Search results for: concrete waste recycle fine aggregate
4581 Bond Strength between Concrete and AR-Glass Roving with Variables of Development Length
Authors: Jongho Park, Taekyun Kim, Jinwoong Choi, Sungnam Hong, Sun-Kyu Park
Abstract:
Recently, the climate change is the one of the main problems. This abnormal phenomenon is consisted of the scorching heat, heavy rain and snowfall, and cold wave that will be enlarged abnormal climate change repeatedly. Accordingly, the width of temperature change is increased more and more by abnormal climate, and it is the main factor of cracking in the reinforced concrete. The crack of the reinforced concrete will affect corrosion of steel re-bar which can decrease durability of the structure easily. Hence, the elimination of the durability weakening factor (steel re-bar) is needed. Textile which weaves the carbon, AR-glass and aramid fiber has been studied actively for exchanging the steel re-bar in the Europe for about 15 years because of its good durability. To apply textile as the concrete reinforcement, the bond strength between concrete and textile will be investigated closely. Therefore, in this paper, pull-out test was performed with change of development length of textile. Significant load and stress was increasing at D80. But, bond stress decreased by increasing development length.Keywords: bond strength, climate change, pull-out test, substitution of reinforcement material, textile
Procedia PDF Downloads 4744580 Utilization of Manila Clam Shells (Venerupis Philippinarum) and Raffia Palm Fiber (Raphia Farinifera) as an Additive in Producing Concrete Roof Tiles
Authors: Sofina Faith C. Navarro, Luke V. Subala, Rica H. Gatus, Alfonzo Ramon DG. Burguete
Abstract:
Roof tiles, as integral components of buildings, play a crucial role in protecting structures from many things. The study focuses on the production of sustainable roof tiles that address the waste disposal challenges associated with Manila clam shells and mitigate the environmental impact of conventional roof tile materials. Various concentrations of roof tiles are developed, incorporating different proportions of powdered clam shell that contains calcium carbonate and shredded raffia palm fiber. Subsequently, the roof tiles are cast using standard methods and transported to the University of the Philippines Institute of Civil Engineering (UP-ICE) for flexural strength testing. In conclusion, the research aimed to assess the flexural durability of concrete roof tiles with varying concentrations of Raffia Palm Fiber and Manila Clam Shells additives. The findings indicate notable differences in maximum load capacities among the specimens, with C3.1 emerging as the concentration with the highest load-bearing capacity at 313.59729 N. This concentration, with a flexural strength of 2.15214, is identified as the most durable option, with a slightly heavier weight of 1.10 kg. On the other hand, C2.2, with a flexural strength of 0.366 and a weight of 0.80 kg, is highlighted for its impressive durability performance while maintaining a lighter composition. Therefore, for the production of concrete roof tile, C3.1 is recommended for optimal durability, while C2.2 is suggested as a preferable option considering both durability and lightweight characteristics.Keywords: raffia palm fiber, flexural strength, lightweightness, Manila Clam Shells
Procedia PDF Downloads 594579 Utilization of Manila Clam Shells (Venerupis Philippinarum) and Raffia Palm Fiber (Raphia Farinifera) as an Additive in Producing Concrete Roof Tiles
Authors: Alfonzo Ramon Burguete, Rica Gatus, Sofina Faith Navarro, Luke Subala
Abstract:
Roof tiles, as integral components of buildings, play a crucial role in protecting structures from many things. The study focuses on the production of sustainable roof tiles that address the waste disposal challenges associated with Manila clam shells and mitigate the environmental impact of conventional roof tile materials. Various concentrations of roof tiles are developed, incorporating different proportions of powdered clam shell that contains calcium carbonate and shredded raffia palm fiber. Subsequently, the roof tiles are cast using standard methods and transported to the University of the Philippines Institute of Civil Engineering (UP-ICE) for flexural strength testing. In conclusion, the research aimed to assess the flexural durability of concrete roof tiles with varying concentrations of Raffia Palm Fiber and Manila Clam Shells additives. The findings indicate notable differences in maximum load capacities among the specimens, with C3.1 emerging as the concentration with the highest load-bearing capacity at 313.59729 N. This concentration, with a flexural strength of 2.15214, is identified as the most durable option, with a slightly heavier weight of 1.10 kg. On the other hand, C2.2, with a flexural strength of 0.366 and a weight of 0.80 kg, is highlighted for its impressive durability performance while maintaining a lighter composition. Therefore, for the production of concrete roof tile C3.1 is recommended for optimal durability, while C2.2 is suggested as a preferable option considering both durability and lightweight characteristics.Keywords: manila clam shells, raffia palm fiber, flexural strength, lightweightness
Procedia PDF Downloads 584578 Enablers and Inhibitors of Effective Waste Management Measures in Informal Settlements in South Africa: A Case of Alaska
Authors: Lynda C. Mbadugha, Bankole Awuzie, Kwanda Khumalo, Lindokuhle Matsebula, Masenoke Kgaditsi
Abstract:
