Search results for: Representative Concentration Pathway (RCP)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6494

Search results for: Representative Concentration Pathway (RCP)

5504 Effect of Burdock Root Extract Concentration on Physiochemical Property of Coated Jasmine Rice by Using Top-Spay Fluidized Bed Coating Technique

Authors: Donludee Jaisut, Norihisa Kato, Thanutchaporn Kumrungsee, Kiyoshi Kawai, Somkiat Prachayawarakorn, Patchalee Tungtrakul

Abstract:

Jasmine Rice is a principle food of Thai people. However, glycemic index of jasmine rice is in high level, risk of type II diabetes after consuming. Burdock root is a good source of non-starch polysaccharides such as inulin. Inulin acts as prebiotic and helps reduce blood-sugar level. The purpose of this research was to reduce digestion rate of jasmine rice by coating burdock root extract on rice surface, using top-spay fluidized bed coating technique. Coating experiments were performed by spraying burdock root solution onto Jasmine rice kernels (Khao Dawk Mali-105; KDML), which had an initial moisture content of 11.6% wet basis, suspended in the fluidized bed. The experimental conditions were: solution spray rates of 31.7 mL/min, atomization pressure of 1.5 bar, spray time of 10 min, time of drying after spraying of 30 s, superficial air velocity of 3.2 m/s and drying temperatures of 60°C. The coated rice quality was evaluated in terms of the moisture content, texture, whiteness and digestion rate. The results showed that initial and final moisture contents of samples were the same in concentration 8% (v/v) and 10% (v/v). The texture was insignificantly changed from that of uncoated sample. The whiteness values were varied on concentration of burdock root extract. Coated samples were slower digested.

Keywords: burdock root, digestion, drying, rice

Procedia PDF Downloads 296
5503 Improving Enhanced Oil Recovery by Using Alkaline-Surfactant-Polymer Injection and Nanotechnology

Authors: Amir Gerayeli, Babak Moradi

Abstract:

The continuously declining oil reservoirs and reservoirs aging have created a huge demand for utilization of Enhanced Oil Recovery (EOR) methods recently. Primary and secondary oil recovery methods have various limitations and are not practical for all reservoirs. Therefore, it is necessary to use chemical methods to improve oil recovery efficiency by reducing oil and water surface tension, increasing sweeping efficiency, and reducing displacer phase viscosity. One of the well-known methods of oil recovery is Alkaline-Surfactant-Polymer (ASP) flooding that shown to have significant impact on enhancing oil recovery. As some of the biggest oil reservoirs including those of Iran’s are fractional reservoirs with substantial amount of trapped oil in their fractures, the use of Alkaline-Surfactant-Polymer (ASP) flooding method is increasingly growing, the method in which the impact of several parameters including type and concentration of the Alkaline, Surfactant, and polymer are particularly important. This study investigated the use of Nano particles to improve Enhanced Oil Recovery (EOR). The study methodology included performing several laboratory tests on drill cores extracted from Karanj Oil field Asmary Formation in Khuzestan, Iran. In the experiments performed, Sodium dodecyl benzenesulfonate (SDBS) and 1-dodecyl-3-methylimidazolium chloride ([C12mim] [Cl])) were used as surfactant, hydrolyzed polyacrylamide (HPAM) and guar gum were used as polymer, Sodium hydroxide (NaOH) as alkaline, and Silicon dioxide (SiO2) and Magnesium oxide (MgO) were used as Nano particles. The experiment findings suggest that water viscosity increased from 1 centipoise to 5 centipoise when hydrolyzed polyacrylamide (HPAM) and guar gum were used as polymer. The surface tension between oil and water was initially measured as 25.808 (mN/m). The optimum surfactant concentration was found to be 500 p, at which the oil and water tension surface was measured to be 2.90 (mN/m) when [C12mim] [Cl] was used, and 3.28 (mN/m) when SDBS was used. The Nano particles concentration ranged from 100 ppm to 1500 ppm in this study. The optimum Nano particle concentration was found to be 1000 ppm for MgO and 500 ppm for SiO2.

