Search results for: chemical admixtures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4566

Search results for: chemical admixtures

3576 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction

Procedia PDF Downloads 116
3575 Green and Cost-Effective Biofabrication of Copper Oxide Nanoparticles: Exploring Antimicrobial and Anticancer Applications

Authors: Yemane Tadesse Gebreslassie, Fisseha Guesh Gebremeskel

Abstract:

Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an alternative approach for future therapeutic interventions against cancer and microbial infections.

Keywords: biological synthesis, copper oxide nanoparticles, microbial infection, nanotechnology

Procedia PDF Downloads 63
3574 Mass Customization of Chemical Protective Clothing

Authors: Eugenija Strazdiene, Violeta Bytautaite, Daivute Krisciuniene

Abstract:

The object of the investigation is the suit for chemical protection, which totally covers human body together with breathing apparatus, breathing mask and helmet (JSC Ansell Protective Solutions Lithuania). The end users of such clothing are the members of rescue team – firefighters. During the presentation, the results of 3D scanning with stationary Human Solutions scanner and portable Artec Eva scanner will be compared on the basis of the efficiency of scanning procedure and scanning accuracy. Also, the possibilities to exporting scanned bodies into specialized CAD systems for suit design development and material consumption calculation will be analyzed. The necessity to understand and to implement corresponding clothing material properties during 3D visualization of garment on CAD systems will be presented. During the presentation, the outcomes of the project ‘Smart and Safe Work Wear Clothing SWW’ will be discussed. The project is carried out under the Interreg Baltic Sea Region Program as 2014-2020 European territorial cooperation objective. Thematic priority is Capacity for Innovation. The main goal of the project is to improve competitiveness and to increase business possibilities for work wear enterprises in the Baltic Sea Region. The project focuses on mass customization of products for various end users. It engages textile and clothing manufacturing technology researchers, work wear producers, end users, as well as national textile and clothing branch organizations in Finland, Lithuania, Latvia, Estonia and Poland.

Keywords: CAD systems, mass customization, 3D scanning, safe work wear

Procedia PDF Downloads 204
3573 An Academic Theory on a Sustainable Evaluation of Achatina Fulica Within Ethekwini, KwaZulu-Natal

Authors: Sibusiso Trevor Tshabalala, Samuel Lubbe, Vince Vuledzani Ndou

Abstract:

Dependency on chemicals has had many disadvantages in pest management control strategies. Such genetic rodenticide resistance and secondary exposure risk are what is currently being experienced. Emphasis on integrated pest management suggests that to control future pests, early intervention and economic threshold development are key starting points in crop production. The significance of this research project is to help establish a relationship between Giant African Land Snail (Achatina Fulica) solution extract, its shell chemical properties, and farmer’s perceptions of biological control in eThekwini Municipality Agri-hubs. A mixed design approach to collecting data will be explored using a trial layout in the field and through interviews. The experimental area will be explored using a split-plot design that will be replicated and arranged in a randomised complete block design. The split-plot will have 0, 10, 20 and 30 liters of water to one liter of snail solution extract. Plots were 50 m² each with a spacing of 12 m between each plot and a plant spacing of 0.5 m (inter-row) ‘and 0.5 m (intra-row). Trials will be irrigated using sprinkler irrigation, with objective two being added to the mix every 4-5 days. The expected outcome will be improved soil fertility and micro-organisms population proliferation.

Keywords: giant african land snail, integrated pest management, photosynthesis, genetic rodenticide resistance, control future pests, shell chemical properties

Procedia PDF Downloads 106
3572 Amine Hardeners with Carbon Nanotubes Dispersing Ability for Epoxy Coating Systems

Authors: Szymon Kugler, Krzysztof Kowalczyk, Tadeusz Spychaj

Abstract:

An addition of carbon nanotubes (CNT) can simultaneously improve many features of epoxy coatings, i.e. electrical, mechanical, functional and thermal. Unfortunately, this nanofiller negatively affects visual properties of the coatings, such as transparency and gloss. The main reason for the low visual performance of CNT-modified epoxy coatings is the lack of compatibility between CNT and popular amine curing agents, although epoxy resins based on bisphenol A are indisputable good CNT dispersants. This is a serious obstacle in utilization of the coatings in advanced applications, demanding both high transparency and electrical conductivity. The aim of performed investigations was to find amine curing agents exhibiting affinity for CNT, and ensuring good performance of epoxy coatings with them. Commercially available CNT was dispersed in epoxy resin, as well as in different aliphatic, cycloaliphatic and aromatic amines, using one of two dispergation methods: ultrasonic or mechanical. The CNT dispersions were subsequently used in the preparation of epoxy coating compositions and coatings on a transparent substrate. It was found that amine derivative of bio-based cardanol, as well as modified o-tolylbiguanide exhibit significant CNT, dispersing properties, resulting in improved transparent/electroconductive performance of epoxy coatings. In one of prepared coating systems just 0.025 wt.% (250 ppm) of CNT was enough to obtain coatings with semi conductive properties, 83% of transparency as well as perfect chemical resistance to methyl-ethyl ketone and improved thermal stability. Additionally, a theory of the influence of amine chemical structure on CNT dispersing properties was proposed.

Keywords: bio-based cardanol, carbon nanotubes, epoxy coatings, tolylbiguanide

Procedia PDF Downloads 212
3571 Effect of Joule Heating on Chemically Reacting Micropolar Fluid Flow over Truncated Cone with Convective Boundary Condition Using Spectral Quasilinearization Method

Authors: Pradeepa Teegala, Ramreddy Chetteti

Abstract:

This work emphasizes the effects of heat generation/absorption and Joule heating on chemically reacting micropolar fluid flow over a truncated cone with convective boundary condition. For this complex fluid flow problem, the similarity solution does not exist and hence using non-similarity transformations, the governing fluid flow equations along with related boundary conditions are transformed into a set of non-dimensional partial differential equations. Several authors have applied the spectral quasi-linearization method to solve the ordinary differential equations, but here the resulting nonlinear partial differential equations are solved for non-similarity solution by using a recently developed method called the spectral quasi-linearization method (SQLM). Comparison with previously published work on special cases of the problem is performed and found to be in excellent agreement. The influence of pertinent parameters namely Biot number, Joule heating, heat generation/absorption, chemical reaction, micropolar and magnetic field on physical quantities of the flow are displayed through graphs and the salient features are explored in detail. Further, the results are analyzed by comparing with two special cases, namely, vertical plate and full cone wherever possible.

