Search results for: biomass steam gasification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1355

Search results for: biomass steam gasification

365 Study of Coconut and Babassu Oils with High Acid Content and the Fatty Acids (C6 to C16) Obtained from These Oils

Authors: Flávio A. F. da Ponte, Jackson Q. Malveira, José A. S. Ramos Filho, Monica C. G. Albuquerque

Abstract:

The vegetable oils have many applications in industrial processes and due to this potential have constantly increased the demand for the use of low-quality oils, mainly in the production of biofuel. This work aims to the physicochemical evaluation of babassu oil (Orbinya speciosa) and coconut (Cocos nucifera) of low quality, as well the obtaining the free fatty acids 6 to 16 carbon atoms, with intention to be used as raw material for the biofuels production. The babassu oil and coconut low quality, as well the fatty acids obtained from these oils were characterized as their physicochemical properties and fatty acid composition (using gas chromatography coupled to mass). The NMR technique was used to assess the efficiency of fractional distillation under reduced pressure to obtain the intermediate carbonic chain fatty acids. The results showed that the bad quality in terms of physicochemical evaluation of babassu oils and coconut oils interfere directly in industrial application. However the fatty acids of intermediate carbonic chain (C6 to C16) may be used in cosmetic, pharmaceutical and particularly as the biokerosene fuel. The chromatographic analysis showed that the babassu oil and coconut oil have as major fatty acids are lauric acid (57.5 and 38.6%, respectively), whereas the top phase from distillation of coconut oil showed caprylic acid (39.1%) and major fatty acid.

Keywords: babassu oil (Orbinya speciosa), coconut oil (Cocos nucifera), fatty acids, biomass

Procedia PDF Downloads 321
364 Aptitude of a Lactococcus Strain to Grow on Whey Medium

Authors: Souid Wafa, Boudjenah-Haroun Saliha, Khacef Linda

Abstract:

In this work, we focused on the valuation of discharges from the dairy industry. Whey is by-product of dairy industry, which is a formidable pollution factor and contains components (lactose, minerals and proteins) with high nutritional value. Whey is an excellent culture medium for microorganisms. The objective of our work is to investigate the ability of a lactic strain (of the genus Lactococcus) to grow in culture media based on whey of cattle and camels and comparing it with that recorded on M17 as indicator medium. In this study we isolated from a local sample of camel milk a lactic strain (S1).the strain had positive Gram shaped, cocci form and catalase (-). The strain has been purified by the method of streaks on M17 medium. Phenotypic identification allows us to classify this strain in the species: Lactococcus lactis subsp. Cremoris. We subsequently tested the ability of this strain to grow in cattle whey medium and camel whey, both media were deproteinized and unsupplemented. The obtained results revealed that: The cattle and camel whey are appropriate media for the growth of the strain Lactococcus lactis subsp cremoris but is more adapted to grow on a medium rich in lactose as the camel whey. In fact, after 48h and at initial pH 6.8 this strain acidified more camel whey (pH 3.99) than cattle whey (pH 4.8). And biomass produced in the camel whey is 1.50g /1 by contributing to the cattle whey which is 1g / l.

Keywords: cremoris, dairy industry, Lactococcus lactis subsp, medium, whey

Procedia PDF Downloads 363
363 Investigating the Effect of Ceramic Thermal Barrier Coating on Diesel Engine with Lemon Oil Biofuel

Authors: V. Karthickeyan

Abstract:

The demand for energy is anticipated to increase, due to growing urbanization, industrialization, upgraded living standards and cumulatively increasing human population. The general public is becoming gradually aware of the diminishing fossil fuel resources along with the environmental issues, and it has become clear that biofuel is intended to make significant support to the forthcoming energy needs of the native and industrial sectors. Nowadays, the investigation on biofuels obtained from peels of fruits and vegetables have gained the consideration as an environment-friendly alternative to diesel. In the present work, biofuel was produced from non-edible Lemon Oil (LO) using steam distillation process. LO is characterized by its beneficial aspects like low kinematic viscosity and enhanced calorific value which provides better fuel atomization and evaporation. Furthermore, the heating values of the biofuels are approximately equal to diesel. A single cylinder, four-stroke diesel engine was used for this experimentation. An engine modification technique namely Thermal Barrier Coating (TBC) was attempted. Combustion chamber components were thermally coated with ceramic material namely partially stabilized zirconia (PSZ). The benefit of thermal barrier coating is to diminish the heat loss from engine and transform the collected heat into piston work. Performance characteristics like Brake Thermal Efficiency (BTE) and Brake Specific Fuel Consumption (BSFC) were analyzed. Combustion characteristics like in-cylinder pressure and heat release rate were analyzed. In addition, the following engine emissions namely nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke were measured. The acquired performance combustion and emission characteristics of uncoated engine were compared with PSZ coated engine. From the results, it was perceived that the LO biofuel may be considered as the prominent alternative in the near prospect with thermal barrier coating technique to enrich the performance, combustion and emission characteristics of diesel engine.

Keywords: ceramic material, thermal barrier coating, biofuel and diesel engine

Procedia PDF Downloads 155
362 Potential Application of Thyme (Thymus vulgaris L.) Essential Oil as Antibacterial Drug in Aromatherapy

Authors: Ferhat Mohamed Amine, Boukhatem Mohamed Nadjib, Chemat Farid

Abstract:

The Lamiaceae family is widely spread in Algeria. Due to the application of Thymus species growing wild in Algeria as a culinary herb and in folk medicine, the purpose of the present work was to evaluate antimicrobial activities of their essential oils and relate them with their chemical composition, for further application in food and pharmaceutical industries as natural valuable products. The extraction of the Thymus vulgaris L. essential oil (TVEO) was obtained by steam distillation. Chemical composition of the TVEO was determined by Gas Chromatography. A total of thirteen compounds were identified. Carvacrol (83.8%) was the major component, followed by cymene (8.15%) and terpinene (4.96%). Antibacterial action of the TVEO against 23 clinically isolated bacterial strains was determined by using agar disc diffusion and vapour diffusion methods at different doses. By disc diffusion method, TVEO showed potent antimicrobial activity against gram-positive bacteria more than gram-negative strains and antibiotic discs. The Diameter of Inhibition Zone (DIZ) varied from 25 to 60 mm for S. aureus, B. subtilisand E. coli. However, the results obtained by both agar diffusion and vapour diffusion methods were different. Significantly higher antibacterial effect was observed in the vapour phase at lower doses. S. aureus and B. subtilis were the most susceptible strains to the oil vapour. Therefore, smaller doses of EO in the vapour phase can be inhibitory to pathogenic bacteria. There is growing evidence that TVEO in vapour phase are effective antiseptic systems and appears worthy to be considered for practical uses in the treatment of human infections oras air decontaminants in hospital. TVEO has considerable antibacterial activity deserving further investigation for clinical applications. Also whilst the mode of action remains mainly undetermined, this experimental approach will need to continue.