Keywords: alkaline-surfactant-polymer, ionic liquids, relative permeability, reduced surface tension, tertiary enhanced oil recovery, wettability change

Procedia PDF Downloads 157
5502 Analysis on Thermococcus achaeans with Frequent Pattern Mining

Authors: Jeongyeob Hong, Myeonghoon Park, Taeson Yoon

Abstract:

After the advent of Achaeans which utilize different metabolism pathway and contain conspicuously different cellular structure, they have been recognized as possible materials for developing quality of human beings. Among diverse Achaeans, in this paper, we compared 16s RNA Sequences of four different species of Thermococcus: Achaeans genus specialized in sulfur-dealing metabolism. Four Species, Barophilus, Kodakarensis, Hydrothermalis, and Onnurineus, live near the hydrothermal vent that emits extreme amount of sulfur and heat. By comparing ribosomal sequences of aforementioned four species, we found similarities in their sequences and expressed protein, enabling us to expect that certain ribosomal sequence or proteins are vital for their survival. Apriori algorithms and Decision Tree were used. for comparison.

Keywords: Achaeans, Thermococcus, apriori algorithm, decision tree

Procedia PDF Downloads 293
5501 Navigating Cyber Attacks with Quantum Computing: Leveraging Vulnerabilities and Forensics for Advanced Penetration Testing in Cybersecurity

Authors: Sayor Ajfar Aaron, Ashif Newaz, Sajjat Hossain Abir, Mushfiqur Rahman

Abstract:

This paper examines the transformative potential of quantum computing in the field of cybersecurity, with a focus on advanced penetration testing and forensics. It explores how quantum technologies can be leveraged to identify and exploit vulnerabilities more efficiently than traditional methods and how they can enhance the forensic analysis of cyber-attacks. Through theoretical analysis and practical simulations, this study highlights the enhanced capabilities of quantum algorithms in detecting and responding to sophisticated cyber threats, providing a pathway for developing more resilient cybersecurity infrastructures.

Keywords: cybersecurity, cyber forensics, penetration testing, quantum computing

Procedia PDF Downloads 76
5500 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification

Authors: Abdelhadi Lotfi, Abdelkader Benyettou

Abstract:

In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.

Keywords: classification, probabilistic neural networks, network optimization, pattern recognition

Procedia PDF Downloads 269
5499 Square Wave Anodic Stripping Voltammetry of Copper (II) at the Tetracarbonylmolybdenum(0) MWCNT Paste Electrode

Authors: Illyas Isa, Mohamad Idris Saidin, Mustaffa Ahmad, Norhayati Hashim

Abstract:

A highly selective and sensitive electrode for determination of trace amounts of Cu (II) using square wave anodic stripping voltammetry (SWASV) was proposed. The electrode was made of the paste of multiwall carbon nanotubes (MWCNT) and 2,6–diacetylpyridine-di-(1R)–(-)–fenchone diazine tetracarbonylmolybdenum(0) at 100:5 (w/w). Under optimal conditions the electrode showed a linear relationship with concentration in the range of 1.0 × 10–10 to 1.0 × 10– 6 M Cu (II) and limit of detection 8.0 × 10–11 M Cu (II). The relative standard deviation (n = 5) of response to 1.0 × 10–6 M Cu(II) was 0.036. The interferences of cations such as Ni(II), Mg(II), Cd(II), Co(II), Hg(II), and Zn(II) (in 10 and 100-folds concentration) are negligible except from Pb (II). Electrochemical impedance spectroscopy (EIS) showed that the charge transfer at the electrode-solution interface was favorable. Result of analysis of Cu(II) in several water samples agreed well with those obtained by inductively coupled plasma-optical emission spectrometry (ICP-OES). The proposed electrode was then recommended as an alternative to spectroscopic technique in analyzing Cu (II).