Keywords: chemical reaction, convective boundary condition, joule heating, micropolar fluid, spectral quasilinearization method

Procedia PDF Downloads 348
3570 Culturable Diversity of Halophilic Bacteria in Chott Tinsilt, Algeria

Authors: Nesrine Lenchi, Salima Kebbouche-Gana, Laddada Belaid, Mohamed Lamine Khelfaoui, Mohamed Lamine Gana

Abstract:

Saline lakes are extreme hypersaline environments that are considered five to ten times saltier than seawater (150 – 300 g L-1 salt concentration). Hypersaline regions differ from each other in terms of salt concentration, chemical composition and geographical location, which determine the nature of inhabitant microorganisms. In order to explore the diversity of moderate and extreme halophiles Bacteria in Chott Tinsilt (East of Algeria), an isolation program was performed. In the first time, water samples were collected from the saltern during pre-salt harvesting phase. Salinity, pH and temperature of the sampling site were determined in situ. Chemical analysis of water sample indicated that Na +and Cl- were the most abundant ions. Isolates were obtained by plating out the samples in complex and synthetic media. In this study, seven halophiles cultures of Bacteria were isolated. Isolates were studied for Gram’s reaction, cell morphology and pigmentation. Enzymatic assays (oxidase, catalase, nitrate reductase and urease), and optimization of growth conditions were done. The results indicated that the salinity optima varied from 50 to 250 g L-1, whereas the optimum of temperature range from 25°C to 35°C. Molecular identification of the isolates was performed by sequencing the 16S rRNA gene. The results showed that these cultured isolates included members belonging to the Halomonas, Staphylococcus, Salinivibrio, Idiomarina, Halobacillus Thalassobacillus and Planococcus genera and what may represent a new bacterial genus.

Keywords: bacteria, Chott, halophilic, 16S rRNA

Procedia PDF Downloads 285
3569 Bioremediation of Paper Mill Effluent by Microbial Consortium Comprising Bacterial and Fungal Strain and Optimizing the Effect of Carbon Source

Authors: Priya Tomar, Pallavi Mittal

Abstract:

Bioremediation has been recognized as an environment friendly and less expensive method which involves the natural processes resulting in the efficient conversion of hazardous compounds into innocuous products. The pulp and paper mill effluent is one of the high polluting effluents amongst the effluents obtained from polluting industries. The colouring body present in the wastewater from pulp and paper mill is organic in nature and is comprised of wood extractives, tannin, resins, synthetic dyes, lignin, and its degradation products formed by the action of chlorine on lignin which imparts an offensive colour to the water. These mills use different chemical process for paper manufacturing due to which lignified chemicals are released into the environment. Therefore, the chemical oxygen demand (COD) of the emanating stream is quite high. For solving the above problem we present this paper with some new techniques that were developed for the efficiency of paper mill effluents. In the present study we utilized the consortia of fungal and bacterial strain and the treatment named as C1, C2, and C3 for the decolourization of paper mill effluent. During the study, role of carbon source i.e. glucose was studied for decolourization. From the results it was observed that a maximum colour reduction of 66.9%, COD reduction of 51.8%, TSS reduction of 0.34%, TDS reduction of 0.29% and pH changes of 4.2 is achieved by consortia of Aspergillus niger with Pseudomonas aeruginosa. Data indicated that consortia of Aspergillus niger with Pseudomonas aeruginosa is giving better result with glucose.

Keywords: bioremediation, decolourization, black liquor, mycoremediation

Procedia PDF Downloads 411
3568 Geochemical and Geostructural Characteristics of the Groundwater System and the Role of Faults in Groundwater Movement at the Hammamet Basin, Tebessa Area (Northeast of Algeria)

Authors: Iklass Hamaili, Fehdi Chemseddine

Abstract:

Morphostructural, hydrogeological and hydrochemical approaches were applied in this study to characterize the groundwater system of Hammamet Plain, Eastern part of Algeria and its potential for exploitation. The analysis of the fractures in several Mountains forming the natural boundaries of Hammamet plain, with faults of markedly different sizes and joints measured at 21 stations, demonstrate the presence of two principal directions of fractures (NNW-SSE and NNE-SSW). From a hydrogeological standpoint, these two mountains constitute a unit limited by faults-oriented ENE-WSW, NNW-SSE and NNE-SSW. Specifically, fractures of the latter two directions influence the compartmentalization and the hydrogeological functioning of this unit. According to the degree of fracturing and/or karstification, two basic types of aquiferous behavior have been distinguished: fissured aquifer (Essen Mountain and Troubia Mountain), and porous aquifer (Hammamet basin). After sampling and measurement operations, the quantity of chemical components was determined. Thus, the study of the hydrochemical characteristics of this groundwater shows on Piper’s diagram that the majority of them are mainly HCO₃- and Ca₂+ water types. The ionic speciation and mineral dissolution/precipitation were calculated by PHREEQC package software. The chemical composition of the water is influenced by the dissolution and/or precipitation processes during the water-rock interaction and by the cationic exchange reactions between groundwater and alluvial sediments. The high content of CO₂ in the water samples suggests that they circulate in a geochemical opened system.

Keywords: aquifer, hydrogeology, hydrochemistry, Hammamet, Tebessa, Algeria

Procedia PDF Downloads 19
3567 Synthesis of New Bio-Based Solid Polymer Electrolyte Polyurethane-Liclo4 via Prepolymerization Method: Effect of NCO/OH Ratio on Their Chemical, Thermal Properties and Ionic Conductivity

Authors: C. S. Wong, K. H. Badri, N. Ataollahi, K. P. Law, M. S. Su’ait, N. I. Hassan

Abstract:

Novel bio-based polymer electrolyte was synthesized with LiClO4 as the main source of charge carrier. Initially, polyurethane-LiClO4 polymer electrolytes were synthesized via polymerization method with different NCO/OH ratios and labelled as PU1, PU2, PU3, and PU4. Subsequently, the chemical, thermal properties and ionic conductivity of the films produced were determined. Fourier transform infrared (FTIR) analysis indicates the co-ordination between Li+ ion and polyurethane in PU1 due to the greatest amount of hard segment of polyurethane in PU1 as proven by soxhlet analysis. The structures of polyurethanes were confirmed by 13 nuclear magnetic resonance spectroscopy (13C NMR) and FTIR spectroscopy. Differential scanning calorimetry (DSC) analysis indicates PU 1 has the highest glass transition temperature (Tg) corresponds to the most abundant urethane group which is the hard segment in PU1. Scanning electron microscopy (SEM) of the PU-LiClO4 shows the good miscibility between lithium salt and the polymer. The study found that PU1 possessed the greatest ionic conductivity (1.19 × 10-7 S.cm-1 at 298 K and 5.01 × 10-5 S.cm-1 at 373 K) and the lowest activation energy, Ea (0.32 eV) due to the greatest amount of hard segment formed in PU 1 induces the coordination between lithium ion and oxygen atom of carbonyl group in polyurethane. All the polyurethanes exhibited linear Arrhenius variations indicating ion transport via simple lithium ion hopping in polyurethane. This research proves the NCO content in polyurethane plays an important role in affecting the ionic conductivity of this polymer electrolyte.

