from the remaining participants. The average test classification results across datasets (mean ± S.D.) were 38.62 ± 8.36% for the single-participant, which was significantly higher than the chance level (12.50 ± 0.01%), and 27.26 ± 4.39% for the group-level which was also significantly higher than the chance level (12.49% ± 0.01%). The classification accuracy within [–45°, 45°] of the true direction is 70.03 ± 8.14% for single-participant and 62.63 ± 6.07% for group-level which may be promising for some real-life applications. Clustering and contribution analyses further revealed the brain regions involved in finger movement and the temporal aspect of their contribution to the classification. These results showed the possibility of using the ICA-based method in combination with other methods to build a real-time system to control prostheses.

Keywords: brain-computer interface, electroencephalography, finger motion decoding, independent component analysis, pseudo real-time motion decoding

Procedia PDF Downloads 138
123 Downtime Estimation of Building Structures Using Fuzzy Logic

Authors: M. De Iuliis, O. Kammouh, G. P. Cimellaro, S. Tesfamariam

Abstract:

Community Resilience has gained a significant attention due to the recent unexpected natural and man-made disasters. Resilience is the process of maintaining livable conditions in the event of interruptions in normally available services. Estimating the resilience of systems, ranging from individuals to communities, is a formidable task due to the complexity involved in the process. The most challenging parameter involved in the resilience assessment is the 'downtime'. Downtime is the time needed for a system to recover its services following a disaster event. Estimating the exact downtime of a system requires a lot of inputs and resources that are not always obtainable. The uncertainties in the downtime estimation are usually handled using probabilistic methods, which necessitates acquiring large historical data. The estimation process also involves ignorance, imprecision, vagueness, and subjective judgment. In this paper, a fuzzy-based approach to estimate the downtime of building structures following earthquake events is proposed. Fuzzy logic can integrate descriptive (linguistic) knowledge and numerical data into the fuzzy system. This ability allows the use of walk down surveys, which collect data in a linguistic or a numerical form. The use of fuzzy logic permits a fast and economical estimation of parameters that involve uncertainties. The first step of the method is to determine the building’s vulnerability. A rapid visual screening is designed to acquire information about the analyzed building (e.g. year of construction, structural system, site seismicity, etc.). Then, a fuzzy logic is implemented using a hierarchical scheme to determine the building damageability, which is the main ingredient to estimate the downtime. Generally, the downtime can be divided into three main components: downtime due to the actual damage (DT1); downtime caused by rational and irrational delays (DT2); and downtime due to utilities disruption (DT3). In this work, DT1 is computed by relating the building damageability results obtained from the visual screening to some already-defined components repair times available in the literature. DT2 and DT3 are estimated using the REDITM Guidelines. The Downtime of the building is finally obtained by combining the three components. The proposed method also allows identifying the downtime corresponding to each of the three recovery states: re-occupancy; functional recovery; and full recovery. Future work is aimed at improving the current methodology to pass from the downtime to the resilience of buildings. This will provide a simple tool that can be used by the authorities for decision making.

Keywords: resilience, restoration, downtime, community resilience, fuzzy logic, recovery, damage, built environment

Procedia PDF Downloads 160
122 The Link Between Collaboration Interactions and Team Creativity Among Nursing Student Teams in Taiwan: A Moderated Mediation Model

Authors: Hsing Yuan Liu

Abstract:

Background: Considerable theoretical and empirical work has identified a relationship between collaboration interactions and creativity in an organizational context. The mechanisms underlying this link, however, are not well understood in healthcare education. Objectives: The aims of this study were to explore the impact of collaboration interactions on team creativity and its underlying mechanism and to verify a moderated mediation model. Design, setting, and participants: This study utilized a cross-sectional, quantitative, descriptive design. The survey data were collected from 177 nursing students who enrolled in 18-week capstone courses of small interdisciplinary groups collaborating to design healthcare products in Taiwan during 2018 and 2019. Methods: Questionnaires assessed the nursing students' perceptions about their teams' swift trust (of cognition- and affect-based), conflicts (of task, process, and relationship), interaction behaviors (constructive controversy, helping behaviors, and spontaneous communication), and creativity. This study used descriptive statistics to compare demographics, swift trust scores, conflict scores, interaction behavior scores, and creativity scores for interdisciplinary teams. Data were analyzed using Pearson’s correlation coefficient and simple and hierarchical multiple regression models. Results: Pearson’s correlation analysis showed the cognition-based team swift trust was positively correlated with team creativity. The mediation model indicated constructive controversy fully mediated the effect of cognition-based team swift trust on student teams’ creativity. The moderated mediation model indicated that task conflict negatively moderates the mediating effect of the constructive controversy on the link between cognition-based team swift trust and team creativity. Conclusion: Our findings suggest nursing student teams’ interaction behaviors and task conflict are crucial mediating and moderated mediation variables on the relationship between collaboration interactions and team creativity, respectively. The empirical data confirms the validity of our proposed moderated mediation models of team creativity. Therefore, this study's validated moderated mediation model could provide guidance for nursing educators to improve collaboration interaction outcomes and creativity on nursing student teams.