Keywords: antimicrobial drugs, carvacrol, disc diffusion, Thymus vulgaris, vapour diffusion

Procedia PDF Downloads 371
361 Design and Evaluation of Oven Type Furnace Using Earth Materials for Roasting Foods

Authors: Jeffrey Cacho, Sherwin Reyes

Abstract:

The research targeted enhancing energy utilization and reducing waste in roasting processes, particularly in Camarines Norte, where Bounty Agro Ventures Incorporated dominates through brands such as Chooks-to-Go, Uling Roaster, and Reyal. Competitors like Andok’s and Baliwag Lechon Manok also share the market. A staggering 90% of these businesses use traditional glass-type roasting furnaces fueled by wood charcoal, leading to significant energy loss and inefficiency due to suboptimal heat conservation. Only a mere 10% employ electric ovens. Many available furnaces, typically constructed from industrial materials through welding and other metal joining techniques, are not energy-efficient. Cost-prohibitive commercial options compel some micro-enterprises to fabricate their furnaces. The study proposed developing an eco-friendly, cost-effective roasting furnace with excellent heat retention. The distinct design aimed to reduce cooks' heat exposure and overall fuel consumption. The furnace features an angle bar frame, a combustion chute for fuel burning, a heat-retaining clay-walled chamber, and a top cover, all contributing to improved energy savings and user safety.

Keywords: biomass roasting furnace, heat storage, combustion chute, start-up roasting business

Procedia PDF Downloads 53
360 Multi-Temporal Remote Sensing of landscape Dynamics and Pattern Changes in Dire District, Southern Oromia, Ethiopia

Authors: K. Berhanu

Abstract:

Improper land use results in land degradation and decline in agricultural productivity. Hence, in order to get maximum benefits out of land, proper utilization of its resources is inevitable. The present study was aimed at identifying the landcover changes in the study area in the last 25 years and determines the extent and direction of change that has occurred. The study made use of Landsat TM 1986 and 2011 Remote Sensing Satellite Image for analysis to determine the extent and pattern of rangeland change. The results of the landuse/landcover change detection showed that in the last 25 years, 3 major changes were observed, grassland and open shrub-land resource significantly decreased at a rate of 17.1km2/year and 12 km2/year/, respectively. On the other hand in 25 years dense bushland, open bush land, dense shrubland and cultivated land has shown increment in size at a rate of 0.23km2/year,13.5 km2/year, 6.3 km2/year and 0.2 km2/year, respectively within 25 years. The expansion of unpalatable woody species significantly reduced the rangeland size and availability of grasses. The consequence of the decrease in herbaceous biomass production might result in high risk of food insecurity in the area unless proper interventions are made in time.

Keywords: GIS and remote sensing, Dire District, land use/land cover, land sat TM

Procedia PDF Downloads 299
359 Settings of Conditions Leading to Reproducible and Robust Biofilm Formation in vitro in Evaluation of Drug Activity against Staphylococcal Biofilms

Authors: Adela Diepoltova, Klara Konecna, Ondrej Jandourek, Petr Nachtigal

Abstract:

A loss of control over antibiotic-resistant pathogens has become a global issue due to severe and often untreatable infections. This state is reflected in complicated treatment, health costs, and higher mortality. All these factors emphasize the urgent need for the discovery and development of new anti-infectives. One of the most common pathogens mentioned in the phenomenon of antibiotic resistance are bacteria of the genus Staphylococcus. These bacterial agents have developed several mechanisms against the effect of antibiotics. One of them is biofilm formation. In staphylococci, biofilms are associated with infections such as endocarditis, osteomyelitis, catheter-related bloodstream infections, etc. To author's best knowledge, no validated and standardized methodology evaluating candidate compound activity against staphylococcal biofilms exists. However, a variety of protocols for in vitro drug activity testing has been suggested, yet there are often fundamental differences. Based on our experience, a key methodological step that leads to credible results is to form a robust biofilm with appropriate attributes such as firm adherence to the substrate, a complex arrangement in layers, and the presence of extracellular polysaccharide matrix. At first, for the purpose of drug antibiofilm activity evaluation, the focus was put on various conditions (supplementation of cultivation media by human plasma/fetal bovine serum, shaking mode, the density of initial inoculum) that should lead to reproducible and robust in vitro staphylococcal biofilm formation in microtiter plate model. Three model staphylococcal reference strains were included in the study: Staphylococcus aureus (ATCC 29213), methicillin-resistant Staphylococcus aureus (ATCC 43300), and Staphylococcus epidermidis (ATCC 35983). The total biofilm biomass was quantified using the Christensen method with crystal violet, and results obtained from at least three independent experiments were statistically processed. Attention was also paid to the viability of the biofilm-forming staphylococcal cells and the presence of extracellular polysaccharide matrix. The conditions that led to robust biofilm biomass formation with attributes for biofilms mentioned above were then applied by introducing an alternative method analogous to the commercially available test system, the Calgary Biofilm Device. In this test system, biofilms are formed on pegs that are incorporated into the lid of the microtiter plate. This system provides several advantages (in situ detection and quantification of biofilm microbial cells that have retained their viability after drug exposure). Based on our preliminary studies, it was found that the attention to the peg surface and substrate on which the bacterial biofilms are formed should also be paid to. Therefore, further steps leading to the optimization were introduced. The surface of pegs was coated by human plasma, fetal bovine serum, and L-polylysine. Subsequently, the willingness of bacteria to adhere and form biofilm was monitored. In conclusion, suitable conditions were revealed, leading to the formation of reproducible, robust staphylococcal biofilms in vitro for the microtiter model and the system analogous to the Calgary biofilm device, as well. The robustness and typical slime texture could be detected visually. Likewise, an analysis by confocal laser scanning microscopy revealed a complex three-dimensional arrangement of biofilm forming organisms surrounded by an extracellular polysaccharide matrix.