Keywords: ionic conductivity, palm kernel oil-based monoester-OH, polyurethane, solid polymer electrolyte

Procedia PDF Downloads 427
3566 Role of Biomaterial Surface Nanotopography on Protein Unfolding and Immune Response

Authors: Rahul Madathiparambil Visalakshan, Alex Cavallaro, John Hayball, Krasimir Vasilev

Abstract:

The role of biomaterial surface nanotopograhy on fibrinogen adsorption and unfolding, and the subsequent immune response were studied. Inconsistent topography and varying chemical functionalities along with a lack of reproducibility pose a challenge in determining the specific effects of nanotopography or chemistry on proteins and cells. It is important to have a well-defined nanotopography with a homogeneous chemistry to study the real effect of nanotopography on biological systems. Therefore, we developed a technique that can produce well-defined and highly reproducible topography to identify the role of specific roughness, size, height and density with the presence of homogeneous chemical functionality. Using plasma polymerisation of oxazoline monomers and immobilized gold nanoparticles we created surfaces with an equal number density of nanoparticles of different sizes. This surface was used to study the role of surface nanotopography and the interplay of surface chemistry on proteins and immune cells. The effect of nanotopography on fibrinogen adsorption was investigated using Quartz Cristal Microbalance with Dissipation and micro BCA. The mass of fibrinogen adsorbed on the surface increased with increasing size of nano-topography. Protein structural changes up on adsorption to the nano rough surface was studied using circular dichroism spectroscopy. Fibrinogen unfolding varied depending on the specific nanotopography of the surfaces. It was revealed that the in vitro immune response to the nanotopography surfaces changed due to this protein unfolding.

Keywords: biomaterial inflammation, protein and cell responses, protein unfolding, surface nanotopography

Procedia PDF Downloads 176
3565 Physical, Chemical and Mechanical Properties of Different Varieties of Jatropha curcas Cultivated in Pakistan

Authors: Mehmood Ali, Attaullah Khan, Md. Abul Kalam

Abstract:

Petroleum crude oil reserves are going to deplete in future due to the consumption of fossil fuels in transportation and energy generating sector. Thus, increasing the fossil fuel prices and also causing environmental degradation issues such as climate change and global warming due to air pollution. Therefore, to tackle these issues the environmentally friendly fuels are the potential substitute with lower emissions of toxic gases. A non-edible vegetable oilseed crop, Jatropha curcas, from different origins such as Malaysia, Thailand and India were cultivated in Pakistan. The harvested seeds physical, chemical and mechanical properties were measured, having an influence on the post-harvesting machines design parameters for dehulling, storing bins, drying, oil extraction from seeds with a screw expeller and in-situ transesterification reaction to produce biodiesel fuel. The seed variety from Thailand was found better in comparison of its properties with other varieties from Malaysia and India. The seed yield from these three varieties i.e. Malaysia, Thailand and India were 829, 943 and 735 kg/ acre/ year respectively. While the oil extraction yield from Thailand variety seed was found higher (i.e. 32.61 % by wt.) as compared to other two varieties from Malaysia and India were 27.96 and 24.96 % by wt respectively. The physical properties investigated showed the geometric mean diameter of seeds from three varieties Malaysia, Thailand and India were 11.350, 10.505 and 11.324 mm, while the sphericity of seeds were found 0.656, 0.664 and 0.655. The bulk densities of the powdered seeds from three varieties Malaysia, Thailand and India, were found as 0.9697, 0.9932 and 0.9601 g/cm³ and % passing was obtained with sieve test were 78.7, 87.1 and 79.3 respectively. The densities of the extracted oil from three varieties Malaysia, Thailand and India were found 0.902, 0.898 and 0.902 g/ mL with corresponding kinematic viscosities 54.50, 49.18 and 48.16 mm2/sec respectively. The higher heating values (HHV) of extracted oil from Malaysia, Thailand and India seed varieties were measured as 40.29, 36.41 and 34.27 MJ/ kg, while the HHV of de-oiled cake from these varieties were 21.23, 20.78 and 17.31 MJ/kg respectively. The de-oiled cake can be used as compost with nutrients and carbon content to enhance soil fertility to grow future Jatropha curcas oil seed crops and also can be used as a fuel for heating and cooking purpose. Moreover, the mechanical parameter micro Vickers hardness of Malaysia seed was found lowest 16.30 HV measured with seed in a horizontal position to the loading in comparison to other two varieties as 25.2 and 18.7 HV from Thailand and India respectively. The fatty acid composition of three varieties of seed oil showed the presence of C8-C22, required to produce good quality biodiesel fuel. In terms of physicochemical properties of seeds and its extracted oil, the variety from Thailand was found better as compared to the other two varieties.

Keywords: biodiesel, Jatropha curcas, mechanical property, physico-chemical properties

Procedia PDF Downloads 141
3564 Effect of Particle Size and Concentration of Pomegranate (Punica granatum l.) Peel Powder on Suppression of Oxidation of Edible Plant Oils

Authors: D. G. D. C. L. Munasinghe, M. S. Gunawardana, P. H. P. Prasanna, C. S. Ranadheera, T. Madhujith

Abstract:

Lipid oxidation is an important process that affects the shelf life of edible oils. Oxidation produces off flavors, off odors and chemical compounds that lead to adverse health effects. Chemical mechanisms such as autoxidation, photo-oxidation and thermal oxidation are responsible for lipid oxidation. Refined, Bleached and Deodorized (RBD) coconut oil, Virgin Coconut Oil (VCO) and corn oil are widely used plant oils. Pomegranate fruit is known to possess high antioxidative efficacy. Peel of pomegranate contains high antioxidant activity than aril and pulp membrane. The study attempted to study the effect of particle size and concentration of pomegranate peel powder on suppression of oxidation of RBD coconut oil, VCO and corn oil. Pomegranate peel powder was incorporated into each oil sample as micro (< 250 µm) and nano particles (280 - 300 nm) at 100 ppm and 200 ppm concentrations. The control sample of each oil was prepared, devoid of pomegranate peel powder. The stability of oils against autoxidation was evaluated by storing oil samples at 60 °C for 28 days. The level of oxidation was assessed by peroxide value and thiobarbituric acid reactive substances on 0,1,3,5,7,14 and 28 day, respectively. VCO containing pomegranate particles of 280 - 300 nm at 200 ppm showed the highest oxidative stability followed by RBD coconut oil and corn oil. Results revealed that pomegranate peel powder with 280 - 300 nm particle size at 200 ppm concentration was the best in mitigating oxidation of RBD coconut oil, VCO and corn oil. There is a huge potential of utilizing pomegranate peel powder as an antioxidant agent in reducing oxidation of edible plant oils.