Keywords: team swift trust, team conflict, team interaction behavior, moderated mediating effects, interdisciplinary education, nursing students

Procedia PDF Downloads 187
121 Automated Building Internal Layout Design Incorporating Post-Earthquake Evacuation Considerations

Authors: Sajjad Hassanpour, Vicente A. González, Yang Zou, Jiamou Liu

Abstract:

Earthquakes pose a significant threat to both structural and non-structural elements in buildings, putting human lives at risk. Effective post-earthquake evacuation is critical for ensuring the safety of building occupants. However, current design practices often neglect the integration of post-earthquake evacuation considerations into the early-stage architectural design process. To address this gap, this paper presents a novel automated internal architectural layout generation tool that optimizes post-earthquake evacuation performance. The tool takes an initial plain floor plan as input, along with specific requirements from the user/architect, such as minimum room dimensions, corridor width, and exit lengths. Based on these inputs, firstly, the tool randomly generates different architectural layouts. Secondly, the human post-earthquake evacuation behaviour will be thoroughly assessed for each generated layout using the advanced Agent-Based Building Earthquake Evacuation Simulation (AB2E2S) model. The AB2E2S prototype is a post-earthquake evacuation simulation tool that incorporates variables related to earthquake intensity, architectural layout, and human factors. It leverages a hierarchical agent-based simulation approach, incorporating reinforcement learning to mimic human behaviour during evacuation. The model evaluates different layout options and provides feedback on evacuation flow, time, and possible casualties due to earthquake non-structural damage. By integrating the AB2E2S model into the automated layout generation tool, architects and designers can obtain optimized architectural layouts that prioritize post-earthquake evacuation performance. Through the use of the tool, architects and designers can explore various design alternatives, considering different minimum room requirements, corridor widths, and exit lengths. This approach ensures that evacuation considerations are embedded in the early stages of the design process. In conclusion, this research presents an innovative automated internal architectural layout generation tool that integrates post-earthquake evacuation simulation. By incorporating evacuation considerations into the early-stage design process, architects and designers can optimize building layouts for improved post-earthquake evacuation performance. This tool empowers professionals to create resilient designs that prioritize the safety of building occupants in the face of seismic events.

Keywords: agent-based simulation, automation in design, architectural layout, post-earthquake evacuation behavior

Procedia PDF Downloads 104
120 Integrating System-Level Infrastructure Resilience and Sustainability Based on Fractal: Perspectives and Review

Authors: Qiyao Han, Xianhai Meng

Abstract:

Urban infrastructures refer to the fundamental facilities and systems that serve cities. Due to the global climate change and human activities in recent years, many urban areas around the world are facing enormous challenges from natural and man-made disasters, like flood, earthquake and terrorist attack. For this reason, urban resilience to disasters has attracted increasing attention from researchers and practitioners. Given the complexity of infrastructure systems and the uncertainty of disasters, this paper suggests that studies of resilience could focus on urban functional sustainability (in social, economic and environmental dimensions) supported by infrastructure systems under disturbance. It is supposed that urban infrastructure systems with high resilience should be able to reconfigure themselves without significant declines in critical functions (services), such as primary productivity, hydrological cycles, social relations and economic prosperity. Despite that some methods have been developed to integrate the resilience and sustainability of individual infrastructure components, more work is needed to enable system-level integration. This research presents a conceptual analysis framework for integrating resilience and sustainability based on fractal theory. It is believed that the ability of an ecological system to maintain structure and function in face of disturbance and to reorganize following disturbance-driven change is largely dependent on its self-similar and hierarchical fractal structure, in which cross-scale resilience is produced by the replication of ecosystem processes dominating at different levels. Urban infrastructure systems are analogous to ecological systems because they are interconnected, complex and adaptive, are comprised of interconnected components, and exhibit characteristic scaling properties. Therefore, analyzing resilience of ecological system provides a better understanding about the dynamics and interactions of infrastructure systems. This paper discusses fractal characteristics of ecosystem resilience, reviews literature related to system-level infrastructure resilience, identifies resilience criteria associated with sustainability dimensions, and develops a conceptual analysis framework. Exploration of the relevance of identified criteria to fractal characteristics reveals that there is a great potential to analyze infrastructure systems based on fractal. In the conceptual analysis framework, it is proposed that in order to be resilient, urban infrastructure system needs to be capable of “maintaining” and “reorganizing” multi-scale critical functions under disasters. Finally, the paper identifies areas where further research efforts are needed.