Inadequate waste management remains a fundamental issue in the majority of cities around the globe, but it becomes a threat when it concerns informal settlements. Although studies have evaluated the performance of waste management measures, only a few have addressed that with a focus on South African informal settlements and the reasons for their apparent ineffectiveness in such locations. However, there may be evidence of variations in the extant problems due to the uniqueness of each location and the factors influencing the performance. Thus, there is a knowledge deficit regarding implementing waste management measures in South African informal settlements. This study seeks to evaluate the efficacy of waste management measures in the Alaska informal settlement in South Africa to assess the previously collected data of other areas using the degree of correlation. The research investigated a real-world scenario in the specified location using a case study approach and multiple data sources. The findings described various waste management practices used in Alaska's informal settlements; however, a correlation was found between the performance of these measures and those already used. The observed differences are primarily attributable to the physical characteristics of the locations, the lack of understanding of the environmental and health consequences of careless waste disposal, and the negative attitudes of the residents toward waste management practices. This study elucidates waste management implementation in informal settlements. It contributes to the relevant bodies of knowledge by describing these practices in South Africa. This paper's practical value emphasizes the general waste management characteristics of South Africa's informal settlements to facilitate the planning and provision of necessary interventions. The study concludes that the enablers and inhibitors are mainly political, behavioral, and environmental concerns.Keywords: factors, informal settlement, performance, waste management
Procedia PDF Downloads 914577 Theoretical Approach for Estimating Transfer Length of Prestressing Strand in Pretensioned Concrete Members
Authors: Sun-Jin Han, Deuck Hang Lee, Hyo-Eun Joo, Hyun Kang, Kang Su Kim
Abstract:
In pretensioned concrete members, the transfer length region is existed, in which the stress in prestressing strand is developed due to the bond mechanism with surrounding concrete. The stress of strands in the transfer length zone is smaller than that in the strain plateau zone, so-called effective prestress, therefore the web-shear strength in transfer length region is smaller than that in the strain plateau zone. Although the transfer length is main key factor in the shear design, a few analytical researches have been conducted to investigate the transfer length. Therefore, in this study, a theoretical approach was used to estimate the transfer length. The bond stress developed between the strands and the surrounding concrete was quantitatively calculated by using the Thick-Walled Cylinder Model (TWCM), based on this, the transfer length of strands was calculated. To verify the proposed model, a total of 209 test results were collected from the previous studies. Consequently, the analysis results showed that the main influencing factors on the transfer length are the compressive strength of concrete, the cover thickness of concrete, the diameter of prestressing strand, and the magnitude of initial prestress. In addition, the proposed model predicted the transfer length of collected test specimens with high accuracy. Acknowledgement: This research was supported by a grant(17TBIP-C125047-01) from Technology Business Innovation Program funded by Ministry of Land, Infrastructure and Transport of Korean government.Keywords: bond, Hoyer effect, prestressed concrete, prestressing strand, transfer length
Procedia PDF Downloads 2934576 A Social-Environmental Way for Production of Building Materials with Solid Residues
Authors: Flavio Araujo, Julio Lima, Paulo Scalize, Antonio Albuquerque
Abstract:
Water treatment residues (WTR) are produced during water treatment and have recently been seen as a reusable material. The aim of this research was to perform characterizations of the residue generated in the Meia-Ponte Water Treatment Plant, in Goiania, Brazil, seeking to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal. The analyzes performed: Granulometry, Scanning Electron Microscopy, and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feed stock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts.Keywords: residue, sustainable, water treatment plants, WTR
Procedia PDF Downloads 5474575 Development of a Wall Climbing Robotic Ground Penetrating Radar System for Inspection of Vertical Concrete Structures
Authors: Md Omar Faruq Howlader, Tariq Pervez Sattar, Sandra Dudley
Abstract:
This paper describes the design process of a 200 MHz Ground Penetrating Radar (GPR) and a battery powered concrete vertical concrete surface climbing mobile robot. The key design feature is a miniaturized 200 MHz dipole antenna using additional radiating arms and procedure records a reduction of 40% in length compared to a conventional antenna. The antenna set is mounted in front of the robot using a servo mechanism for folding and unfolding purposes. The robot’s adhesion mechanism to climb the reinforced concrete wall is based on neodymium permanent magnets arranged in a unique combination to concentrate and maximize the magnetic flux to provide sufficient adhesion force for GPR installation. The experiments demonstrated the robot’s capability of climbing reinforced concrete wall carrying the attached prototype GPR system and perform floor-to-wall transition and vice versa. The developed GPR’s performance is validated by its capability of detecting and localizing an aluminium sheet and a reinforcement bar (rebar) of 12 mm diameter buried under a test rig built of wood to mimic the concrete structure environment. The present robotic GPR system proves the concept of feasibility of undertaking inspection procedure on large concrete structures in hazardous environments that may not be accessible to human inspectors.Keywords: climbing robot, dipole antenna, ground penetrating radar (GPR), mobile robots, robotic GPR