Keywords: antioxidant, autoxidation, micro particles, nano particles, pomegranate peel powder

Procedia PDF Downloads 453
3563 Microstructures and Chemical Compositions of Quarry Dust As Alternative Building Material in Malaysia

Authors: Abdul Murad Zainal Abidin, Tuan Suhaimi Salleh, Siti Nor Azila Khalid, Noryati Mustapa

Abstract:

Quarry dust is a quarry end product from rock crushing processes, which is a concentrated material used as an alternative to fine aggregates for concreting purposes. In quarrying activities, the rocks are crushed into aggregates of varying sizes, from 75mm until less than 4.5 mm, the size of which is categorized as quarry dust. The quarry dust is usually considered as waste and not utilized as a recycled aggregate product. The dumping of the quarry dust at the quarry plant poses the risk of environmental pollution and health hazard. Therefore, the research is an attempt to identify the potential of quarry dust as an alternative building material that would reduce the materials and construction costs, as well as contribute effort in mitigating depletion of natural resources. The objectives are to conduct material characterization and evaluate the properties of fresh and hardened engineering brick with quarry dust mix proportion. The microstructures of quarry dust and the bricks were investigated using scanning electron microscopy (SEM), and the results suggest that the shape and surface texture of quarry dust is a combination of hard and angular formation. The chemical composition of the quarry dust was also evaluated using X-ray fluorescence (XRF) and compared against sand and concrete. The quarry dust was found to have a higher presence of alumina (Al₂O₃), indicating the possibility of an early strength effect for brick. They are utilizing quarry dust waste as replacement material has the potential of conserving non-renewable resources as well as providing a viable alternative to disposal of current quarry waste.

Keywords: building materials, cement replacement, quarry microstructure, quarry product, sustainable materials

Procedia PDF Downloads 182
3562 Chemical Analysis, Antioxidant Activity and Antimicrobial Activity of Isolated Compounds and Essential Oil from Callistemon citrinus Leaf

Authors: Manal M. Hamed, Mosad A. Ghareeb, Abdel-Aleem H. Abdel-Aleem, Amal M. Saad, Mohamed S. Abdel-Aziz, Asmaa H. Hadad

Abstract:

Natural products derived from medicinal plants provide unlimited opportunities for a new medication leads because of the unmatched accessibility of chemical variation. Six compounds were isolated from the n-butanol extract of Callistemon citrinus (Family Myrtaceae), they were identified as; nepetolide (1), callislignan A (2), 6,8-dimethoxy-4,5-dimethyl-3-methyleneisochroman-1-one (3), 3-methyl-7-O-benzoyl-β-D-glucopyranoside (4), 5, 7, 3', 5'-tetrahydroxy-6, 8-di-C-methyl flavanone (5), and (2R,3R,4S,5S)-2,4-bis(4-hydroxyphenyl)-3,5-dihydroxy-tetrahydropyran (6). The isolated compounds were evaluated as antioxidant and antimicrobial agents. The antioxidant activities of the compounds were determined using DPPH-radical scavenging and total antioxidant capacity (TAC) assays. The results indicated that compound (5) was most active in its capacity to scavenge free radicals in the DPPH assay [SC50 value, 4.65 ± 0.74μg/mL] compared to the standard ascorbic acid and exhibited the highest activity in the TAC assay (610.45 ± 1.67mg AAE/g compound). The pure isolates were tested for their antimicrobial activity against four pathogenic microbial strains including Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Candida albicans. Also, the GC/MS analysis of its leaves essential oil presented nine identified compounds representing 91% of the total oil constituents. The outcomes got from this study give a reasonable justification for the medicinal uses of Callistemon citrinus plant.

Keywords: Callistemon citrinus, flavanone, antioxidant activity, antimicrobial activity, essential oil, Myrtaceae

Procedia PDF Downloads 296
3561 Usage of Biosorbent Material for the Removal of Nitrate from Wastewater

Authors: M. Abouleish, R. Umer, Z. Sara

Abstract:

Nitrate can cause serious environmental and human health problems. Effluent from different industries and excessive use of fertilizers have increased the level of nitrate in ground and surface water. Nitrate can convert to nitrite in the body, and as a result, can lead to Methemoglobinemia and cancer. Therefore, different organizations have set standard limits for nitrate and nitrite. The United States Environmental Protection Agency (USEPA) has set a Maximum Contaminant Level Goal (MCLG) of 10 mg N/L for nitrate and 1 mg N/L for nitrite. The removal of nitrate from water and wastewater is very important to ensure the availability of clean water. Different plant materials such as banana peel, rice hull, coconut and bamboo shells, have been studied as biosorbents for the removal of nitrates from water. The use of abundantly existing plant material as an adsorbent material and the lack of energy requirement for the adsorption process makes biosorption a sustainable approach. Therefore, in this research, the fruit of the plant was investigated for its ability to act as a biosorbent to remove the nitrate from wastewater. The effect of pH on nitrate removal was studied using both the raw and chemically activated fruit (adsorbent). Results demonstrated that the adsorbent needs to be chemically activated before usage to remove the nitrate from wastewater. pH did not have a significant effect on the adsorption process, with maximum adsorption of nitrate occurring at pH 4. SEM/EDX results demonstrated that there is no change in the surface of the adsorbent as a result of the chemical activation. Chemical activation of the adsorbent using NaOH increased the removal of nitrate by 6%; therefore, various methods of activation of the adsorbent will be investigated to increase the removal of nitrate.