Keywords: fractal, urban infrastructure, sustainability, system-level resilience

Procedia PDF Downloads 273
119 Identification of Peroxisome Proliferator-Activated Receptors α/γ Dual Agonists for Treatment of Metabolic Disorders, Insilico Screening, and Molecular Dynamics Simulation

Authors: Virendra Nath, Vipin Kumar

Abstract:

Background: TypeII Diabetes mellitus is a foremost health problem worldwide, predisposing to increased mortality and morbidity. Undesirable effects of the current medications have prompted the researcher to develop more potential drug(s) against the disease. The peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptors family and take part in a vital role in the regulation of metabolic equilibrium. They can induce or repress genes associated with adipogenesis, lipid, and glucose metabolism. Aims: Investigation of PPARα/γ agonistic hits were screened by hierarchical virtual screening followed by molecular dynamics simulation and knowledge-based structure-activity relation (SAR) analysis using approved PPAR α/γ dual agonist. Methods: The PPARα/γ agonistic activity of compounds was searched by using Maestro through structure-based virtual screening and molecular dynamics (MD) simulation application. Virtual screening of nuclear-receptor ligands was done, and the binding modes with protein-ligand interactions of newer entity(s) were investigated. Further, binding energy prediction, Stability studies using molecular dynamics (MD) simulation of PPARα and γ complex was performed with the most promising hit along with the structural comparative analysis of approved PPARα/γ agonists with screened hit was done for knowledge-based SAR. Results and Discussion: The silicone chip-based approach recognized the most capable nine hits and had better predictive binding energy as compared to the reference drug compound (Tesaglitazar). In this study, the key amino acid residues of binding pockets of both targets PPARα/γ were acknowledged as essential and were found to be associated in the key interactions with the most potential dual hit (ChemDiv-3269-0443). Stability studies using molecular dynamics (MD) simulation of PPARα and γ complex was performed with the most promising hit and found root mean square deviation (RMSD) stabile around 2Å and 2.1Å, respectively. Frequency distribution data also revealed that the key residues of both proteins showed maximum contacts with a potent hit during the MD simulation of 20 nanoseconds (ns). The knowledge-based SAR studies of PPARα/γ agonists were studied using 2D structures of approved drugs like aleglitazar, tesaglitazar, etc. for successful designing and synthesis of compounds PPARγ agonistic candidates with anti-hyperlipidimic potential.

Keywords: computational, diabetes, PPAR, simulation

Procedia PDF Downloads 103
118 Optimal Pricing Based on Real Estate Demand Data

Authors: Vanessa Kummer, Maik Meusel

Abstract:

Real estate demand estimates are typically derived from transaction data. However, in regions with excess demand, transactions are driven by supply and therefore do not indicate what people are actually looking for. To estimate the demand for housing in Switzerland, search subscriptions from all important Swiss real estate platforms are used. These data do, however, suffer from missing information—for example, many users do not specify how many rooms they would like or what price they would be willing to pay. In economic analyses, it is often the case that only complete data is used. Usually, however, the proportion of complete data is rather small which leads to most information being neglected. Also, the data might have a strong distortion if it is complete. In addition, the reason that data is missing might itself also contain information, which is however ignored with that approach. An interesting issue is, therefore, if for economic analyses such as the one at hand, there is an added value by using the whole data set with the imputed missing values compared to using the usually small percentage of complete data (baseline). Also, it is interesting to see how different algorithms affect that result. The imputation of the missing data is done using unsupervised learning. Out of the numerous unsupervised learning approaches, the most common ones, such as clustering, principal component analysis, or neural networks techniques are applied. By training the model iteratively on the imputed data and, thereby, including the information of all data into the model, the distortion of the first training set—the complete data—vanishes. In a next step, the performances of the algorithms are measured. This is done by randomly creating missing values in subsets of the data, estimating those values with the relevant algorithms and several parameter combinations, and comparing the estimates to the actual data. After having found the optimal parameter set for each algorithm, the missing values are being imputed. Using the resulting data sets, the next step is to estimate the willingness to pay for real estate. This is done by fitting price distributions for real estate properties with certain characteristics, such as the region or the number of rooms. Based on these distributions, survival functions are computed to obtain the functional relationship between characteristics and selling probabilities. Comparing the survival functions shows that estimates which are based on imputed data sets do not differ significantly from each other; however, the demand estimate that is derived from the baseline data does. This indicates that the baseline data set does not include all available information and is therefore not representative for the entire sample. Also, demand estimates derived from the whole data set are much more accurate than the baseline estimation. Thus, in order to obtain optimal results, it is important to make use of all available data, even though it involves additional procedures such as data imputation.