Keywords: chemically modified electrode, Cu(II), Square wave anodic stripping voltammetry, tetracarbonylmolybdenum(0)

Procedia PDF Downloads 266
5498 The Role of EDTA and EDDS in Reducing Metal Toxicity for Aquaculture Shellfish Perna canaliculus

Authors: Daniel R. McDougall, Martin D. de Jonge, Gordon M. Miskelly, Duncan J. McGillivray, Andrew G. Jeffs

Abstract:

The chelating agent ethylenediaminetetraacetic acid (EDTA) is commonly added as a cure-all to seawater in aquaculture hatcheries around the world to reduce heavy metal toxicity, significantly improve the survival of larval shellfish, and to therefore improve the overall production efficiency of the aquaculture industry. However, EDTA is not a biodegradable chemical and is considered to be a persistent organic pollutant, which will accumulate in the environment over time. This makes the use of EDTA unsustainable environmentally, and therefore alternatives should be considered. Ethylenediaminedisuccinic acid (EDDS) is a biodegradable alternative to EDTA with very similar metal chelation properties. This study investigates the effect of EDTA and EDDS at two different concentrations, on metal concentrations found within developing New Zealand green-lipped mussel (Perna canaliculus) larvae. P. canaliculus is New Zealand’s main shellfish aquaculture species, providing a major export for New Zealand’s economy, with excellent potential for increased production in the near future. It is well known that the early stages of bivalve development are the most vulnerable to metal toxicity and P. canaliculus is no exception. The commercially used concentration (12 µmol L⁻¹) of EDTA added to P. canaliculus larval rearing tanks often increases the yield of D-larvae by over 80%. This concentration of EDTA and EDDS will be tested in this study, along with a lower concentration (3 µmol L⁻¹). After 48 hours of larval development, the D-larvae will be analyzed for heavy metal content with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and heavy metal distribution with synchrotron X-ray Fluorescence Microscopy (XFM). In this study, we found that EDDS also improves the yield of P. canaliculus larvae and could be a viable alternative to EDTA in aquaculture. Furthermore, results suggest a higher concentration of chelating agent is more effective for improving the yield of developing P. canaliculus larvae. Metals with significant differences in concentration with the addition of EDTA were Cr, Cu, Zn, Cd and Pb (P < 0.05). We observed for the first time to the author’s best knowledge, metal distribution within 100 µm P. canaliculus D-larvae using synchrotron XFM and found changes in the distribution of metals with the addition of EDTA. XFM also has the potential to provide information about the chemical state of the metals within mussel larvae. This research provides greater insight into the reasons for the effectiveness of adding the chelating agent to aquaculture culture water, and a more environmentally conscious alternative to the currently used EDTA, which could be extremely valuable for the aquaculture industry.

Keywords: EDDS, EDTA, heavy metals, P. canaliculus, toxicity, water treatment

Procedia PDF Downloads 239
5497 Determining the Efficacy of Phenol, Sodium Hypochlorite and Ethanol for Inactivation of Carbapenem-Resistant Strain of Acinetobacter baumannii

Authors: Deepika Biswas

Abstract:

Acinetobacter baumannii, a hospital-acquired pathogen, causes nosocomial infections including pneumonia, urinary tract infection, and secondary meningitis. Carbapenem is most effective antibiotics against it. Its increased resistance to carbapenems has been a rising global concern. Antibiotics such as carbapenem are unable to use on hospital setups to eradicate A. baumannii, hence different concentrations of disinfectants including phenol; sodium hypochlorite and ethanol are increasingly being used. The objective of the present study is to find an effective concentration of above disinfectants against carbapenem-resistant strain RS307 of A. baumannii. Growth kinetics of RS307 has been determined using UV-Vis spectrophotometer in the presence and absence of disinfectants in triplicate and its standard deviation has also been calculated which make the results more reliable. Differential growth curves were plotted, which showed the effective concentration among all the concentrations of phenol, sodium hypochlorite and ethanol. On disc diffusion assay, antimicrobial effect was observed by comparing all the concentrations of disinfectants to check its synergy with imipenem, most effective carbapenem. All the results collectively revealed that 0.5% phenol, 0.5% sodium hypochlorite, and 70% ethanol could preferably be used as disinfectant for hospital setup against the carbapenem-resistant strain of A. baumannii. SDS PAGE analysis showed differential expression in the protein profile of A. baumannii after treatment. The present study highlighted that few disinfectants even in low concentration had shown better antimicrobial activity hence may be recommended for regular use in the hospitals, which will be cost effective and less harmful.