Keywords: biosorption, nitrates, plant material, water, and wastewater treatment

Procedia PDF Downloads 155
3560 Thermal Method for Testing Small Chemisorbent Samples on the Base of Potassium Superoxide

Authors: Pavel V. Balabanov, Daria A. Liubimova, Aleksandr P. Savenkov

Abstract:

The increase of technogenic and natural accidents, accompanied by air pollution, for example, by combustion products, leads to the necessity of respiratory protection. This work is devoted to the development of a calorimetric method and a device which allow investigating quickly the kinetics of carbon dioxide sorption by chemo-sorbents on the base of potassium superoxide in order to assess the protective properties of respiratory protective closed-circuit apparatus. The features of the traditional approach for determining the sorption properties in a thin layer of chemo-sorbent are described, as well as methods and devices, which can be used for the sorption kinetics study. The authors of the paper developed an approach (as opposed to the traditional approach) based on the power measurement of internal heat sources in the chemo-sorbent layer. The emergence of the heat sources is a result of the exothermic reaction of carbon dioxide sorption. This approach eliminates the necessity of chemical analysis of samples and can significantly reduce the time and material expenses during chemo-sorbents testing. The error of determining the volume fraction of adsorbed carbon dioxide by the developed method does not exceed 12%. Taking into account the efficiency of the method, we consider that it is a good alternative to traditional methods of chemical analysis under the assessment of the protection sorbents quality.

Keywords: carbon dioxide chemisorption, exothermic reaction, internal heat sources, respiratory protective apparatus

Procedia PDF Downloads 408
3559 A Standard Operating Procedure (SOP) for Forensic Soil Analysis: Tested Using a Simulated Crime Scene

Authors: Samara A. Testoni, Vander F. Melo, Lorna A. Dawson, Fabio A. S. Salvador

Abstract:

Soil traces are useful as forensic evidence due to their potential to transfer and adhere to different types of surfaces on a range of objects or persons. The great variability expressed by soil physical, chemical, biological and mineralogical properties show soil traces as complex mixtures. Soils are continuous and variable, no two soil samples being indistinguishable, nevertheless, the complexity of soil characteristics can provide powerful evidence for comparative forensic purposes. This work aimed to establish a Standard Operating Procedure (SOP) for forensic soil analysis in Brazil. We carried out a simulated crime scene with double blind sampling to calibrate the sampling procedures. Samples were collected at a range of locations covering a range of soil types found in South of Brazil: Santa Candida and Boa Vista, neighbourhoods from Curitiba (State of Parana) and in Guarani and Guaraituba, neighbourhoods from Colombo (Curitiba Metropolitan Region). A previously validated sequential analyses of chemical, physical and mineralogical analyses was developed in around 2 g of soil. The suggested SOP and the sequential range of analyses were effective in grouping the samples from the same place and from the same parent material together, as well as successfully discriminated samples from different locations and originated from different rocks. In addition, modifications to the sample treatment and analytical protocol can be made depending on the context of the forensic work.

Keywords: clay mineralogy, forensic soils analysis, sequential analyses, kaolinite, gibbsite

Procedia PDF Downloads 255
3558 Streptavidin-Biotin Attachment on Modified Silicon Nanowires

Authors: Shalini Singh, Sanjay K. Srivastava, Govind, Mukhtar. A. Khan, P. K. Singh

Abstract:

Nanotechnology is revolutionizing the development of biosensors. Nanomaterials and nanofabrication technologies are increasingly being used to design novel biosensors. Sensitivity and other attributes of biosensors can be improved by using nanomaterials with unique chemical, physical, and mechanical properties in their construction. Silicon is a promising biomaterial that is non-toxic and biodegradable and can be exploited in chemical and biological sensing. Present study demonstrated the streptavidin–biotin interaction on silicon surfaces with different topographies such as flat and nanostructured silicon (nanowires) surfaces. Silicon nanowires with wide range of surface to volume ratio were prepared by electrochemical etching of silicon wafer. The large specific surface of silicon nanowires can be chemically modified to link different molecular probes (DNA strands, enzymes, proteins and so on), which recognize the target analytes, in order to enhance the selectivity and specificity of the sensor device. The interaction of streptavidin with biotin was carried out on 3-aminopropyltriethoxysilane (APTS) functionalized silicon surfaces. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) studies have been performed to characterize the surface characteristics to ensure the protein attachment. Silicon nanowires showed the enhance protein attachment, as compared to flat silicon surface due to its large surface area and good molecular penetration to its surface. The methodology developed herein could be generalized to a wide range of protein-ligand interactions, since it is relatively easy to conjugate biotin with diverse biomolecules such as antibodies, enzymes, peptides, and nucleotides.

Keywords: FTIR, silicon nanowires, streptavidin-biotin, XPS

Procedia PDF Downloads 419
3557 Investigation of Type and Concentration Effects of Solvent on Chemical Properties of Saffron Edible Extract

Authors: Sharareh Mohseni

Abstract:

Purpose: The objective of this study was to find a suitable solvent to produce saffron edible extract with improved chemical properties. Design/methodology/approach: Dried and pulverized stigmas of C. sativus L. (10g) was extracted with 300 ml of solvents including: distillated water (DW), ethanol/DW, methanol/DW, propylene glycol/DW, heptan/DW, and hexan/DW, for 3 days at 25°C and then centrifuged at 3000 rpm. Then the extracts were evaporated using rotary evaporator at 40°C. The fiber and solvent-free extracts were then analyzed by UV spectrophotometer to detect saffron quality parameters including crocin, picrocrocin and safranal. Findings: Distilled water/ethanol mixture as the extraction solvent, caused larger amounts of the plant constituents to diffuse out to the extract compared to other treatments and also control. Polar solvents including distilled water, ethanol, and propylene glycol (except methanol) were more effective in extracting crocin, picrocrocin, and saffranal than non-polar solvents. Social implications: Due to an enhancement of color and flavor, saffron extract is economical compared to natural saffron. Saffron Extract saves on preparation time and reduces the amount of saffron required for imparting the same flavor, as compared to dry saffron. Liquid extract is easier to use and standardize in food preparations compared to dry stamens and can be dosed precisely compared to natural saffron. Originality/value: No research had been done on production of saffron edible extract using the solvent studied in this survey. The novelty of this research is high and the results can be used industrially.