Keywords: anti-biofilm drug activity screening, in vitro biofilm formation, microtiter plate model, the Calgary biofilm device, staphylococcal infections, substrate modification, surface coating

Procedia PDF Downloads 155
358 Investigation of Genetic Variation for Agronomic Traits among the Recombinant Inbred Lines of Wheat from the Norstar × Zagross Cross under Water Stress Condition

Authors: Mohammad Reza Farzami Pour

Abstract:

Determination of genetic variation is useful for plant breeding and hence production of more efficient plant species under different conditions, like drought stress. In this study, a sample of 28 recombinant inbred lines (RILs) of wheat developed from the cross of Norstar and Zagross varieties, together with their parents, were evaluated for two years (2010-2012) under normal and water stress conditions using split plot design with three replications. Main plots included two irrigation treatments of 70 and 140 mm evaporation from Class A pan and sub-plots consisted of 30 genotypes. The effect of genotypes and interaction of genotypes with years and water regimes were significant for all characters. Significant genotypic effect implies the existence of genetic variation among the lines under study. Heritability estimates were high for 1000 grain weight (0.87). Biomass and grain yield showed the lowest heritability values (0.42 and 0.50, respectively). Highest genotypic and phenotypic coefficients of variation (GCV and PCV) belonged to harvest index. Moderate genetic advance for most of the traits suggested the feasibility of selection among the RILs under investigation. Some RILs were higher yielding than either parent at both environments.

Keywords: wheat, genetic gain, heritability, recombinant inbred lines

Procedia PDF Downloads 318
357 Characterization of the Corn Cob to Know Its Potential as a Source of Biosilica to Be Used in Sustainable Cementitious Mixtures

Authors: Sandra C. L. Dorea, Joann K. Whalen, Yixin Shao, Oumarou Savadogo

Abstract:

The major challenge for industries that rely on fossil fuels in manufacturing processes or to provide goods and services is to lower their CO2 emissions, as the case for the manufacture of Portland cement. Feasible materials for this purpose can include agro-industrial or agricultural wastes, which are termed 'biosilica' since the silica was contained in a biological matrix (biomass). Corn cob (CC) has some characteristics that make it a good candidate as biosilica source: 1) it is an abundant grain crop produced around the world; 2) more production means more available residues is left in the field to be used. This work aims to evaluate the CC collected from different farms in Canada during the corn harvest in order to see if they can be used together as a biosilica source. The characterization of the raw CC was made in the physical, chemical, and thermal way. The moisture content, the granulometry, and the morphology were also analyzed. The ash content measured was 2,1%. The Thermogravimetric Analysis (TGA) and its Derivative (DTG) evaluated of CC as a function of weight loss with temperature variation ranging between 30°C and 800°C in an atmosphere of N2. The chemical composition and the presence of silica revealed that the different sources of the CC do not interfere in its basic chemical composition, which means that this kind of waste can be used together as a source of biosilica no matter where they come from. Then, this biosilica can partially replace the cement Portland making sustainable cementitious mixtures and contributing to reduce the CO2 emissions.

Keywords: biosilica, characterization, corn cob, sustainable cementitious materials

Procedia PDF Downloads 262
356 An Examination of Changes on Natural Vegetation due to Charcoal Production Using Multi Temporal Land SAT Data

Authors: T. Garba, Y. Y. Babanyara, M. Isah, A. K. Muktari, R. Y. Abdullahi

Abstract:

The increased in demand of fuel wood for heating, cooking and sometimes bakery has continued to exert appreciable impact on natural vegetation. This study focus on the use of multi-temporal data from land sat TM of 1986, land sat EMT of 1999 and lands sat ETM of 2006 to investigate the changes of Natural Vegetation resulting from charcoal production activities. The three images were classified based on bare soil, built up areas, cultivated land, and natural vegetation, Rock out crop and water bodies. From the classified images Land sat TM of 1986 it shows natural vegetation of the study area to be 308,941.48 hectares equivalent to 50% of the area it then reduces to 278,061.21 which is 42.92% in 1999 it again depreciated to 199,647.81 in 2006 equivalent to 30.83% of the area. Consequently cultivated continue increasing from 259,346.80 hectares (42%) in 1986 to 312,966.27 hectares (48.3%) in 1999 and then to 341.719.92 hectares (52.78%). These show that within the span of 20 years (1986 to 2006) the natural vegetation is depreciated by 119,293.81 hectares. This implies that if the menace is not control the natural might likely be lost in another twenty years. This is because forest cleared for charcoal production is normally converted to farmland. The study therefore concluded that there is the need for alternatives source of domestic energy such as the use of biomass which can easily be accessible and affordable to people. In addition, the study recommended that there should be strong policies enforcement for the protection forest reserved.

Keywords: charcoal, classification, data, images, land use, natural vegetation

Procedia PDF Downloads 365
355 Is there Anything Useful in That? High Value Product Extraction from Artemisia annua L. in the Spent Leaf and Waste Streams

Authors: Anike Akinrinlade

Abstract:

The world population is estimated to grow from 7.1 billion to 9.22 billion by 2075, increasing therefore by 23% from the current global population. Much of the demographic changes up to 2075 will take place in the less developed regions. There are currently 54 countries which fall under the bracket of being defined as having ‘low-middle income’ economies and need new ways to generate valuable products from current resources that is available. Artemisia annua L is well used for the extraction of the phytochemical artemisinin, which accounts for around 0.01 to 1.4 % dry weight of the plant. Artemisinin is used in the treatment of malaria, a disease rampart in sub-Saharan Africa and in many other countries. Once artemisinin has been extracted the spent leaf and waste streams are disposed of as waste. A feasibility study was carried out looking at increasing the biomass value of A. annua, by designing a biorefinery where spent leaf and waste streams are utilized for high product generation. Quercetin, ferulic acid, dihydroartemisinic acid, artemisinic acid and artemsinin were screened for in the waste stream samples and the spent leaf. The analytical results showed that artemisinin, artemisinic acid and dihydroartemisinic acid were present in the waste extracts as well as camphor and arteannuin b. Ongoing effects are looking at using more industrially relevant solvents to extract the phytochemicals from the waste fractions and investigate how microwave pyrolysis of spent leaf can be utilized to generate bio-products.

Keywords: high value product generation, bioinformatics, biomedicine, waste streams, spent leaf

Procedia PDF Downloads 349
354 Phytoplankton Community and Saprobic Pollution Index of Warm Water Fishes Ponds at East of Golestan Province: Case Study: Gonbade Kavous City

Authors: Mehrdad Kamali-Sanzighi, Maziar Kamali-Sanzighi

Abstract:

The aim of this investigation is to study the phytoplankton and saprobic index at warm water fish ponds in the East of Golestan province, Gonbade Kavous city. Phytoplankton and ciliate sampling were done monthly during one season of culture. Finally, 39 genera from 7 classes of phytoplankton and 4 genera from the ciliate group were identified. Although, among different classes, Chlorophyceae, Cyanophyceae, Bacillariophyceae, Charophyceae, Chrysophyceae, Dinophyceae, and Euglenophyceae had the highest and lowest frequency percent of phytoplankton community with 23, 21, 20, 14, 11, 6 and 5 percent respectively. The results show that there are no significant differences between the saprobic index of different ponds (P > 0.05). But there are significant differences between the saprobic index value of different months and seasons during season culture (P < 0.05). Also, in current research, the saprobic index indicated the ß-mesosaprob water quality level. There was a general tends of decrease in the saprobic index value from the beginning to the end of the culture season. Parameters such as biomass increase of grower fishes, an increase of introduced chemical fertilizer and manure sedimentation, uneaten fish feed, fish fecal, and no regular exchangeable water resources are some of these changes' reasons.