Keywords: demand estimate, missing-data imputation, real estate, unsupervised learning

Procedia PDF Downloads 285
117 Fuzzy Optimization for Identifying Anticancer Targets in Genome-Scale Metabolic Models of Colon Cancer

Authors: Feng-Sheng Wang, Chao-Ting Cheng

Abstract:

Developing a drug from conception to launch is costly and time-consuming. Computer-aided methods can reduce research costs and accelerate the development process during the early drug discovery and development stages. This study developed a fuzzy multi-objective hierarchical optimization framework for identifying potential anticancer targets in a metabolic model. First, RNA-seq expression data of colorectal cancer samples and their healthy counterparts were used to reconstruct tissue-specific genome-scale metabolic models. The aim of the optimization framework was to identify anticancer targets that lead to cancer cell death and evaluate metabolic flux perturbations in normal cells that have been caused by cancer treatment. Four objectives were established in the optimization framework to evaluate the mortality of cancer cells for treatment and to minimize side effects causing toxicity-induced tumorigenesis on normal cells and smaller metabolic perturbations. Through fuzzy set theory, a multiobjective optimization problem was converted into a trilevel maximizing decision-making (MDM) problem. The applied nested hybrid differential evolution was applied to solve the trilevel MDM problem using two nutrient media to identify anticancer targets in the genome-scale metabolic model of colorectal cancer, respectively. Using Dulbecco’s Modified Eagle Medium (DMEM), the computational results reveal that the identified anticancer targets were mostly involved in cholesterol biosynthesis, pyrimidine and purine metabolisms, glycerophospholipid biosynthetic pathway and sphingolipid pathway. However, using Ham’s medium, the genes involved in cholesterol biosynthesis were unidentifiable. A comparison of the uptake reactions for the DMEM and Ham’s medium revealed that no cholesterol uptake reaction was included in DMEM. Two additional media, i.e., a cholesterol uptake reaction was included in DMEM and excluded in HAM, were respectively used to investigate the relationship of tumor cell growth with nutrient components and anticancer target genes. The genes involved in the cholesterol biosynthesis were also revealed to be determinable if a cholesterol uptake reaction was not induced when the cells were in the culture medium. However, the genes involved in cholesterol biosynthesis became unidentifiable if such a reaction was induced.

Keywords: Cancer metabolism, genome-scale metabolic model, constraint-based model, multilevel optimization, fuzzy optimization, hybrid differential evolution

Procedia PDF Downloads 80
116 Evaluating the Factors Controlling the Hydrochemistry of Gaza Coastal Aquifer Using Hydrochemical and Multivariate Statistical Analysis

Authors: Madhat Abu Al-Naeem, Ismail Yusoff, Ng Tham Fatt, Yatimah Alias

Abstract:

Groundwater in Gaza strip is increasingly being exposed to anthropic and natural factors that seriously impacted the groundwater quality. Physiochemical data of groundwater can offer important information on changes in groundwater quality that can be useful in improving water management tactics. An integrative hydrochemical and statistical techniques (Hierarchical cluster analysis (HCA) and factor analysis (FA)) have been applied on the existence ten physiochemical data of 84 samples collected in (2000/2001) using STATA, AquaChem, and Surfer softwares to: 1) Provide valuable insight into the salinization sources and the hydrochemical processes controlling the chemistry of groundwater. 2) Differentiate the influence of natural processes and man-made activities. The recorded large diversity in water facies with dominance Na-Cl type that reveals a highly saline aquifer impacted by multiple complex hydrochemical processes. Based on WHO standards, only (15.5%) of the wells were suitable for drinking. HCA yielded three clusters. Cluster 1 is the highest in salinity, mainly due to the impact of Eocene saline water invasion mixed with human inputs. Cluster 2 is the lowest in salinity also due to Eocene saline water invasion but mixed with recent rainfall recharge and limited carbonate dissolution and nitrate pollution. Cluster 3 is similar in salinity to Cluster 2, but with a high diversity of facies due to the impact of many sources of salinity as sea water invasion, carbonate dissolution and human inputs. Factor analysis yielded two factors accounting for 88% of the total variance. Factor 1 (59%) is a salinization factor demonstrating the mixing contribution of natural saline water with human inputs. Factor 2 measure the hardness and pollution which explained 29% of the total variance. The negative relationship between the NO3- and pH may reveal a denitrification process in a heavy polluted aquifer recharged by a limited oxygenated rainfall. Multivariate statistical analysis combined with hydrochemical analysis indicate that the main factors controlling groundwater chemistry were Eocene saline invasion, seawater invasion, sewage invasion and rainfall recharge and the main hydrochemical processes were base ion and reverse ion exchange processes with clay minerals (water rock interactions), nitrification, carbonate dissolution and a limited denitrification process.

Keywords: dendrogram and cluster analysis, water facies, Eocene saline invasion and sea water invasion, nitrification and denitrification

Procedia PDF Downloads 365
115 Phenotypic Diversity of the Tomato Germplasm from the Lazio Region in Central Italy, with a Case Study on Molecular Distinctiveness

Authors: Barbara Farinon, Maurizio E. Picarella, Lorenzo Mancini, Andrea Mazzucato

Abstract:

Italy is notoriously a secondary center of diversification for cultivated tomatoes (Solanum lycopersicum L.). The study of phenotypic and genetic diversity in landrace collections is important for germplasm conservation and biodiversity protection. Here, we set up to study the germplasm collected in the region of Lazio in Central Italy with a focus on the distinctiveness among landraces and the attribution of membership to unnamed accessions. Our regional collection included 30 accessions belonging to six different locally recognized landraces and 21 unnamed accessions. All accessions were gathered in Lazio and belonged to the collection held at the Regional Agency for the Development and Innovation of Agriculture in Lazio (ARSIAL, in the application of the Regional Act n. 15/2000, funded by Lazio Rural Development Plan 2014 – 2020 Agro-environmental Measure, Action 10.2.1) and at the University of Tuscia. We included 13 control genotypes as references. The collection showed wide phenotypic variability for several traits, such as fruit weight (range 14-277 g), locule number (2-12), shape index (0.54-2.65), yield (0.24-3.08 kg/plant), and soluble solids (3.4-7.5 °B). A few landraces showed uncommon phenotypes, such as potato leaf, colorless fruit epidermis, or delayed ripening. Multivariate analysis of 25 cardinal phenotypic variables grouped the named varieties and allowed to assign of some of the unnamed to recognized groups. A case study for distinctiveness is presented for the flattened-ribbed types that presented overlapping distribution according to the phenotypic data. Molecular markers retrieved by previous studies revealed differences compared to the phenotyping clustering, indicating that the named varieties “Scatolone di Bolsena” and “Pantano Romanesco” belong to the Marmande group, together with the reference landrace from Tuscany “Costoluto Fiorentino”. Differently, the landrace “Spagnoletta di Formia e Gaeta” was clearly distinct from the former at the molecular level. Therefore, a genotypic analysis of the analyzed collection appears needed to better define the molecular distinctiveness among the flattened-ribbed accessions, as well as to properly attribute the membership group of the unnamed accessions.

Keywords: distinctiveness, flattened-ribbed fruits, regional landraces, tomato

Procedia PDF Downloads 138
114 Winter – Not Spring - Climate Drives Annual Adult Survival in Common Passerines: A Country-Wide, Multi-Species Modeling Exercise

Authors: Manon Ghislain, Timothée Bonnet, Olivier Gimenez, Olivier Dehorter, Pierre-Yves Henry

Abstract:

Climatic fluctuations affect the demography of animal populations, generating changes in population size, phenology, distribution and community assemblages. However, very few studies have identified the underlying demographic processes. For short-lived species, like common passerine birds, are these changes generated by changes in adult survival or in fecundity and recruitment? This study tests for an effect of annual climatic conditions (spring and winter) on annual, local adult survival at very large spatial (a country, 252 sites), temporal (25 years) and biological (25 species) scales. The Constant Effort Site ringing has allowed the collection of capture - mark - recapture data for 100 000 adult individuals since 1989, over metropolitan France, thus documenting annual, local survival rates of the most common passerine birds. We specifically developed a set of multi-year, multi-species, multi-site Bayesian models describing variations in local survival and recapture probabilities. This method allows for a statistically powerful hierarchical assessment (global versus species-specific) of the effects of climate variables on survival. A major part of between-year variations in survival rate was common to all species (74% of between-year variance), whereas only 26% of temporal variation was species-specific. Although changing spring climate is commonly invoked as a cause of population size fluctuations, spring climatic anomalies (mean precipitation or temperature for March-August) do not impact adult survival: only 1% of between-year variation of species survival is explained by spring climatic anomalies. However, for sedentary birds, winter climatic anomalies (North Atlantic Oscillation) had a significant, quadratic effect on adult survival, birds surviving less during intermediate years than during more extreme years. For migratory birds, we do not detect an effect of winter climatic anomalies (Sahel Rainfall). We will analyze the life history traits (migration, habitat, thermal range) that could explain a different sensitivity of species to winter climate anomalies. Overall, we conclude that changes in population sizes for passerine birds are unlikely to be the consequences of climate-driven mortality (or emigration) in spring but could be induced by other demographic parameters, like fecundity.

Keywords: Bayesian approach, capture-recapture, climate anomaly, constant effort sites scheme, passerine, seasons, survival

Procedia PDF Downloads 303
113 Evaluation of Electrophoretic and Electrospray Deposition Methods for Preparing Graphene and Activated Carbon Modified Nano-Fibre Electrodes for Hydrogen/Vanadium Flow Batteries and Supercapacitors

Authors: Barun Chakrabarti, Evangelos Kalamaras, Vladimir Yufit, Xinhua Liu, Billy Wu, Nigel Brandon, C. T. John Low

Abstract:

In this work, we perform electrophoretic deposition of activated carbon on a number of substrates to prepare symmetrical coin cells for supercapacitor applications. From several recipes that involve the evaluation of a few solvents such as isopropyl alcohol, N-Methyl-2-pyrrolidone (NMP), or acetone to binders such as polyvinylidene fluoride (PVDF) and charging agents such as magnesium chloride, we display a working means for achieving supercapacitors that can achieve 100 F/g in a consistent manner. We then adapt this EPD method to deposit reduced graphene oxide on SGL 10AA carbon paper to achieve cathodic materials for testing in a hydrogen/vanadium flow battery. In addition, a self-supported hierarchical carbon nano-fibre is prepared by means of electrospray deposition of an iron phthalocyanine solution onto a temporary substrate followed by carbonisation to remove heteroatoms. This process also induces a degree of nitrogen doping on the carbon nano-fibres (CNFs), which allows its catalytic performance to improve significantly as detailed in other publications. The CNFs are then used as catalysts by attaching them to graphite felt electrodes facing the membrane inside an all-vanadium flow battery (Scribner cell using serpentine flow distribution channels) and efficiencies as high as 60% is noted at high current densities of 150 mA/cm². About 20 charge and discharge cycling show that the CNF catalysts consistently perform better than pristine graphite felt electrodes. Following this, we also test the CNF as an electro-catalyst in the hydrogen/vanadium flow battery (cathodic side as mentioned briefly in the first paragraph) facing the membrane, based upon past studies from our group. Once again, we note consistently good efficiencies of 85% and above for CNF modified graphite felt electrodes in comparison to 60% for pristine felts at low current density of 50 mA/cm² (this reports 20 charge and discharge cycles of the battery). From this preliminary investigation, we conclude that the CNFs may be used as catalysts for other systems such as vanadium/manganese, manganese/manganese and manganese/hydrogen flow batteries in the future. We are generating data for such systems at present, and further publications are expected.