Keywords: Crocus sativus L., saffron extract, solvent extraction, distilled water

Procedia PDF Downloads 448
3556 Ecological Studies on Bulinus truncatus Snail the Intermediate Host of Schistosoma haematobium, in White Nile State, Sudan

Authors: Mohammed Hussein Eltoum Salih

Abstract:

This study was conducted in four villages, namely: Jadeed, Alandraba, Um Gaar, and EL Shetabe in the White Nile State Sudan, to determine the ecological factors; water vegetations, physical and chemical properties of the water in Snails habitat. Bulinus truncatus, which act as an intermediate host for S. haematobium, were collected from water bodies adjacent to study villages where the residents were suspected to swim, and humans get in contact with water for various purposes. Water samples from the stretches were collected and then measured for parameters that are indicative of the quality of water and sustaining the survival of snails and would confirm even further if the contact between humans and water had taken place. The parameters measured included water conductivity, pH, dissolved oxygen, calcium, and magnesium content. Also, a single water sample from each contact site was collected for microbiological tests. The result revealed that the B. truncatus showed that these animals were fewer and free of infection and their sites of the collection were dense with different plant species making them suitable to harbor snails. Moreover, the results of microbial tests showed that there was higher bacterial contamination. Also, physical and chemical analysis of water sample of contact sites revealed that there were significant differences (p < 0.05) in water pH, calcium, and magnesium content between sites of study villages, and these were discussed in relation to factors suitable for the intermediate hosts and thus for the transmission of the S. haematobium disease.

Keywords: health, parasitology, Schistosoma, snails

Procedia PDF Downloads 148
3555 Layer-By-Layer Deposition of Poly (Amidoamine) and Poly (Acrylic Acid) on Grafted-Polylactide Nonwoven with Different Surface Charge

Authors: Sima Shakoorjavan, Mahdieh Eskafi, Dawid Stawski, Somaye Akbari

Abstract:

In this study, poly (amidoamine) dendritic material (PAMAM) and poly (acrylic acid) (PAA) as polycation and polyanion were deposited on surface charged polylactide (PLA) nonwoven to study the relationship of dye absorption capacity of layered-PLA with the number of deposited layers. To produce negatively charged-PLA, acrylic acid (AA) was grafted on the PLA surface (PLA-g-AA) through a chemical redox reaction with the strong oxidizing agent. Spectroscopy analysis, water contact measurement, and FTIR-ATR analysis confirm the successful grafting of AA on the PLA surface through the chemical redox reaction method. In detail, an increase in dye absorption percentage by 19% and immediate absorption of water droplets ensured hydrophilicity of PLA-g-AA surface; and the presence of new carbonyl bond at 1530 cm-¹ and a wide peak of hydroxyl between 3680-3130 cm-¹ confirm AA grafting. In addition, PLA as linear polyester can undergo aminolysis, which is the cleavage of ester bonds and replacement with amid bonds when exposed to an aminolysis agent. Therefore, to produce positively charged PLA, PAMAM as amine-terminated dendritic material was introduced to PLA molecular chains at different conditions; (1) at 60 C for 0.5, 1, 1.5, 2 hours of aminolysis and (2) at room temperature (RT) for 1, 2, 3, and 4 hours of aminolysis. Weight changes and spectrophotometer measurements showed a maximum in weight gain graph and K/S value curve indicating the highest PAMAM attachment at 60 C for 1 hour and RT for 2 hours which is considered as an optimum condition. Also, the emerging new peak around 1650 cm-1 corresponding to N-H bending vibration and double wide peak at around 3670-3170 cm-1 corresponding to N-H stretching vibration confirm PAMAM attachment in selected optimum condition. In the following, regarding the initial surface charge of grafted-PLA, lbl deposition was performed and started with PAA or PAMAM. FTIR-ATR results confirm chemical changes in samples due to deposition of the first layer (PAA or PAMAM). Generally, spectroscopy analysis indicated that an increase in layer number costed dye absorption capacity. It can be due to the partial deposition of a new layer on the previously deposited layer; therefore, the available PAMAM at the first layer is more than the third layer. In detail, in the case of layer-PLA starting lbl with negatively charged, having PAMAM as the first top layer (PLA-g-AA/PAMAM) showed the highest dye absorption of both cationic and anionic model dye.

Keywords: surface modification, layer-by-layer technique, dendritic materials, PAMAM, dye absorption capacity, PLA nonwoven

Procedia PDF Downloads 85
3554 Development of Biosurfactant-Based Adjuvant for Enhancing Biocontrol Efficiency

Authors: Kanyarat Sikhao, Nichakorn Khondee

Abstract:

Adjuvant is commonly mixed with agricultural spray solution during foliar application to improve the performance of microbial-based biological control, including better spreading, absorption, and penetration on a plant leaf. This research aims to replace chemical surfactants in adjuvant by biosurfactants for reducing a negative impact on antagonistic microorganisms and crops. Biosurfactant was produced from Brevibacterium casei NK8 and used as a cell-free broth solution containing a biosurfactant concentration of 3.7 g/L. The studies of microemulsion formation and phase behavior were applied to obtain the suitable composition of biosurfactant-based adjuvant, consisting of cell-free broth (70-80%), coconut oil-based fatty alcohol C12-14 (3) ethoxylate (1-7%), and sodium chloride (8-30%). The suitable formula, achieving Winsor Type III microemulsion (bicontinuous), was 80% of cell-free broth, 7% of fatty alcohol C12-14 (3) ethoxylate, and 8% sodium chloride. This formula reduced the contact angle of water on parafilm from 70 to 31 degrees. The non-phytotoxicity against plant seed of Oryza sativa and Brassica rapa subsp. pekinensis were obtained from biosurfactant-based adjuvant (germination index equal and above 80%), while sodium dodecyl sulfate and tween80 showed phytotoxic effects to these plant seeds. The survival of Bacillus subtilis in biosurfactant-based adjuvant was higher than sodium dodecyl sulfate and tween80. The mixing of biosurfactant and plant-based surfactant could be considered as a viable, safer, and acceptable alternative to chemical adjuvant for sustainable organic farming.

Keywords: biosurfactant, microemulsion, bio-adjuvant, antagonistic microorganisms

Procedia PDF Downloads 141
3553 Effects of Different Mechanical Treatments on the Physical and Chemical Properties of Turmeric

Authors: Serpa A. M., Gómez Hoyos C., Velásquez-Cock J. A., Ruiz L. F., Vélez Acosta L. M., Gañan P., Zuluaga R.