Keywords: fish pond, Golestan Province, saprobi index, phytoplankton, water quality

Procedia PDF Downloads 140
353 Determination of Polycyclic Aromatic Hydrocarbons in Rivers, Sediments and Wastewater Effluents in Vhembe District of South Africa Using GC-TOF-MS

Authors: Joshua N. Edokpayi, John O. Odiyo, Titus A. M. Msagati, Elizabeth O. Popoola

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are very toxic and persistent environmental contaminants. This study was undertaken to assess the concentrations and possible sources of 16 PAHs classified by the United State Environmental Protection Agency as priority pollutants in Mvudi and Nzhelele Rivers and sediments. Effluents from Thohoyandou wastewater treatment plant and Siloam waste stabilization ponds were also investigated. Diagnostic ratios were used to evaluate the possible sources of PAHs. PAHs in the water samples were extracted using 1:1 dichloromethane and n-hexane mixtures, while those in the sediment samples were extracted with 1:1 acetone and dichloromethane using ultrasonication method. The extracts were purified using SPE technique and reconstituted in n-hexane before analyses with GC-TOF-MS. The results obtained indicate the prevalence of high molecular weight PAHs in all the samples. PAHs concentrations in water and sediment samples from all the sampling sites were in the range of 13.174-26.382 mg/L and 27.10-55.93 mg/kg, respectively. Combustion of biomass was identified as the major possible source of PAHs. Effluents from wastewater treatment facilities were also considered as major anthropogenic contributions to the levels of PAHs determined in both river waters and sediments. Mvudi and Nzhelele Rivers show moderate to high contamination level of PAHs.

Keywords: polycyclic aromatic hydrocarbon, rivers, sediments, wastewater effluents

Procedia PDF Downloads 333
352 Improving Fluid Catalytic Cracking Unit Performance through Low Cost Debottlenecking

Authors: Saidulu Gadari, Manoj Kumar Yadav, V. K. Satheesh, Debasis Bhattacharyya, S. S. V. Ramakumar, Subhajit Sarkar

Abstract:

Most Fluid Catalytic Cracking Units (FCCUs) are big profit makers and hence, always operated with several constraints. It is the primary source for production of gasoline, light olefins as petrochemical feedstocks, feedstock for alkylate & oxygenates, LPG, etc. in a refinery. Increasing unit capacity and improving product yields as well as qualities such as gasoline RON have dramatic impact on the refinery economics. FCCUs are often debottlenecked significantly beyond their original design capacities. Depending upon the unit configuration, operating conditions, and feedstock quality, the FCC unit can have a variety of bottlenecks. While some of these are aimed to increase the feed rate, improve the conversion, etc., the others are aimed to improve the reliability of the equipment or overall unit. Apart from investment cost, the other factors considered generally while evaluating the debottlenecking options are shutdown days, faster payback, risk on investment, etc. A low-cost solution such as replacement of feed injectors, air distributor, steam distributors, spent catalyst distributor, efficient cyclone system, etc. are the preferred way of upgrading FCCU. It also has lower lead time from idea inception to implementation. This paper discusses various bottlenecks generally encountered in FCCU and presents a case study on improvement of performance of one of the FCCUs in IndianOil through implementation of cost-effective technical solution including use of improved internals in Reactor-Regeneration (R-R) section. After implementation reduction in regenerator air, gas superficial velocity in regenerator and cyclone velocities by about 10% and improvement of CLO yield from 10 to 6 wt% have been achieved. By ensuring proper pressure balance and optimum immersion of cyclone dipleg in the standpipe, frequent formation of perforations in regenerator cyclones could be addressed which in turn improved the unit on-stream factor.

Keywords: FCC, low-cost, revamp, debottleneck, internals, distributors, cyclone, dipleg

Procedia PDF Downloads 215
351 Achieving High Renewable Energy Penetration in Western Australia Using Data Digitisation and Machine Learning

Authors: A. D. Tayal

Abstract:

The energy industry is undergoing significant disruption. This research outlines that, whilst challenging; this disruption is also an emerging opportunity for electricity utilities. One such opportunity is leveraging the developments in data analytics and machine learning. As the uptake of renewable energy technologies and complimentary control systems increases, electricity grids will likely transform towards dense microgrids with high penetration of renewable generation sources, rich in network and customer data, and linked through intelligent, wireless communications. Data digitisation and analytics have already impacted numerous industries, and its influence on the energy sector is growing, as computational capabilities increase to manage big data, and as machines develop algorithms to solve the energy challenges of the future. The objective of this paper is to address how far the uptake of renewable technologies can go given the constraints of existing grid infrastructure and provides a qualitative assessment of how higher levels of renewable energy penetration can be facilitated by incorporating even broader technological advances in the fields of data analytics and machine learning. Western Australia is used as a contextualised case study, given its abundance and diverse renewable resources (solar, wind, biomass, and wave) and isolated networks, making a high penetration of renewables a feasible target for policy makers over coming decades.

Keywords: data, innovation, renewable, solar

Procedia PDF Downloads 364
350 Development of a Robot Assisted Centrifugal Casting Machine for Manufacturing Multi-Layer Journal Bearing and High-Tech Machine Components

Authors: Mohammad Syed Ali Molla, Mohammed Azim, Mohammad Esharuzzaman

Abstract:

Centrifugal-casting machine is used in manufacturing special machine components like multi-layer journal bearing used in all internal combustion engine, steam, gas turbine and air craft turboengine where isotropic properties and high precisions are desired. Moreover, this machine can be used in manufacturing thin wall hightech machine components like cylinder liners and piston rings of IC engine and other machine parts like sleeves, and bushes. Heavy-duty machine component like railway wheel can also be prepared by centrifugal casting. A lot of technological developments are required in casting process for production of good casted machine body and machine parts. Usually defects like blowholes, surface roughness, chilled surface etc. are found in sand casted machine parts. But these can be removed by centrifugal casting machine using rotating metallic die. Moreover, die rotation, its temperature control, and good pouring practice can contribute to the quality of casting because of the fact that the soundness of a casting in large part depends upon how the metal enters into the mold or dies and solidifies. Poor pouring practice leads to variety of casting defects such as temperature loss, low quality casting, excessive turbulence, over pouring etc. Besides these, handling of molten metal is very unsecured and dangerous for the workers. In order to get rid of all these problems, the need of an automatic pouring device arises. In this research work, a robot assisted pouring device and a centrifugal casting machine are designed, developed constructed and tested experimentally which are found to work satisfactorily. The robot assisted pouring device is further modified and developed for using it in actual metal casting process. Lot of settings and tests are required to control the system and ultimately it can be used in automation of centrifugal casting machine to produce high-tech machine parts with desired precision.