Procedia PDF Downloads 2724574 Solid Waste Management Challenges and Possible Solution in Kabul City
Authors: Ghulam Haider Haidaree, Nsenda Lukumwena
Abstract:
Most developing nations face energy production and supply problems. This is also the case of Afghanistan whose generating capacity does not meet its energy demand. This is due in part to high security and risk caused by war which deters foreign investments and insufficient internal revenue. To address the issue above, this paper would like to suggest an alternative and affordable way to deal with the energy problem. That is by converting Solid Waste to energy. As a result, this approach tackles the municipal solid waste issue (potential cause of several diseases), contributes to the improvement of the quality of life, local economy, and so on. While addressing the solid waste problem in general, this paper samples specifically one municipality which is District-12, one of the 22 districts of Kabul city. Using geographic information system (GIS) technology, District-12 is divided into nine different zones whose municipal solid waste is respectively collected, processed, and converted into electricity and distributed to the closest area. It is important to mention that GIS has been used to estimate the amount of electricity to be distributed and to optimally position the production plant.Keywords: energy problem, estimation of electricity, GIS zones, solid waste management system
Procedia PDF Downloads 3354573 Failure Mechanism in Fixed-Ended Reinforced Concrete Deep Beams under Cyclic Load
Authors: A. Aarabzadeh, R. Hizaji
Abstract:
Reinforced Concrete (RC) deep beams are a special type of beams due to their geometry, boundary conditions, and behavior compared to ordinary shallow beams. For example, assumption of a linear strain-stress distribution in the cross section is not valid. Little study has been dedicated to fixed-end RC deep beams. Also, most experimental studies are carried out on simply supported deep beams. Regarding recent tendency for application of deep beams, possibility of using fixed-ended deep beams has been widely increased in structures. Therefore, it seems necessary to investigate the aforementioned structural element in more details. In addition to experimental investigation of a concrete deep beam under cyclic load, different failure mechanisms of fixed-ended deep beams under this type of loading have been evaluated in the present study. The results show that failure mechanisms of deep beams under cyclic loads are quite different from monotonic loads.Keywords: deep beam, cyclic load, reinforced concrete, fixed-ended
Procedia PDF Downloads 3594572 Estimation of Slab Depth, Column Size and Rebar Location of Concrete Specimen Using Impact Echo Method
Authors: Y. T. Lee, J. H. Na, S. H. Kim, S. U. Hong
Abstract:
In this study, an experimental research for estimation of slab depth, column size and location of rebar of concrete specimen is conducted using the Impact Echo Method (IE) based on stress wave among non-destructive test methods. Estimation of slab depth had total length of 1800×300 and 6 different depths including 150 mm, 180 mm, 210 mm, 240 mm, 270 mm and 300 mm. The concrete column specimen was manufactured by differentiating the size into 300×300×300 mm, 400×400×400 mm and 500×500×500 mm. In case of the specimen for estimation of rebar, rebar of ∅22 mm was used in a specimen of 300×370×200 and arranged at 130 mm and 150 mm from the top to the rebar top. As a result of error rate of slab depth was overall mean of 3.1%. Error rate of column size was overall mean of 1.7%. Mean error rate of rebar location was 1.72% for top, 1.19% for bottom and 1.5% for overall mean showing relative accuracy.Keywords: impact echo method, estimation, slab depth, column size, rebar location, concrete
Procedia PDF Downloads 3494571 Qualitative and Quantitative Characterization of Generated Waste in Nouri Petrochemical Complex, Assaluyeh, Iran
Authors: L. Heidari, M. Jalili Ghazizade
Abstract:
In recent years, different petrochemical complexes have been established to produce aromatic compounds. Among them, Nouri Petrochemical Complex (NPC) is the largest producer of aromatic raw materials in the world, and is located in south of Iran. Environmental concerns have been raised in this region due to generation of different types of solid waste generated in the process of aromatics production, and subsequently, industrial waste characterization has been thoroughly considered. The aim of this study is qualitative and quantitative characterization of industrial waste generated in the aromatics production process and determination of the best method for industrial waste management. For this purpose, all generated industrial waste during the production process was determined using a checklist. Four main industrial wastes were identified as follows: spent industrial soil, spent catalyst, spent molecular sieves and spent N-formyl morpholine (NFM) solvent. The amount of heavy metals and organic compounds in these wastes were further measured in order to identify the nature and toxicity of such a dangerous compound. Then industrial wastes were classified based on lab analysis results as well as using different international lists of hazardous waste identification such as EPA, UNEP and Basel Convention. Finally, the best method of waste disposal is selected based on environmental, economic and technical aspects.Keywords: aromatic compounds, industrial soil, molecular sieve, normal formyl morpholine solvent