Abstract:

Turmeric (Curcuma Longa L) is an Indian rhizome known for its biological properties, derived from its active compounds such as curcuminoids. Curcumin, the main polyphenol in turmeric, only represents around 3.5% of the dehydrated rhizome and extraction yields between 41 and 90% have been reported. Therefore, for every 1000 tons of turmeric powder used for the extraction of curcumin, around 970 tons of residues are generated. The present study evaluates the effect of different mechanical treatments (waring blender, grinder and high-pressure homogenization) on the physical and chemical properties of turmeric, as an alternative for the transformation of the entire rhizome. Suspensions of turmeric (10, 20 y 30%) were processed by waring blender during 3 min at 12000 rpm, while the samples treated by grinder were processed evaluating two different Gaps (-1 and -1,5). Finally, the process by high-pressure homogenization, was carried out at 500 bar. According to the results, the luminosity of the samples increases with the severity of the mechanical treatment, due to the stabilization of the color associated with the inactivation of the oxidative enzymes. Additionally, according to the microstructure of the samples, the process by grinder (Gap -1,5) and by high-pressure homogenization allowed the largest size reduction, reaching sizes up to 3 m (measured by optical microscopy). This processes disrupts the cells and breaks their fragments into small suspended particles. The infrared spectra obtained from the samples using an attenuated total reflectance accessory indicates changes in the 800-1200 cm⁻¹ region, related mainly to changes in the starch structure. Finally, the thermogravimetric analysis shows the presence of starch, curcumin and some minerals in the suspensions.

Keywords: characterization, mechanical treatments, suspensions, turmeric rhizome

Procedia PDF Downloads 163
3552 Extraction and Characterization of Ethiopian Hibiscus macranthus Bast Fiber

Authors: Solomon Tilahun Desisa, Muktar Seid Hussen

Abstract:

Hibiscus macranthus is one of family Malvaceae and genus Hibiscus plant which grows mainly in western part of Ethiopia. Hibiscus macranthus is the most adaptable and abundant plant in the nation, which are used as an ornamental plant often a hedge or fence plant, and used as a firewood after harvesting the stem together with the bark, and used also as a fiber for trying different kinds of things by forming the rope. However, Hibiscus macranthus plant fibre has not been commercially exploited and extracted properly. This study of work describes the possibility of mechanical and retting methods of Hibiscus macranthus fibre extraction and characterization. Hibiscus macranthus fibre is a bast fibre which obtained naturally from the stem or stalks of the dicotyledonous plant since it is a natural cellulose plant fiber. And the fibre characterized by studying its physical and chemical properties. The physical characteristics were investigated as follows, including the length of 100-190mm, fineness of 1.0-1.2Tex, diameter under X100 microscopic view 16-21 microns, the moisture content of 12.46% and dry tenacity of 48-57cN/Tex along with breaking extension of 0.9-1.6%. Hibiscus macranthus fiber productivity was observed that 12-18% of the stem out of which more than 65% is primary long fibers. The fiber separation methods prove to decrease of non-cellulose ingredients in the order of mechanical, water and chemical methods. The color measurement also shows the raw Hibiscus macranthus fiber has a natural golden color according to YID1925 and paler look under both retting methods than mechanical separation. Finally, it is suggested that Hibiscus macranthus fibre can be used for manufacturing of natural and organic crop and coffee packages as well as super absorbent, fine and high tenacity textile products.

Keywords: Hibiscus macranthus, bast fiber, extraction, characterization

Procedia PDF Downloads 212
3551 Effect of Low Calorie Sweeteners on Chemical, Sensory Evaluation and Antidiabetic of Pumpkin Jam Fortified with Soybean

Authors: Amnah M. A. Alsuhaibani, Amal N. Al-Kuraieef

Abstract:

Introduction: In the recent decades, production of low-calorie jams is needed for diabetics that comprise low calorie fruits and low calorie sweeteners. Object: the research aimed to prepare low calorie formulated pumpkin jams (fructose, stevia and aspartame) incorporated with soy bean and evaluate the jams through chemical analysis and sensory evaluation after storage for six month. Moreover, the possible effect of consumption of low calorie jams on diabetic rats was investigated. Methods: Five formulas of pumpkin jam with different sucrose, fructose, stevia and aspartame sweeteners and soy bean were prepared and stored at 10 oC for six month compared to ordinary pumpkin jam. Chemical composition and sensory evaluation of formulated jams were evaluated at zero time, 3 month and 6 month of storage. The best three acceptable pumpkin jams were taken for biological study on diabetic rats. Rats divided into group (1) served as negative control and streptozotocin induce diabetes four rat groups that were positive diabetic control (group2), rats fed on standard diet with 10% sucrose soybean jam, fructose soybean jam and stevia soybean jam (group 3, 4&5), respectively. Results: The content of protein, fat, ash and fiber were increased but carbohydrate was decreased in low calorie formulated pumpkin jams compared to ordinary jam. Production of aspartame soybean pumpkin jam had lower score of all sensory attributes compared to other jam then followed by stevia soybean Pumpkin jam. Using non nutritive sweeteners (stevia & aspartame) with soybean in processing jam could lower the score of the sensory attributes after storage for 3 and 6 months. The highest score was recorded for sucrose and fructose soybean jams followed by stevia soybean jam while aspartame soybean jam recorded the lowest score significantly. The biological evaluation showed a significant improvement in body weight and FER of rats after six weeks of consumption of standard diet with jams (Group 3,4&5) compared to Group1. Rats consumed 10% low calorie jam with nutrient sweetener (fructose) and non nutrient sweetener (stevia) soybean jam (group 4& 5) showed significant decrease in glucose level, liver function enzymes activity, and liver cholesterol & total lipids in addition of significant increase of insulin and glycogen compared to the levels of group 2. Conclusion: low calorie pumpkin jams can be prepared by low calorie sweeteners and soybean and also storage for 3 months at 10oC without change sensory attributes. Consumption of stevia pumpkin jam fortified with soybean had positive health effects on streptozoticin induced diabetes in rats.

Keywords: pumpkin jam, HFCS, aspartame, stevia, storage

Procedia PDF Downloads 184
3550 Liquid Phase Catalytic Dehydrogenation of Secondary Alcohols to Ketone

Authors: Anıl Dinçer, Dilek Duranoğlu

Abstract:

Ketones, which are widely used as solvent and chemical intermediates in chemical process industry, are commercially produced by using catalytic dehydrogenation of secondary alcohols at higher temperature (300-500ºC), and pressure (1-5 bar). Although it is possible to obtain high conversion values (60-87%) via gas phase catalytic dehydrogenation, working high temperature and pressure can result in side reactions and shorten the catalyst life. In order to overcome these challenges, catalytic dehydrogenation in the presence of an appropriate liquid solvent has been started to use. Hence, secondary alcohols can be converted to respective ketones at relatively low temperature (150-200ºC) under atmospheric pressure. In this study, methyl ethyl ketone and acetone was produced via catalytic dehydrogenation of appropriate secondary alcohols (isopropyl alcohol and sec-butyl alcohol) in the presence of liquid solvent at 160-190ºC. Obtained methyl ethyl ketone and acetone were analyzed by using FTIR and GC spectrometer. Effects of temperature, amount of catalyst and solvent on conversion and reaction rate were investigated. Optimum process conditions, which gave high conversion and reaction rate, were determined. According to GC results, 70% of secondary butyl alcohol and 42% of isopropyl alcohol was converted to related ketone (methyl ethyl ketone and acetone, respectively) at optimum process conditions. After distillation, 99.13% methyl ethyl ketone and 99.20% acetone was obtained. Consequently, liquid phase dehydrogenation process, which can compete with commercial gas phase process, was developed.