Keywords: bearing, centrifugal casting, cylinder liners, robot

Procedia PDF Downloads 414
349 Formation of Mg-Silicate Scales and Inhibition of Their Scale Formation at Injection Wells in Geothermal Power Plant

Authors: Samuel Abebe Ebebo

Abstract:

Scale precipitation causes a major issue for geothermal power plants because it reduces the production rate of geothermal energy. Each geothermal power plant's different chemical and physical conditions can cause the scale to precipitate under a particular set of fluid-rock interactions. Depending on the mineral, it is possible to have scale in the production well, steam separators, heat exchangers, reinjection wells, and everywhere in between. The scale consists mainly of smectite and trace amounts of chlorite, magnetite, quartz, hematite, dolomite, aragonite, and amorphous silica. The smectite scale is one of the difficult scales at injection wells in geothermal power plants. X-ray diffraction and chemical composition identify this smectite as Stevensite. The characteristics and the scale of each injection well line are different depending on the fluid chemistry. The smectite scale has been widely distributed in pipelines and surface plants. Mineral water equilibrium showed that the main factors controlling the saturation indices of smectite increased pH and dissolved Mg concentration due to the precipitate on the equipment surface. This study aims to characterize the scales and geothermal fluids collected from the Onuma geothermal power plant in Akita Prefecture, Japan. Field tests were conducted on October 30–November 3, 2021, at Onuma to determine the pH control methods for preventing magnesium silicate scaling, and as exemplified, the formation of magnesium silicate hydrates (M-S-H) with MgO to SiO2 ratios of 1.0 and pH values of 10 for one day has been studied at 25 °C. As a result, M-S-H scale formation could be suppressed, and stevensite formation could also be suppressed when we can decrease the pH of the fluid by less than 8.1, 7.4, and 8 (at 97 °C) in the fluid from O-3Rb and O-6Rb, O-10Rg, and O-12R, respectively. In this context, the scales and fluids collected from injection wells at a geothermal power plant in Japan were analyzed and characterized to understand the formation conditions of Mg-silicate scales with on-site synthesis experiments. From the results of the characterizations and on-site synthesis experiments, the inhibition method of their scale formation is discussed based on geochemical modeling in this study.

Keywords: magnesium silicate, scaling, inhibitor, geothermal power plant

Procedia PDF Downloads 66
348 Sugarcane Bagasse Ash Geopolymer Mixtures: A Step Towards Sustainable Materials

Authors: Mohammad J. Khattak, Atif Khan, Thomas C. Pesacreta

Abstract:

Millions of tons of sugarcane bagasse ash (SBA) are produced as a byproduct by burning sugarcane bagasse in powerplants to run the steam engines for sugar production. This bagasse ash is disposed into landfills effecting their overall capacity. SBA contains very fine particles that can easily become airborne, causing serious respiratory health risks when inhaled. This research study evaluated the utilization of high dosage of SBA for developing geopolymer based “Green” construction materials. An experimental design matrix was developed with varying dosages of SBA (0, 20%, 60%, and 80%) and Na₂SiO3/NaOH ratio (0, 0.5, 1, 1.5, 2) based on the response surface methodology. Precursor (consisting of SBA and fly ash) to aggregate ration was kept constant at 30:70 and the alkali to binder ratio was maintained at 0.45 for all the mixtures. Geopolymer samples of size 50.8 x 50.8 mm (2” X 2”) were casted and cured at 65oC for 48 hours in a water bath followed by curing at room temperature for 24 hours. The samples were then tested for compressive strength as per ASTM C39. The results revealed that based on varying SBA dosage the compressive strengths ranged from 6.78 MPa to 22.63 MPa. Moreover, the effect of SiO2, Na₂O and Fe₂O₃ on the compressive strength of these mixtures was also evaluated. The results depicted that the compressive strength increased with increasing Na₂O and Fe₂O₃ concentration in the binder. It was also observed that the compressive strength of SBA based geopolymer mixtures improved as the SiO₂ content increased, reaching an optimum at 42%. However, further increase in SiO₂ reduced the strength of the mixtures. The resulting geopolymer mixtures possess compressive strengths according to the requirements set by ASTM standard. Such mixtures can be used as a structural and non-structural element as strong road bases, sidewalks, curbs, bricks for buildings and highway infrastructure. Using industrial SBA in geopolymer based construction materials can address the carbon emissions related to cement production, reduce landfill burden from SBA storage, and mitigate health risks associated with high content of silica in SBA.

Keywords: compressive strength, geopolymer concrete, green materials, sugarcane bagasse ash

Procedia PDF Downloads 10
347 Quality Assessment of the Essential Oil from Eucalyptus globulus Labill of Blida (Algeria) Origin

Authors: M. A. Ferhat, M. N. Boukhatem, F. Chemat

Abstract:

Eucalyptus essential oil is extracted from Eucalyptus globulus of the Myrtaceae family and is also known as Tasmanian blue gum or blue gum. Despite the reputation earned by aromatic and medicinal plants of Algeria. The objectives of this study were: (i) the extraction of the essential oil from the leaves of Eucalyptus globulus Labill., Myrtaceae grown in Algeria, and the quantification of the yield thereof, (ii) the identification and quantification of the compounds in the essential oil obtained, and (iii) the determination of physical and chemical properties of EGEO. The chemical constituents of Eucalyptus globulus essential oil (EGEO) of Blida origin has not previously been investigated. Thus, the present study has been conducted for the determination of chemical constituents and different physico-chemical properties of the EGEO. Chemical composition of the EGEO, grown in Algeria, was analysed by Gas Chromatography-Mass Spectrometry. The chemical components were identified on the basis of Retention Time and comparing with mass spectral database of standard compounds. Relative amounts of detected compounds were calculated on the basis of GC peak areas. Fresh leaves of E. globulus on steam distillation yielded 0.96% (v/w) of essential oil whereas the analysis resulted in the identification of a total of 11 constituents, 1.8 cineole (85.8%), α-pinene (7.2%), and β-myrcene (1.5%) being the main components. Other notable compounds identified in the oil were β-pinene, limonene, α-phellandrene, γ-terpinene, linalool, pinocarveol, terpinen-4-ol, and α-terpineol. The physical properties such as specific gravity, refractive index and optical rotation and the chemical properties such as saponification value, acid number and iodine number of the EGEO were examined. The oil extracted has been analyzed to have 1.4602-1.4623 refractive index value, 0.918-0.919 specific gravity (sp.gr.), +9 - +10 optical rotation that satisfy the standards stipulated by European Pharmacopeia. All the physical and chemical parameters were in the range indicated by the ISO standards. Our findings will help to access the quality of the Eucalyptus oil which is important in the production of high value essential oils that will help to improve the economic condition of the community as well as the nation.