Keywords: Acenatobacter bomunii, phenol, sodium hypoclirite, ethanol, carbapenem resistance, disinfectant

Procedia PDF Downloads 261
5496 Extraction of Dyes Using an Aqueous Two-Phase System in Stratified and Slug Flow Regimes of a Microchannel

Authors: Garima, S. Pushpavanam

Abstract:

In this work, analysis of an Aqueous two-phase (polymer-salt) system for extraction of sunset yellow dye is carried out. A polymer-salt ATPS i.e.; Polyethylene glycol-600 and anhydrous sodium sulfate is used for the extraction. Conditions are chosen to ensure that the extraction results in a concentration of the dye in one of the phases. The dye has a propensity to come to the Polyethylene glycol-600 phase. This extracted sunset yellow dye is degraded photo catalytically into less harmful components. The cloud point method was used to obtain the binodal curve of ATPS. From the binodal curve, the composition of salt and Polyethylene glycol -600 was chosen such that the volume of Polyethylene glycol-600 rich phase is low. This was selected to concentrate the dye from a dilute solution in a large volume of contaminated solution into a small volume. This pre-concentration step provides a high reaction rate for photo catalytic degradation reaction. Experimentally the dye is extracted from the salt phase to Polyethylene glycol -600 phase in batch extraction. This was found to be very fast and all dye was extracted. The concentration of sunset yellow dye in salt and polymer phase is measured at 482nm by ultraviolet-visible spectrophotometry. The extraction experiment in micro channels under stratified flow is analyzed to determine factors which affect the dye extraction. Focus will be on obtaining slug flow by adding nanoparticles in micro channel. The primary aim is to exploit the fact that slug flow will help improve mass transfer rate from one phase to another through internal circulation in dispersed phase induced by shear.

Keywords: aqueous two phase system, binodal curve, extraction, sunset yellow dye

Procedia PDF Downloads 362
5495 Green Extraction of Patchoulol from Patchouli Leaves Using Ultrasound-Assisted Ionic Liquids

Authors: G. C. Jadeja, M. A. Desai, D. R. Bhatt, J. K. Parikh

Abstract:

Green extraction techniques are fast paving ways into various industrial sectors due to the stringent governmental regulations leading to the banning of toxic chemicals’ usage and also due to the increasing health/environmental awareness. The present work describes the ionic liquids based sonication method for selectively extracting patchoulol from the leaves of patchouli. 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4) and N,N,N,N’,N’,N’-Hexaethyl-butane-1,4-diammonium dibromide (dicationic ionic liquid - DIL) were selected for extraction. Ultrasound assisted ionic liquid extraction was employed considering concentration of ionic liquid (4–8 %, w/w), ultrasound power (50–150 W for [Bmim]BF4 and 20–80 W for DIL), temperature (30–50 oC) and extraction time (30–50 min) as major parameters influencing the yield of patchoulol. Using the Taguchi method, the parameters were optimized and analysis of variance (ANOVA) was performed to find the most influential factor in the selected extraction method. In case of [Bmim]BF4, the optimum conditions were found to be: 4 % (w/w) ionic liquid concentration, 50 W power, 30 oC temperature and extraction time of 30 min. The yield obtained under the optimum conditions was 3.99 mg/g. In case of DIL, the optimum conditions were obtained as 6 % (w/w) ionic liquid concentration, 80 W power, 30 oC temperature and extraction time of 40 min, for which the yield obtained was 4.03 mg/g. Temperature was found to be the most significant factor in both the cases. Extraction time was the insignificant parameter while extracting the product using [Bmim]BF4 and in case of DIL, power was found to be the least significant factor affecting the process. Thus, a green method of recovering patchoulol is proposed.