Keywords: dehydrogenation, liquid phase, methyl ethyl ketone, secondary alcohol

Procedia PDF Downloads 299
3549 Contribution of the Corn Milling Industry to a Global and Circular Economy

Authors: A. B. Moldes, X. Vecino, L. Rodriguez-López, J. M. Dominguez, J. M. Cruz

Abstract:

The concept of the circular economy is focus on the importance of providing goods and services sustainably. Thus, in a future it will be necessary to respond to the environmental contamination and to the use of renewables substrates by moving to a more restorative economic system that drives towards the utilization and revalorization of residues to obtain valuable products. During its evolution our industrial economy has hardly moved through one major characteristic, established in the early days of industrialization, based on a linear model of resource consumption. However, this industrial consumption system will not be maintained during long time. On the other hand, there are many industries, like the corn milling industry, that although does not consume high amount of non renewable substrates, they produce valuable streams that treated accurately, they could provide additional, economical and environmental, benefits by the extraction of interesting commercial renewable products, that can replace some of the substances obtained by chemical synthesis, using non renewable substrates. From this point of view, the use of streams from corn milling industry to obtain surface-active compounds will decrease the utilization of non-renewables sources for obtaining this kind of compounds, contributing to a circular and global economy. However, the success of the circular economy depends on the interest of the industrial sectors in the revalorization of their streams by developing relevant and new business models. Thus, it is necessary to invest in the research of new alternatives that reduce the consumption of non-renewable substrates. In this study is proposed the utilization of a corn milling industry stream to obtain an extract with surfactant capacity. Once the biosurfactant is extracted, the corn milling stream can be commercialized as nutritional media in biotechnological process or as animal feed supplement. Usually this stream is combined with other ingredients obtaining a product namely corn gluten feed or may be sold separately as a liquid protein source for beef and dairy feeding, or as a nutritional pellet binder. Following the productive scheme proposed in this work, the corn milling industry will obtain a biosurfactant extract that could be incorporated in its productive process replacing those chemical detergents, used in some point of its productive chain, or it could be commercialized as a new product of the corn manufacture. The biosurfactants obtained from corn milling industry could replace the chemical surfactants in many formulations, and uses, and it supposes an example of the potential that many industrial streams could offer for obtaining valuable products when they are manage properly.

Keywords: biosurfactantes, circular economy, corn, sustainability

Procedia PDF Downloads 263
3548 Cryogenic Grinding of Mango (Mangifera indica L.) Peel and Its Effect on Chemical and Morphological Characteristics

Authors: Bhupinder Kaur, P. P. Srivastav

Abstract:

The fruit and vegetable industries are responsible for producing huge amount of waste, which is a problem to environmental safety and should be utilized efficiently. Mango (Mangifera indica L.) is an important commercially grown fruit and referred as the “King of fruits”. In 2015, India was the largest producer (18.506 MT) of mangoes and out of which 9.16 % lost during post-harvest handling. The mango kernel and peel represent approximately 17-22% and 7-22% of the overall mass of fruit respectively and discarded as waste. Hence, an attempt has been made with three mango cultivars (Langra, Dashehari, Fazli) to investigate the effect of cryogenic grinding on various characteristics of mango peel powder (MPP). The cryogenic grinding is an emerging technology which is used for retention of beneficial volatile and bioactive components. The feed rate was highest for Langra followed by Chausa. The samples have 2-4% fat along with significant amount of protein (4-6%) and crude fiber (9-13%). Mango peel is also a good source of minerals such as calcium, potassium, manganese, iron, copper, zinc, and magnesium. Interestingly, the significant amount of essential minerals like phosphorus and chlorine in all the varieties was found with the highest value in Langra (phosphorus 10.83% and chlorine 2.41%) which are not reported earlier. SEM analysis revealed the surface morphology and shape of the particles. Waste utilization is a promising measure from both an environmental and economic point of view. Chemical characterization of the samples indicated its potential to be used for the fortification of food products which in turn reduces hazards due to waste and improve functional quality of the foods.

Keywords: cryogenic grinding, morphological, mineral composition, SEM

Procedia PDF Downloads 236
3547 Treatment of Healthcare Wastewater Using The Peroxi-Photoelectrocoagulation Process: Predictive Models for Chemical Oxygen Demand, Color Removal, and Electrical Energy Consumption

Authors: Samuel Fekadu A., Esayas Alemayehu B., Bultum Oljira D., Seid Tiku D., Dessalegn Dadi D., Bart Van Der Bruggen A.

Abstract:

The peroxi-photoelectrocoagulation process was evaluated for the removal of chemical oxygen demand (COD) and color from healthcare wastewater. A 2-level full factorial design with center points was created to investigate the effect of the process parameters, i.e., initial COD, H₂O₂, pH, reaction time and current density. Furthermore, the total energy consumption and average current efficiency in the system were evaluated. Predictive models for % COD, % color removal and energy consumption were obtained. The initial COD and pH were found to be the most significant variables in the reduction of COD and color in peroxi-photoelectrocoagulation process. Hydrogen peroxide only has a significant effect on the treated wastewater when combined with other input variables in the process like pH, reaction time and current density. In the peroxi-photoelectrocoagulation process, current density appears not as a single effect but rather as an interaction effect with H₂O₂ in reducing COD and color. Lower energy expenditure was observed at higher initial COD, shorter reaction time and lower current density. The average current efficiency was found as low as 13 % and as high as 777 %. Overall, the study showed that hybrid electrochemical oxidation can be applied effectively and efficiently for the removal of pollutants from healthcare wastewater.

Keywords: electrochemical oxidation, UV, healthcare pollutants removals, factorial design

Procedia PDF Downloads 80