Procedia PDF Downloads 2304570 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 2: Condensation and Solidification Experiments on Liquid Waste
Authors: Sou Watanabe, Hiromichi Ogi, Atsuhiro Shibata, Kazunori Nomura
Abstract:
As a part of STRAD project conducted by JAEA, condensation of radioactive liquid waste containing various chemical compounds using reverse osmosis (RO) membrane filter was examined for efficient and safety treatment of the liquid wastes accumulated inside hot laboratories. NH4+ ion in the feed solution was successfully concentrated, and NH4+ ion involved in the effluents became lower than target value; 100 ppm. Solidification of simulated aqueous and organic liquid wastes was also tested. Those liquids were successfully solidified by adding cement or coagulants. Nevertheless, optimization in materials for confinement of chemicals is required for long time storage of the final solidified wastes.Keywords: condensation, radioactive liquid waste, solidification, STRAD project
Procedia PDF Downloads 1564569 Evaluation of Different Waste Management Planning Strategies in an Industrial City
Authors: Leila H. Khiabani, Mohammadreza Vafaee, Farshad Hashemzadeh
Abstract:
Industrial waste management regulates different stages of production, storage, transfer, recycling and waste disposal. There are several common practices for industrial waste management. However, due to various local health, economic, social, environmental and aesthetic considerations, the most optimal principles and measures often vary at each specific industrial zone. In addition, waste management strategies are heavily impacted by local administrative, legal, and financial regulations. In this study, a hybrid qualitative and quantitative research methodology has been designed for waste management planning in an industrial city. Firstly, following a qualitative research methodology, the most relevant waste management strategies for the specific industrial city were identified through interviews with environmental planning and waste management experts. Forty experts participated in this study. Alborz industrial city in Iran, which hosts more than one thousand industrial units in nine hundred acres, was chosen as the sample industrial city in this study. The findings from the expert interviews at the first phase were then used to design a quantitative questionnaire for the second phase of the study. The aim of the questionnaire was to quantify the relative impact of different waste management strategies in the sample industrial city. Eight waste management strategies and three implementation policies were included in the questionnaire. The experts were asked to rank the relative effectiveness of each strategy for environmental planning of the sample industrial city. They were also asked to rank the relative effectiveness of each planning policy on each of the waste management strategies. In the end, the weighted average of all the responses was calculated to identify the most effective waste management strategy and planning policies for the sample industrial city. The results suggested that among the eight suggested waste management strategies, industrial composting is the most effective (31%) strategy based on the collective evaluation of the local expert. Additionally, the results suggested that the most effective policy (58%) in the city’s environmental planning is to reduce waste generation by prolonging the effective life of industrial products using higher quality and recyclable materials. These findings can provide useful expert guidelines for prioritization between different waste management strategies in the city’s overall environmental planning roadmap. The findings may also be applicable to similar industrial cities. In addition, a similar methodology can be utilized in the environmental planning of other industrial cities.Keywords: environmental planning, industrial city, quantitative research, waste management
Procedia PDF Downloads 1314568 Application Use of Slaughterhouse Waste to Improve Nutrient Level in Apium glaviolens
Authors: Hasan Basri Jumin
Abstract:
Using the slaughterhouse waste combined to suitable dose of nitrogen fertilizer to Apium glaviolen gives the significant effect to mean relative growth rate. The same pattern also showed significantly in net assimilation rate. The net assimilation rate increased significantly during 42 days old plants. Combination of treatment of 100 ml/l animal slaughterhouse waste and 0.1 g/kg nitrogen fertilizer/kg soil increased the vegetative growth of Apium glaviolens. The biomass of plant and mean relative growth rate of Apium glaviolens were rapidly increased in 4 weeks after planting and gradually decreased after 35 days at the harvest time. Combination of 100 ml/l slaughterhouse waste and applied 0.1 g/kg nitrogen fertilizer has increased all parameters. The highest vegetative growth, biomass, mean relative growth rate and net assimilation rate were received from 0.56 mg-l.m-2.days-1.Keywords: Apium glaviolent, nitrogen, pollutant, slaughterhouse, waste
Procedia PDF Downloads 3654567 Poor Medical Waste Management (MWM) Practices and Its Risks to Human Health and the Environment
Authors: Babanyara Y. Y., Ibrahim D. B., Garba T., Bogoro A. G., Abubakar, M. Y.