Keywords: chemical composition, essential oil, eucalyptol, gas chromatography

Procedia PDF Downloads 327
346 Influence of Culture Conditions on the Growth and Fatty Acid Composition of Green Microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa

Authors: Tatyana A. Karpenyuk, Saltanat B. Orazova, Yana S. Tzurkan, Alla V. Goncharova, Bakytzhan K. Kairat, Togzhan D. Mukasheva, Ludmila V. Ignatova, Ramza Z. Berzhanova

Abstract:

Microalgae due to the ability to accumulate high levels of practically valuable polyunsaturated fatty acids attract attention as a promising raw material for commercial products. It were defined the features of the growth processes of cells green protococcal microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa at cultivation in different nutritional mediums. For the rapid accumulation of biomass, combined with high productivity of total lipids fraction yield recommended to use the Fitzgerald medium (Scenodesmus obliquus, Oocystis rhomboideus) and/or Bold medium (Dictyochlorella globosa). Productivity of lipids decreased in sequence Dictyochlorella globosa > Scenodesmus obliquus > Oocystis rhomboideus. The bulk of fatty acids fraction of the total lipids is unsaturated fatty acids, which accounts for 70 to 83% of the total number of fatty acids. The share of monoenic acids varies from 16 to 36 %, the share of unsaturated fatty acids - from 44 to 65% of total fatty acids fraction. Among the unsaturated acids dominate α-linolenic acid (C18:3n-3), hexadecatetraenic acid (C16:4) and linoleic acid (C18:2).

Keywords: microalgae, lipids, fatty acids, culture conditions

Procedia PDF Downloads 451
345 Contribution of the Cogeneration Systems to Environment and Sustainability

Authors: Kemal Çomakli, Uğur Çakir, Ayşegül Çokgez Kuş, Erol Şahin

Abstract:

Kind of energy that buildings need changes in various types, like heating energy, cooling energy, electrical energy and thermal energy for hot top water. Usually the processes or systems produce thermal energy causes emitting pollutant emissions while they produce heat because of fossil fuels they use. A lower consumption of thermal energy will contribute not only to a reduction in the running costs, but also in the reduction of pollutant emissions that contribute to the greenhouse effect and a lesser dependence of the hospital on the external power supply. Cogeneration or CHP (Combined heat and Power) is the system that produces power and usable heat simultaneously. Combined production of mechanical or electrical and thermal energy using a simple energy source, such as oil, coal, natural or liquefied gas, biomass or the sun; affords remarkable energy savings and frequently makes it possible to operate with greater efficiency when compared to a system producing heat and power separately. Because of the life standard of humanity in new age, energy sources must be continually and best qualified. For this reason the installation of a system for the simultaneous generation of electrical, heating and cooling energy would be one of the best solutions if we want to have qualified energy and reduce investment and operating costs and meet ecological requirements. This study aims to bring out the contributions of cogeneration systems to the environment and sustainability by saving the energy and reducing the emissions.

Keywords: sustainability, cogeneration systems, energy economy, energy saving

Procedia PDF Downloads 517
344 Sustainability of Environment and Green Energy Strategies Comprehensive Analysis

Authors: Vahid Pirooznia

Abstract:

In this think about we propose a few green vitality procedures for feasible advancement. In this respect, seven green energy methodologies are taken into thought to decide the sectoral, innovative, and application affect proportions. Based on these proportions, we determine a modern parameter as the green energy affect proportion. In expansion, the green energy-based supportability proportion is gotten by depending upon the green energy affect proportion, and the green energy utilization proportion that's calculated utilizing real vitality information taken from literature. In arrange to confirm these parameters, three cases are considered. Subsequently, it can be considered that the sectoral affect proportion is more imperative and ought to be kept consistent as much as conceivable in a green vitality arrangement usage. In addition, the green energy-based supportability proportion increments with an increment of mechanical, sectoral, and application affect proportions. This implies that all negative impacts on the mechanical, innovative, sectoral and social improvements mostly and/or totally diminish all through the move and utilization to and of green energy and advances when conceivable feasible sustainable economic feasible maintainable energy techniques are favored and connected. Hence, the economical energy methodologies can make an imperative commitment to the economies of the nations where green energy (e.g., wind, sun based, tidal, biomass) is inexhaustibly created. Hence, the speculation in green energy supply and advance ought to be energized by governments and other specialists for a green energy substitution of fossil powers for more ecologically generous and feasible future.

Keywords: green energy, environment, sustainable, development

Procedia PDF Downloads 73
343 Enhancement in Digester Efficiency and Numerical Analysis for Optimal Design Parameters of Biogas Plant Using Design of Experiment Approach

Authors: Rajneesh, Priyanka Singh

Abstract:

Biomass resources have been one of the main energy sources for mankind since the dawn of civilization. There is a vast scope to convert these energy sources into biogas which is a clean, low carbon technology for efficient management and conversion of fermentable organic wastes into a cheap and versatile fuel and bio/organic manure. Thus, in order to enhance the performance of anaerobic digester, an optimizing analysis of resultant parameters (organic dry matter (oDM) content, methane percentage, and biogas yield) has been done for a plug flow anaerobic digester having mesophilic conditions (20-40°C) with the wet fermentation process. Based on the analysis, correlations for oDM, methane percentage, and biogas yield are derived using multiple regression analysis. A statistical model is developed to correlate the operating variables using the design of experiment approach by selecting central composite design (CCD) of a response surface methodology. Results shown in the paper indicates that as the operating temperature increases the efficiency of digester gets improved provided that the pH and hydraulic retention time (HRT) remains constant. Working in an optimized range of carbon-nitrogen ratio for the plug flow digester, the output parameters show a positive change with the variation of dry matter content (DM).