Keywords: green extraction, ultrasound, patchoulol, ionic liquids

Procedia PDF Downloads 365
5494 Isolation of Bacterial Species with Potential Capacity for Siloxane Removal in Biogas Upgrading

Authors: Ellana Boada, Eric Santos-Clotas, Alba Cabrera-Codony, Maria Martin, Lluis Baneras, Frederic Gich

Abstract:

Volatile methylsiloxanes (VMS) are a group of manmade silicone compounds widely used in household and industrial applications that end up on the biogas produced through the anaerobic digestion of organic matter in landfills and wastewater treatment plants. The presence of VMS during the biogas energy conversion can cause damage on the engines, reducing the efficiency of this renewable energy source. Non regenerative adsorption onto activated carbon is the most widely used technology to remove siloxanes from biogas, while new trends point out that biotechnology offers a low-cost and environmentally friendly alternative to conventional technologies. The first objective of this research was to enrich, isolate and identify bacterial species able to grow using siloxane molecules as a sole carbon source: anoxic wastewater sludge was used as initial inoculum in liquid anoxic enrichments, adding D4 (as representative siloxane compound) previously adsorbed on activated carbon. After several months of acclimatization, liquid enrichments were plated onto solid media containing D4 and thirty-four bacterial isolates were obtained. 16S rRNA gene sequencing allowed the identification of strains belonging to the following species: Ciceribacter lividus, Alicycliphilus denitrificans, Pseudomonas aeruginosa and Pseudomonas citronellolis which are described to be capable to degrade toxic volatile organic compounds. Kinetic assays with 8 representative strains revealed higher cell growth in the presence of D4 compared to the control. Our second objective was to characterize the community composition and diversity of the microbial community present in the enrichments and to elucidate whether the isolated strains were representative members of the community or not. DNA samples were extracted, the 16S rRNA gene was amplified (515F & 806R primer pair), and the microbiome analyzed from sequences obtained with a MiSeq PE250 platform. Results showed that the retrieved isolates only represented a minor fraction of the microorganisms present in the enrichment samples, which were represented by Alpha, Beta, and Gamma proteobacteria as dominant groups in the category class thus suggesting that other microbial species and/or consortia may be important for D4 biodegradation. These results highlight the need of additional protocols for the isolation of relevant D4 degraders. Currently, we are developing molecular tools targeting key genes involved in siloxane biodegradation to identify and quantify the capacity of the isolates to metabolize D4 in batch cultures supplied with a synthetic gas stream of air containing 60 mg m⁻³ of D4 together with other volatile organic compounds found in the biogas mixture (i.e. toluene, hexane and limonene). The isolates were used as inoculum in a biotrickling filter containing lava rocks and activated carbon to assess their capacity for siloxane removal. Preliminary results of biotrickling filter performance showed 35% of siloxane biodegradation in a contact time of 14 minutes, denoting that biological siloxane removal is a promising technology for biogas upgrading.

Keywords: bacterial cultivation, biogas upgrading, microbiome, siloxanes

Procedia PDF Downloads 262
5493 Development of a Remote Testing System for Performance of Gas Leakage Detectors

Authors: Gyoutae Park, Woosuk Kim, Sangguk Ahn, Seungmo Kim, Minjun Kim, Jinhan Lee, Youngdo Jo, Jongsam Moon, Hiesik Kim

Abstract:

In this research, we designed a remote system to test parameters of gas detectors such as gas concentration and initial response time. This testing system is available to measure two gas instruments simultaneously. First of all, we assembled an experimental jig with a square structure. Those parts are included with a glass flask, two high-quality cameras, and two Ethernet modems for transmitting data. This remote gas detector testing system extracts numerals from videos with continually various gas concentrations while LCDs show photographs from cameras. Extracted numeral data are received to a laptop computer through Ethernet modem. And then, the numerical data with gas concentrations and the measured initial response speeds are recorded and graphed. Our remote testing system will be diversely applied on gas detector’s test and will be certificated in domestic and international countries.