Abstract:
Medical care is vital for our life, health, and well-being. However, the waste generated from medical activities can be hazardous, toxic, and even lethal because of their high potential for diseases transmission. The hazardous and toxic parts of waste from healthcare establishments comprising infectious, medical, and radioactive material as well as sharps constitute a grave risks to mankind and the environment, if these are not properly treated/disposed or are allowed to be mixed with other municipal waste. In Nigeria, practical information on this aspect is inadequate and research on the public health implications of poor management of medical wastes is few and limited in scope. Findings drawn from Literature particularly in the third world countries highlights financial problems, lack of awareness of risks involved in MWM, lack of appropriate legislation and lack of specialized MWM staff. The paper recommends how MWM practices can be improved in medical facilities.Keywords: environmental pollution, infectious, management, medical waste, public health
Procedia PDF Downloads 3084566 Numerical Study on Pretensioned Bridge Girder Using Thermal Strain Technique
Authors: Prashant Motwani, Arghadeep Laskar
Abstract:
The transfer of prestress force from prestressing strands to the surrounding concrete is dependent on the bond between the two materials. It is essential to understand the actual bond stress distribution along the transfer length to determine the transfer zone in pre-tensioned concrete. A 3-D nonlinear finite element model has been developed to simulate the transfer of prestress force from steel to concrete in pre-tensioned bridge girders through thermal strain technique using commercially available package ABAQUS. Full-scale bridge girder has been analyzed with thermal strain approach where the damage plasticity constitutive model has been used to model concrete. Parameters such as concrete strain, effective prestress, upward camber and longitudinal stress have been compared with analytical results. The discrepancy between numerical and analytical values was within 20%. The paper also presents a convergence study on mesh density and aspect ratio of the elements to perform the finite element study.Keywords: aspect ratio, bridge girder, centre of gravity of strand, mesh density, finite element model, pretensioned bridge girder
Procedia PDF Downloads 2404565 Determination of the Shear Strength of Wastes Using Back-Analyses from Observed Failures
Authors: Sadek Salah
Abstract:
The determination of the strength characteristics of waste materials is essential when evaluating the stability of waste fills during initial placement and at the time of closure and rehabilitation of the landfill. Significant efforts, mostly experimental, have been deployed to date in attempts to quantify the mechanical properties of municipal wastes various stages of decomposition. Even though the studies and work done so far have helped in setting baseline parameters and characteristics for waste materials, inherent concerns remain as to the scalability of the findings between the laboratory and the field along with questions as to the suitability of the actual test conditions. These concerns are compounded by the complexity of the problem itself with significant variability in composition, placement conditions, and levels of decay of the various constituents of the waste fills. A complimentary, if not necessarily an alternative approach is to rely on field observations of behavior and instability of such materials. This paper describes an effort at obtaining relevant shear strength parameters from back-analyses of failures which have been observed at a major un-engineered waste fill along the Mediterranean shoreline. Results from the limit-equilibrium failure back-analyses are presented and compared to results from laboratory-scale testing on comparable waste materials.Keywords: solid waste, shear strength, landfills, slope stability
Procedia PDF Downloads 2414564 Application Problems of Anchor Dowels in Reinforced Concrete Shear Wall and Frame Connections
Authors: Musa H. Arslan
Abstract:
Strengthening of the existing seismically deficient reinforced concrete (RC) buildings is an important issue in earthquake prone regions. Addition of RC shear wall as infill or external walls into the structural system has been a commonly preferred strengthening technique since the Big Erzincan Earthquake occurred in Turkey, 1992. The newly added rigid infill walls act primarily as shear walls and relieve the non-ductile existing frames from being subjected to large shear demands providing that new RC inner or external walls are adequately anchored to the existing weak RC frame. The performance of the RC shear walls-RC weak frame connections by steel anchor dowels depends on some parameters such as compressive strength of the existing RC frame concrete, diameter and embedment length of anchored rebar, type of rebar, yielding stress of bar, properties of used chemicals, position of the anchor bars in RC. In this study, application problems of the steel anchor dowels have been checked with some field studies such as tensile test. Two different RC buildings which will be strengthened were selected, and before strengthening, some tests have been performed in the existing RC buildings. According to the field observation and experimental studies, if the concrete compressive strength is lower than 10 MPa, the performance of the anchors is reduced by 70%.Keywords: anchor dowel, concrete, damage, reinforced concrete, shear wall, frame
Procedia PDF Downloads 3694563 Facilitating Waste Management to Achieve Sustainable Residential Built Environments
Authors: Ingy Ibrahim El-Darwish, Neveen Youssef Azmy
Abstract:
The endowment of a healthy environment can be implemented by endorsing sustainable fundamentals. Design of sustainable buildings through recycling of waste, can reduce health problems, provide good environments and contribute to the aesthetically pleasing entourage. Such environments can help in providing energy-saving alternatives to consolidate the principles of sustainability. The poor community awareness and the absence of laws and legislation in Egypt for waste management specifically in residential areas have led to an inability to provide an integrated system for waste management in urban and rural areas. Many problems and environmental challenges face the Egyptian urban environments. From these problems, is the lack of a cohesive vision for waste collection and recycling for energy-saving. The second problem is the lack public awareness of the short term and long term vision of waste management. Bad practices have adversely affected the efficiency of environmental management systems due to lack of urban legislations that codify collection and recycling of residential communities in Egyptian urban environments. Hence, this research tries to address residents on waste management matters to facilitate legislative process on waste collection and classification within residential units and outside them in a preparation phase for recycling in the Egyptian urban environments. In order to achieve this goal, one of the Egyptian communities has been addressed, analyzed and studied. Waste collection, classification, separation and access to recycling places in the urban city are proposed in preparation for a legislation ruling and regulating the process. Hence, sustainable principles are to be achieved.Keywords: recycling, residential buildings, sustainability, waste
Procedia PDF Downloads 3254562 An Integrated Approach to Solid Waste Management of Karachi, Pakistan (Waste-to-Energy Options)
Authors: Engineer Dilnawaz Shah
Abstract:
Solid Waste Management (SWM) is perhaps one of the most important elements constituting the environmental health and sanitation of the urban developing sector. The management system has several components that are integrated as well as interdependent; thus, the efficiency and effectiveness of the entire system are affected when any of its functional components fails or does not perform up to the level mark of operation. Sindh Solid Waste Management Board (SSWMB) is responsible for the management of solid waste in the entire city. There is a need to adopt the engineered approach in the redesigning of the existing system. In most towns, street sweeping operations have been mechanized and done by machinery operated by vehicles. Construction of Garbage Transfer Stations (GTS) at a number of locations within the city will cut the cost of transportation of waste to disposal sites. Material processing, recovery of recyclables, compaction, volume reduction, and increase in density will enable transportation of waste to disposal sites/landfills via long vehicles (bulk transport), minimizing transport/traffic and environmental pollution-related issues. Development of disposal sites into proper sanitary landfill sites is mandatory. The transportation mechanism is through garbage vehicles using either hauled or fixed container systems employing crew for mechanical or manual loading. The number of garbage vehicles is inadequate, and due to comparatively long haulage to disposal sites, there are certain problems of frequent vehicular maintenance and high fuel costs. Foreign investors have shown interest in enterprising improvement schemes and proposed operating a solid waste management system in Karachi. The waste to Energy option is being considered to provide a practical answer to be adopted to generate power and reduce waste load – a two-pronged solution for the increasing environmental problem. The paper presents results and analysis of a recent study into waste generation and characterization probing into waste-to-energy options for Karachi City.Keywords: waste to energy option, integrated approach, solid waste management, physical and chemical composition of waste in Karachi
Procedia PDF Downloads 434561 Limestone Briquette Production and Characterization
Authors: André C. Silva, Mariana R. Barros, Elenice M. S. Silva, Douglas. Y. Marinho, Diego F. Lopes, Débora N. Sousa, Raphael S. Tomáz
Abstract:
Modern agriculture requires productivity, efficiency and quality. Therefore, there is need for agricultural limestone implementation that provides adequate amounts of calcium and magnesium carbonates in order to correct soil acidity. During the limestone process, fine particles (with average size under 400#) are generated. These particles do not have economic value in agricultural and metallurgical sectors due their size. When limestone is used for agriculture purposes, these fine particles can be easily transported by wind generated air pollution. Therefore, briquetting, a mineral processing technique, was used to mitigate this problem resulting in an agglomerated product suitable for agriculture use. Briquetting uses compressive pressure to agglomerate fine particles. It can be aided by agglutination agents, allowing adjustments in shape, size and mechanical parameters of the mass. Briquettes can generate extra profits for mineral industry, presenting as a distinct product for agriculture, and can reduce the environmental liabilities of the fine particles storage or disposition. The produced limestone briquettes were subjected to shatter and water action resistance tests. The results show that after six minutes completely submerged in water, the briquettes where fully diluted, a highly favorable result considering its use for soil acidity correction.Keywords: agglomeration, briquetting, limestone, soil acidity correction
Procedia PDF Downloads 3894560 Effectiveness of the Use of Polycarboxylic Ether Superplasticizers in High Performance Concrete Containing Silica Fume
Authors: Alya Harichane, Badreddine Harichane
Abstract:
The incorporation of polycarboxylate ether superplasticizer (PCE) and silica fume (SF) in high-performance concretes (HPC) leads to the achievement of remarkable rheological and mechanical improvements. In the fresh state, PCEs are adsorbed on cement particles and dispersants, in turn promoting the workability of the concrete. Silica fume enables a very well compacted concrete to be obtained, which is characterized by high mechanical parameters in its hardened state. Some PCEs are incompatible with silica fume, which can result in the loss of slump and in poor rheological behavior. The main objective of the research is the study of the influence of three types of PCEs, which all have a different molecular architecture, on the rheological and mechanical behavior of high-performance concretes containing 10% of SF as a partial replacement of cement. The results show that the carboxylic density of PCE has an influence on its compatibility with SF.Keywords: polycarboxylate-ether superplasticizer, rheology, compressive strength, high-performance concrete, silica fume