Keywords: biogas, digester efficiency, design of experiment, plug flow digester

Procedia PDF Downloads 378
342 Fischer Tropsch Synthesis in Compressed Carbon Dioxide with Integrated Recycle

Authors: Kanchan Mondal, Adam Sims, Madhav Soti, Jitendra Gautam, David Carron

Abstract:

Fischer-Tropsch (FT) synthesis is a complex series of heterogeneous reactions between CO and H2 molecules (present in the syngas) on the surface of an active catalyst (Co, Fe, Ru, Ni, etc.) to produce gaseous, liquid, and waxy hydrocarbons. This product is composed of paraffins, olefins, and oxygenated compounds. The key challenge in applying the Fischer-Tropsch process to produce transportation fuels is to make the capital and production costs economically feasible relative to the comparative cost of existing petroleum resources. To meet this challenge, it is imperative to enhance the CO conversion while maximizing carbon selectivity towards the desired liquid hydrocarbon ranges (i.e. reduction in CH4 and CO2 selectivities) at high throughputs. At the same time, it is equally essential to increase the catalyst robustness and longevity without sacrificing catalyst activity. This paper focuses on process development to achieve the above. The paper describes the influence of operating parameters on Fischer Tropsch synthesis (FTS) from coal derived syngas in supercritical carbon dioxide (ScCO2). In addition, the unreacted gas and solvent recycle was incorporated and the effect of unreacted feed recycle was evaluated. It was expected that with the recycle, the feed rate can be increased. The increase in conversion and liquid selectivity accompanied by the production of narrower carbon number distribution in the product suggest that higher flow rates can and should be used when incorporating exit gas recycle. It was observed that this process was capable of enhancing the hydrocarbon selectivity (nearly 98 % CO conversion), reducing improving the carbon efficiency from 17 % to 51 % in a once through process and further converting 16 % CO2 to liquid with integrated recycle of the product gas stream and increasing the life of the catalyst. Catalyst robustness enhancement has been attributed to the absorption of heat of reaction by the compressed CO2 which reduced the formation of hotspots and the dissolution of waxes by the CO2 solvent which reduced the blinding of active sites. In addition, the recycling the product gas stream reduced the reactor footprint to one-fourth of the once through size and product fractionation utilizing the solvent effects of supercritical CO2 were realized. In addition to the negative CO2 selectivities, methane production was also inhibited and was limited to less than 1.5%. The effect of the process conditions on the life of the catalysts will also be presented. Fe based catalysts are known to have a high proclivity for producing CO2 during FTS. The data of the product spectrum and selectivity on Co and Fe-Co based catalysts as well as those obtained from commercial sources will also be presented. The measurable decision criteria were the increase in CO conversion at H2:CO ratio of 1:1 (as commonly found in coal gasification product stream) in supercritical phase as compared to gas phase reaction, decrease in CO2 and CH4 selectivity, overall liquid product distribution, and finally an increase in the life of the catalysts.

Keywords: carbon efficiency, Fischer Tropsch synthesis, low GHG, pressure tunable fractionation

Procedia PDF Downloads 237
341 Analysis of Impact of Air Pollution over Megacity Delhi Due to Agricultural Biomass Burning in the Neighbouring States

Authors: Ankur P. Sati, Manju Mohan

Abstract:

The hazardous combination of smoke and pollutant gases, smog, is harmful for health. There are strong evidences that the Agricultural waste burning (AWB) in the Northern India leads to adverse air quality in Delhi and its surrounding regions. A severe smog episode was observed over Delhi, India during November 2012 which resulted in very low visibility and various respiratory problems. Very high values of pollutants (PM10 as high as 989 µg m-3, PM2.5 as high as 585 µg m-3 an NO2 as high as 540 µg m-3) were measured all over Delhi during the smog episode. Ultra Violet Aerosol Index (UVAI) from Aura satellite and Aerosol Optical Depth (AOD) are used in the present study along with the output trajectories from HYSPLIT model and the in-situ data. Satellite data also reveal that AOD, UVAI are always at its highest during the farmfires duration in Punjab region of India and the extent of these farmfires may be increasing. It is observed that during the smog episode all the AOD, UVAI, PM2.5 and PM10 values surpassed those of the Diwali period (one of the most polluted events in the city) by a considerable amount at all stations across Delhi. The parameters used from the remote sensing data and the ground based observations at various stations across Delhi are very well in agreement about the intensity of Smog episode. The analysis clearly shows that regional pollution can have greater contributions in deteriorating the air quality than the local under adverse meteorological conditions.

Keywords: smog, farmfires, AOD, remote sensing

Procedia PDF Downloads 245
340 A Feasibility Study of Producing Biofuels from Textile Sludge by Torrefaction Technology

Authors: Hua-Shan Tai, Yu-Ting Zeng

Abstract:

In modern and industrial society, enormous amounts of sludge from various of industries are constantly produced; currently, most of the sludge are treated by landfill and incineration. However, both treatments are not ideal because of the limited land for landfill and the secondary pollution caused by incineration. Consequently, treating industrial sludge appropriately has become an urgent issue of environmental protection. In order to solve the problem of the massive sludge, this study uses textile sludge which is the major source of waste sludge in Taiwan as raw material for torrefaction treatments. To investigate the feasibility of producing biofuels from textile sludge by torrefaction, the experiments were conducted with temperatures at 150, 200, 250, 300, and 350°C, with heating rates of 15, 20, 25 and 30°C/min, and with residence time of 30 and 60 minutes. The results revealed that the mass yields after torrefaction were approximately in the range of 54.9 to 93.4%. The energy densification ratios were approximately in the range of 0.84 to 1.10, and the energy yields were approximately in the range of 45.9 to 98.3%. The volumetric densities were approximately in the range of 0.78 to 1.14, and the volumetric energy densities were approximately in the range of 0.65 to 1.18. To sum up, the optimum energy yield (98.3%) can be reached with terminal temperature at 150 °C, heating rate of 20°C/min, and residence time of 30 minutes, and the mass yield, energy densification ratio as well as volumetric energy density were 92.2%, 1.07, and 1.15, respectively. These results indicated that the solid products after torrefaction are easy to preserve, which not only enhance the quality of the product, but also achieve the purpose of developing the material into fuel.