Keywords: electrospinning, carbon nano-fibres, all-vanadium redox flow battery, hydrogen-vanadium fuel cell, electrocatalysis

Procedia PDF Downloads 291
112 Predictive Modelling of Curcuminoid Bioaccessibility as a Function of Food Formulation and Associated Properties

Authors: Kevin De Castro Cogle, Mirian Kubo, Maria Anastasiadi, Fady Mohareb, Claire Rossi

Abstract:

Background: The bioaccessibility of bioactive compounds is a critical determinant of the nutritional quality of various food products. Despite its importance, there is a limited number of comprehensive studies aimed at assessing how the composition of a food matrix influences the bioaccessibility of a compound of interest. This knowledge gap has prompted a growing need to investigate the intricate relationship between food matrix formulations and the bioaccessibility of bioactive compounds. One such class of bioactive compounds that has attracted considerable attention is curcuminoids. These naturally occurring phytochemicals, extracted from the roots of Curcuma longa, have gained popularity owing to their purported health benefits and also well known for their poor bioaccessibility Project aim: The primary objective of this research project is to systematically assess the influence of matrix composition on the bioaccessibility of curcuminoids. Additionally, this study aimed to develop a series of predictive models for bioaccessibility, providing valuable insights for optimising the formula for functional foods and provide more descriptive nutritional information to potential consumers. Methods: Food formulations enriched with curcuminoids were subjected to in vitro digestion simulation, and their bioaccessibility was characterized with chromatographic and spectrophotometric techniques. The resulting data served as the foundation for the development of predictive models capable of estimating bioaccessibility based on specific physicochemical properties of the food matrices. Results: One striking finding of this study was the strong correlation observed between the concentration of macronutrients within the food formulations and the bioaccessibility of curcuminoids. In fact, macronutrient content emerged as a very informative explanatory variable of bioaccessibility and was used, alongside other variables, as predictors in a Bayesian hierarchical model that predicted curcuminoid bioaccessibility accurately (optimisation performance of 0.97 R2) for the majority of cross-validated test formulations (LOOCV of 0.92 R2). These preliminary results open the door to further exploration, enabling researchers to investigate a broader spectrum of food matrix types and additional properties that may influence bioaccessibility. Conclusions: This research sheds light on the intricate interplay between food matrix composition and the bioaccessibility of curcuminoids. This study lays a foundation for future investigations, offering a promising avenue for advancing our understanding of bioactive compound bioaccessibility and its implications for the food industry and informed consumer choices.

Keywords: bioactive bioaccessibility, food formulation, food matrix, machine learning, probabilistic modelling

Procedia PDF Downloads 67
111 Modelling the Antecedents of Supply Chain Enablers in Online Groceries Using Interpretive Structural Modelling and MICMAC Analysis

Authors: Rose Antony, Vivekanand B. Khanapuri, Karuna Jain

Abstract:

Online groceries have transformed the way the supply chains are managed. These are facing numerous challenges in terms of product wastages, low margins, long breakeven to achieve and low market penetration to mention a few. The e-grocery chains need to overcome these challenges in order to survive the competition. The purpose of this paper is to carry out a structural analysis of the enablers in e-grocery chains by applying Interpretive Structural Modeling (ISM) and MICMAC analysis in the Indian context. The research design is descriptive-explanatory in nature. The enablers have been identified from the literature and through semi-structured interviews conducted among the managers having relevant experience in e-grocery supply chains. The experts have been contacted through professional/social networks by adopting a purposive snowball sampling technique. The interviews have been transcribed, and manual coding is carried using open and axial coding method. The key enablers are categorized into themes, and the contextual relationship between these and the performance measures is sought from the Industry veterans. Using ISM, the hierarchical model of the enablers is developed and MICMAC analysis identifies the driver and dependence powers. Based on the driver-dependence power the enablers are categorized into four clusters namely independent, autonomous, dependent and linkage. The analysis found that information technology (IT) and manpower training acts as key enablers towards reducing the lead time and enhancing the online service quality. Many of the enablers fall under the linkage cluster viz., frequent software updating, branding, the number of delivery boys, order processing, benchmarking, product freshness and customized applications for different stakeholders, depicting these as critical in online food/grocery supply chains. Considering the perishability nature of the product being handled, the impact of the enablers on the product quality is also identified. Hence, study aids as a tool to identify and prioritize the vital enablers in the e-grocery supply chain. The work is perhaps unique, which identifies the complex relationships among the supply chain enablers in fresh food for e-groceries and linking them to the performance measures. It contributes to the knowledge of supply chain management in general and e-retailing in particular. The approach focus on the fresh food supply chains in the Indian context and hence will be applicable in developing economies context, where supply chains are evolving.