Procedia PDF Downloads 734559 Effect of Pozzolanic Additives on the Strength Development of High Performance Concrete
Authors: Laura Dembovska, Diana Bajare, Ina Pundiene, Daira Erdmane
Abstract:
The aim of this research is to estimate effect of pozzolanic substitutes and their combination on the hydration heat and final strength of high performance concrete. Ternary cementitious systems with different ratios of ordinary Portland cement, silica fume and calcined clay were investigated. Local illite clay was calcined at temperature 700oC in rotary furnace for 20 min. It has been well recognized that the use of pozzolanic materials such as silica fume or calcined clay are recommended for high performance concrete for reduction of porosity, increasing density and as a consequence raising the chemical durability of the concrete. It has been found, that silica fume has a superior influence on the strength development of concrete, but calcined clay increase density and decrease size of dominating pores. Additionally it was found that the rates of pozzolanic reaction and calcium hydroxide consumption in the silica fume-blended cement pastes are higher than in the illite clay-blended cement pastes, it strongly depends from the amount of pozzolanic substitutes which are used. If the pozzolanic reaction is dominating then amount of Ca(OH)2 is decreasing. The identity and the amount of the phases present were determined from the thermal analysis (DTA) data. The hydration temperature of blended cement pastes was measured during the first 24 hours. Fresh and hardened concrete properties were tested. Compressive strength was determined and differential thermal analysis (DTA) was conducted of specimens at the age of 3, 14, 28 and 56 days.Keywords: high performance concrete, pozzolanic additives, silica fume, ternary systems
Procedia PDF Downloads 3724558 Effect the Use of Steel Fibers (Dramix) on Reinforced Concrete Slab
Authors: Faisal Ananda, Junaidi Al-Husein, Oni Febriani, Juli Ardita, N. Indra, Syaari Al-Husein, A. Bukri
Abstract:
Currently, concrete technology continues to grow and continue to innovate one of them using fibers. Fiber concrete has advantages over non-fiber concrete, among others, strong against the effect of shrinkage, ability to reduce crack, fire resistance, etc. In this study, concrete mix design using the procedures listed on SNI 03-2834-2000. The sample used is a cylinder with a height of 30 cm and a width of 15cm in diameter, which is used for compression and tensile testing, while the slab is 400cm x 100cm x 15cm. The fiber used is steel fiber (dramix), with the addition of 2/3 of the thickness of the slabs. The charging is done using a two-point loading. From the result of the research, it is found that the loading of non-fiber slab (0%) of the initial crack is the maximum crack that has passed the maximum crack allowed with a crack width of 1.3 mm with a loading of 1160 kg. The initial crack with the largest load is found on the 1% fiber mixed slab, with the initial crack also being a maximum crack of 0.5mm which also has exceeded the required maximum crack. In the 4% slab the initial crack of 0.1 mm is a minimal initial crack with a load greater than the load of a non-fiber (0%) slab by load1200 kg. While the maximum load on the maximum crack according to the applicable maximum crack conditions, on the 5% fiber mixed slab with a crack width of 0.32mm by loading 1250 kg.Keywords: crack, dramix, fiber, load, slab
Procedia PDF Downloads 5124557 Co-Pyrolysis Characteristics of Waste Polyolefins
Authors: Si̇nem Uğuz, Yuksel Ardali
Abstract:
Nowadays rapid population growth causes a mandatory increase in consumption. As a result of production activities which meet this consumption, energy sources decrease rapidly on our world. As well as with this production activities various waste occurs. At the end of the production and accumulation of this waste need a mandatory disposal. In this context, copyrolysis of waste polyolefins were investigated. In this study for pyrolysis process, polyethylene and polyprophylene are selected as polyolefins. The pyrolysis behavior (efficiency of solid, liquid and gas production) of selected materials were examined at the different temperatures and different mixtures. Pyrolysis process was carried out at 550 °C and 600 °C without air in a fixed bed pyrolysis oven solid under the nitrogen flow to provide inertness of medium. Elemental analyses (C, H, O, N, S) of this solid and liquid (bitumen) products were made and the calorific value was calculated. The availability of liquid product as a fuel was investigated. In addition different products’ amounts formed like solid, liquid and gas at different temperatures were evaluated.Keywords: alternative energy, elemental analysis, pyrolysis, waste reduction
Procedia PDF Downloads 3134556 An Analytical Study of FRP-Concrete Bridge Superstructures
Authors: Wael I. Alnahhal
Abstract:
It is a major challenge to build a bridge superstructure that has long-term durability and low maintenance requirements. A solution to this challenge may be to use new materials or to implement new structural systems. Fiber reinforced polymer (FRP) composites have continued to play an important role in solving some of persistent problems in infrastructure applications because of its high specific strength, light weight, and durability. In this study, the concept of the hybrid FRP-concrete structural systems is applied to a bridge superstructure. The hybrid FRP-concrete bridge superstructure is intended to have durable, structurally sound, and cost effective hybrid system that will take full advantage of the inherent properties of both FRP materials and concrete. In this study, two hybrid FRP-concrete bridge systems were investigated. The first system consists of trapezoidal cell units forming a bridge superstructure. The second one is formed by arch cells. The two systems rely on using cellular components to form the core of the bridge superstructure, and an outer shell to warp around those cells to form the integral unit of the bridge. Both systems were investigated analytically by using finite element (FE) analysis. From the rigorous FE studies, it was concluded that first system is more efficient than the second.Keywords: bridge superstructure, hybrid system, fiber reinforced polymer, finite element analysis