Keywords: biofuel, biomass energy, textile sludge, torrefaction

Procedia PDF Downloads 321
339 Impact of Nano-Anatase TiO₂ on the Germination Indices and Seedling Growth of Some Plant Species

Authors: Rayhaneh Amooaghaie, Maryam Norouzi

Abstract:

In this study, the effects of nTiO₂ on seed germination and growth of six plant species (wheat, soybean, tomato, canola, cucumber, and lettuce) were evaluated in petri dish (direct exposure) and in soil in a greenhouse experiment (soil exposure). Data demonstrate that under both culture conditions, low or mild concentrations of nTiO₂ either stimulated or had no effect on seed germination, root growth and vegetative biomass while high concentrations had an inhibitory effect. However, results showed that the impacts of nTiO₂ on plant growth in soil were partially consistent with those observed in pure culture. Based on both experiment sets, among above six species, lettuce and canola were the most susceptible and the most tolerant species to nTiO₂ toxicity. However, results revealed the impacts of nTiO₂ on plant growth in soil were less than petri dish exposure probability due to dilution in soil and complexation/aggregation of nTiO₂ that would lead to lower exposure of plants. The high concentrations of nTiO₂ caused significant reductions in fresh and dry weight of aerial parts and root and chlorophyll and carotenoids contents of all species which also coincided with further accumulation of malondialdehyde (MDA). These findings suggest that decreasing growth might be the result of an nTiO₂-induced oxidative stress and disturbance of photosynthesis systems.

Keywords: chlorophyll, lipid peroxidation, nano TiO₂, seed germination

Procedia PDF Downloads 165
338 A Study of Chaos Control Schemes for Plankton-Fish Dynamics

Authors: Rajinder Pal Kaur, Amit Sharma, Anuj Kumar Sharma, Govind Prasad Sahu

Abstract:

The existence of chaos in the marine ecosystems may cause planktonic blooms, disease outbreaks, extinction of some plankton species, or some complex dynamics in oceans, which can adversely affect the sustainable marine ecosystem. The control of the chaotic plankton-fish dynamics is one of the main motives of marine ecologists. In this paper, we have studied the impact of phytoplankton refuge, zooplankton refuge, and fear effect on the chaotic plankton-fish dynamics incorporating phytoplankton, zooplankton, and fish biomass. The fear of fish predation transfers the unpredictable(chaotic) behavior of the plankton system to a stable orbit. The defense mechanism developed by prey species due to fear of the predator population can also terminate chaos from the given dynamics. Moreover, the impact of external disturbances like seasonality, noise, periodic fluctuations, and time delay on the given chaotic plankton system has also been discussed. We have applied feedback mechanisms to control the complexity of the system through the parameter noise. The non-feedback schemes are implemented to observe the role of seasonal force, periodic fluctuations, and time delay in suppressing the given chaotic system. Analytical results are substantiated by numerical simulation.

Keywords: plankton, chaos, noise, seasonality, fluctuations, fear effect, prey refuge

Procedia PDF Downloads 84
337 Rapid Start-Up and Efficient Long-Term Nitritation of Low Strength Ammonium Wastewater with a Sequencing Batch Reactor Containing Immobilized Cells

Authors: Hammad Khan, Wookeun Bae

Abstract:

Major concerns regarding nitritation of low-strength ammonium wastewaters include low ammonium loading rates (usually below 0.2 kg/m3-d) and uncertainty about long-term stability of the process. The purpose of this study was to test a sequencing batch reactor (SBR) filled with cell-immobilized polyethylene glycol (PEG) pellets to see if it could achieve efficient and stable nitritation under various environmental conditions. SBR was fed with synthetic ammonium wastewater of 30±2 mg-N/L and pH: 8±0.05, maintaining the dissolved oxygen concentration of 1.7±0.2 mg/L and the temperature at 30±1oC. The reaction was easily converted to partial nitrification mode within a month by feeding relatively high ammonium substrate (~100 mg-N/L) in the beginning. We observed stable nitritation over 300 days with high ammonium loading rates (as high as ~1.1 kg-N/m3-d), nitrite accumulation rates (mostly over 97%) and ammonium removal rate (mostly over 95%). DO was a major limiting substrate when the DO concentration was below ~4 mg/L and the NH4+-N concentration was above 5 mg/L, giving almost linear increase in the ammonium oxidation rate with the bulk DO increase. Low temperatures mainly affected the reaction rate, which could be compensated for by increasing the pellet volume (i.e. biomass). Our results demonstrated that an SBR filled with small cell-immobilized PEG pellets could achieve very efficient and stable nitritation of a low-strength ammonium wastewater.

Keywords: ammonium loading rate (ALR), cell-immobilization, long-term nitritation, sequencing batch reactor (SBR), sewage treatment

Procedia PDF Downloads 273
336 Enhancement in Antimicrobial and Antioxidant Activity of Cuminum cyminum L. through Niosome Nanocarries

Authors: Fatemeh Haghiralsadat, Mohadese Hashemi, Elham Akhoundi Kharanaghi, Mojgan Yazdani, Mahboobe Sharafodini, Omid Javani

Abstract:

Niosomes are colloidal particles formed from the self-assembly of non-ionic surfactants in aqueous medium resulting in closed bilayer structures. As a consequence of this hydrophilic and hydrophobic structure, niosomes have the capacity to entrap compounds of different solubilities. Niosomes are promising vehicle for drug delivery which protect sensitive drugs and improve the therapeutic index of drugs by restricting their action to target cells. Essential oils are complex mixtures of volatile compounds such as terpenoids, phenol-derived aromatic components that have been used for many biological properties including bactericidal, fungicidal, insecticidal, antioxidant, anti-tyrosinase and other medicinal properties. Encapsulation of essential oils in niosomes can be an attractive method to overcome their limitation such as volatility, easily decomposition by heat, humidity, light, or oxygen. Cuminum cyminum L. (Cumin) is an aromatic plant included in the Apiaceae family and is used to flavor foods, added to fragrances, and for medical preparations which is indigenous to Egypt, the Mediterranean region, Iran and India. The major components of the Cumin oil were reported as cuminaldehyde, γ -terpinene, β-pinene, p-cymene, p-mentha-1, 3-dien-7-al, and p-mentha-1, 4-dien-7-al which provide the antimicrobial and antioxidant activity. The aim of this work was to formulate Cumin essential oil-loaded niosomes to improve water solubility of natural product and evaluate its physico-chemical features and stability. Cumin oil was obtained through steam distillation using a clevenger-type apparatus and GC/MS was applied to identify the main components of the essential oil. Niosomes were prepared by using thin film hydration method and nanoparticles were characterized for particle size, dispersity index, zeta potential, encapsulation efficiency, in vitro release, and morphology.

Keywords: Cuminum cyminum L., Cumin, niosome, essential oil, encapsulation

Procedia PDF Downloads 515