Keywords: interpretive structural modelling (ISM), India, online grocery, retail operations, supply chain management

Procedia PDF Downloads 203
110 The Role of Goal Orientation on the Structural-Psychological Empowerment Link in the Public Sector

Authors: Beatriz Garcia-Juan, Ana B. Escrig-Tena, Vicente Roca-Puig

Abstract:

The aim of this article is to conduct a theoretical and empirical study in order to examine how the goal orientation (GO) of public employees affects the relationship between the structural and psychological empowerment that they experience at their workplaces. In doing so, we follow structural empowerment (SE) and psychological empowerment (PE) conceptualizations, and relate them to the public administration framework. Moreover, we review arguments from GO theories, and previous related contributions. Empowerment has emerged as an important issue in the public sector organization setting in the wake of mainstream New Public Management (NPM), the new orientation in the public sector that aims to provide a better service for citizens. It is closely linked to the drive to improve organizational effectiveness through the wise use of human resources. Nevertheless, it is necessary to combine structural (managerial) and psychological (individual) approaches in an integrative study of empowerment. SE refers to a set of initiatives that aim the transference of power from managerial positions to the rest of employees. PE is defined as psychological state of competence, self-determination, impact, and meaning that an employee feels at work. Linking these two perspectives will lead to arrive at a broader understanding of the empowerment process. Specifically in the public sector, empirical contributions on this relationship are therefore important, particularly as empowerment is a very useful tool with which to face the challenges of the new public context. There is also a need to examine the moderating variables involved in this relationship, as well as to extend research on work motivation in public management. It is proposed the study of the effect of individual orientations, such as GO. GO concept refers to the individual disposition toward developing or confirming one’s capacity in achievement situations. Employees’ GO may be a key factor at work and in workforce selection processes, since it explains the differences in personal work interests, and in receptiveness to and interpretations of professional development activities. SE practices could affect PE feelings in different ways, depending on employees’ GO, since they perceive and respond differently to such practices, which is likely to yield distinct PE results. The model is tested on a sample of 521 Spanish local authority employees. Hierarchical regression analysis was conducted to test the research hypotheses using SPSS 22 computer software. The results do not confirm the direct link between SE and PE, but show that learning goal orientation has considerable moderating power in this relationship, and its interaction with SE affects employees’ PE levels. Therefore, the combination of SE practices and employees’ high levels of LGO are important factors for creating psychologically empowered staff in public organizations.

Keywords: goal orientation, moderating effect, psychological empowerment, structural empowerment

Procedia PDF Downloads 281
109 Comprehensive Longitudinal Multi-omic Profiling in Weight Gain and Insulin Resistance

Authors: Christine Y. Yeh, Brian D. Piening, Sarah M. Totten, Kimberly Kukurba, Wenyu Zhou, Kevin P. F. Contrepois, Gucci J. Gu, Sharon Pitteri, Michael Snyder

Abstract:

Three million deaths worldwide are attributed to obesity. However, the biomolecular mechanisms that describe the link between adiposity and subsequent disease states are poorly understood. Insulin resistance characterizes approximately half of obese individuals and is a major cause of obesity-mediated diseases such as Type II diabetes, hypertension and other cardiovascular diseases. This study makes use of longitudinal quantitative and high-throughput multi-omics (genomics, epigenomics, transcriptomics, glycoproteomics etc.) methodologies on blood samples to develop multigenic and multi-analyte signatures associated with weight gain and insulin resistance. Participants of this study underwent a 30-day period of weight gain via excessive caloric intake followed by a 60-day period of restricted dieting and return to baseline weight. Blood samples were taken at three different time points per patient: baseline, peak-weight and post weight loss. Patients were characterized as either insulin resistant (IR) or insulin sensitive (IS) before having their samples processed via longitudinal multi-omic technologies. This comparative study revealed a wealth of biomolecular changes associated with weight gain after using methods in machine learning, clustering, network analysis etc. Pathways of interest included those involved in lipid remodeling, acute inflammatory response and glucose metabolism. Some of these biomolecules returned to baseline levels as the patient returned to normal weight whilst some remained elevated. IR patients exhibited key differences in inflammatory response regulation in comparison to IS patients at all time points. These signatures suggest differential metabolism and inflammatory pathways between IR and IS patients. Biomolecular differences associated with weight gain and insulin resistance were identified on various levels: in gene expression, epigenetic change, transcriptional regulation and glycosylation. This study was not only able to contribute to new biology that could be of use in preventing or predicting obesity-mediated diseases, but also matured novel biomedical informatics technologies to produce and process data on many comprehensive omics levels.

Keywords: insulin resistance, multi-omics, next generation sequencing, proteogenomics, type ii diabetes

Procedia PDF Downloads 429