Procedia PDF Downloads 3314555 Generation of Waste Streams in Small Model Reactors
Authors: Sara Mostofian
Abstract:
The nuclear industry is a technology that can fulfill future energy needs but requires special attention to ensure safety and reliability while minimizing any environmental impact. To meet these expectations, the nuclear industry is exploring different reactor technologies for power production. Several designs are under development and the technical viability of these new designs is the subject of many ongoing studies. One of these studies considers the radioactive emissions and radioactive waste generated during the life of a nuclear power production plant to allow a successful license process. For all the modern technologies, a good understanding of the radioactivity generated in the process systems of the plant is essential. Some of that understanding may be gleaned from the performance of some prototype reactors of similar design that operated decades ago. This paper presents how, with that understanding, a model can be developed to estimate the emissions as well as the radioactive waste during the normal operation of a nuclear power plant. The model would predict the radioactive material concentrations in different waste streams. Using this information, the radioactive emission and waste generated during the life of these new technologies can be estimated during the early stages of the design of the plant.Keywords: SMRs, activity transport, model, radioactive waste
Procedia PDF Downloads 1084554 Simulation of the Effect of Sea Water using Ground Tank to the Flexural Capacity of GFRP Sheet Reinforced Concrete Beams
Authors: Rudy Djamaluddin, Arbain Tata, Rita Irmawaty
Abstract:
The study conducted a simulation of the effect of sea water to the bonding capacity of GFRP sheet on the concrete beams using a simulation tank. As it well known that, fiber reinforced polymer (FRP) has been applied to many purposes for civil engineering structures not only for new structures but also for strengthening of the deteriorated structures. The FRP has advantages such as its corrosion resistance, as well as high tensile strength, to weight ratio. Glass composed FRP (GFRP) sheet is most commonly used due to its relatively lower cost compared to the other FRP materials. GFRP sheet is applied externally by bonding it on the concrete surface. Many studies have been done to investigate the bonding of GFRP sheet. However, it is still very rarely studies on the effect of sea water to the bonding capacity of GFRP sheet on the strengthened beams due to flexural loadings. This is important to be clarified for the wider application of GFRP sheet especially on the flexural structure that directly contact to the sea environment. To achieve the objective of the study, a series of concrete beams strengthened with GFRP sheet on extreme tension surface were prepared. The beams then were stored on the sea water tank for six months. Results indicated the bonding capacity decreased after six months exposed to the sea water.Keywords: GFRP sheet, sea water, concrete beams, bonding
Procedia PDF Downloads 3214553 Influence of Metakaolin and Cements Types on Compressive Strength and Transport Properties of Self-Consolidating Concrete
Authors: Kianoosh Samimi, Farhad Estakhr, Mahdi Mahdikhani, Faramaz Moodi
Abstract:
The self-consolidating concrete (SCC) performance over ordinary concrete is generally related to the ingredients used. The metakaolin can modify various properties of concrete, due to high pozzolanic reactions and also makes a denser microstructure. The objective of this paper is to examine the influence of three types of Portland cement and metakaolin on compressive strength and transport properties of SCC at early ages and up to 90 days. Six concrete mixtures were prepared with three types of different cements and substitution of 15% metakaolin. The results show that the highest value of compressive strength was achieved for Portland Slag Cement (PSC) and without any metakaolin at age of 90 days. Conversely, the lowest level of compressive strength at all ages of conservation was obtained for Pozzolanic Portland Cement (PPC) and containing 15% metakaolin. As can be seen in the results, compressive strength in SCC containing Portland cement type II with metakaolin is higher compared to that relative to SCC without metakaolin from 28 days of age. On the other hand, the samples containing PSC and PPC with metakaolin had a lower compressive strength than the plain samples. Therefore, it can be concluded that metakaolin has a negative effect on the compressive strength of SCC containing PSC and PPC. In addition, results show that metakaolin has enhanced chloride durability of SCCs and reduced capillary water absorption at 28, 90 days.Keywords: SCC, metakaolin, cement type, compressive strength, chloride diffusion
Procedia PDF Downloads 2184552 Carbon Nanotubes Based Porous Framework for Filtration Applications Using Industrial Grinding Waste
Authors: V. J. Pillewan, D. N. Raut, K. N. Patil, D. K. Shinde
Abstract:
Forging, milling, turning, grinding and shaping etc. are the various industrial manufacturing processes which generate the metal waste. Grinding is extensively used in the finishing operation. The waste generated contains significant impurities apart from the metal particles. Due to these significant impurities, it becomes difficult to process and gets usually dumped in the landfills which create environmental problems. Therefore, it becomes essential to reuse metal waste to create value added products. Powder injection molding process is used for producing the porous metal matrix framework. This paper discusses the presented design of the porous framework to be used for the liquid filter application. Different parameters are optimized to obtain the better strength framework with variable porosity. Carbon nanotubes are used as reinforcing materials to enhance the strength of the metal matrix framework.Keywords: grinding waste, powder injection molding (PIM), carbon nanotubes (CNTs), matrix composites (MMCs)
Procedia PDF Downloads 304