Keywords: gas leak detector, inspection instrument, extracting numerals, concentration

Procedia PDF Downloads 377
5492 Limos Lactobacillus Fermentum from Buffalo Milk Is Suitable for Potential Biotechnological Process Development

Authors: Sergio D’Ambrosioa, Azza Dobousa, Chiara Schiraldia, Donatella Ciminib

Abstract:

Probiotics are living microorganisms that give beneficial effects while consumed. Lactic acid bacteria and bifidobacteria are among the most representative strains assessed as probiotics and exploited as food supplements. Numerous studies demonstrated their potential as a therapeutic candidate for a variety of diseases (restoring gut flora, lowering cholesterol, immune response-enhancing, anti-inflammation and anti-oxidation activities). These beneficial actions are also due to biomolecules produced by probiotics, such as exopolysaccharides (EPSs), that demonstrate plenty of beneficial properties such as antimicrobial, antitumor, anti-biofilm, antiviral and immunomodulatory activities. Limosilactobacillus fermentum is a widely studied member of probiotics; however, few data are available on the development of fermentation and downstream processes for the production of viable biomasses for potential industrial applications. However, few data are available on the development of fermentation processes for the large-scale production of probiotics biomass for industrial applications and for purification processes of EPSs at an industrial scale. For this purpose, L. fermentum strain was isolated from buffalo milk and used as a test example for biotechnological process development. The strain was able to produce up to 109 CFU/mL on a (glucose-based) semi-defined medium deprived of animal-derived raw materials up to the pilot scale (150 L), demonstrating improved results compared to commonly used, although industrially not suitable, media-rich of casein and beef extract. Biomass concentration via microfiltration on hollow fibers, and subsequent spray-drying allowed to recover of about 5.7 × 1010CFU/gpowder of viable cells, indicating strain resistance to harsh processing conditions. Overall, these data demonstrate the possibility of obtaining and maintaining adequate levels of viable L. fermentum cells by using a simple approach that is potentially suitable for industrial development. A downstream EPS purification protocol based on ultrafiltration, precipitation and activated charcoal treatments showed a purity of the recovered polysaccharides of about 70-80%.

Keywords: probiotics, fermentation, exopolysaccharides (EPSs), purification

Procedia PDF Downloads 87
5491 Effect of Sulphur Concentration on Microbial Population and Performance of a Methane Biofilter

Authors: Sonya Barzgar, J. Patrick, A. Hettiaratchi

Abstract:

Methane (CH4) is reputed as the second largest contributor to greenhouse effect with a global warming potential (GWP) of 34 related to carbon dioxide (CO2) over the 100-year horizon, so there is a growing interest in reducing the emissions of this gas. Methane biofiltration (MBF) is a cost effective technology for reducing low volume point source emissions of methane. In this technique, microbial oxidation of methane is carried out by methane-oxidizing bacteria (methanotrophs) which use methane as carbon and energy source. MBF uses a granular medium, such as soil or compost, to support the growth of methanotrophic bacteria responsible for converting methane to carbon dioxide (CO₂) and water (H₂O). Even though the biofiltration technique has been shown to be an efficient, practical and viable technology, the design and operational parameters, as well as the relevant microbial processes have not been investigated in depth. In particular, limited research has been done on the effects of sulphur on methane bio-oxidation. Since bacteria require a variety of nutrients for growth, to improve the performance of methane biofiltration, it is important to establish the input quantities of nutrients to be provided to the biofilter to ensure that nutrients are available to sustain the process. The study described in this paper was conducted with the aim of determining the influence of sulphur on methane elimination in a biofilter. In this study, a set of experimental measurements has been carried out to explore how the conversion of elemental sulphur could affect methane oxidation in terms of methanotrophs growth and system pH. Batch experiments with different concentrations of sulphur were performed while keeping the other parameters i.e. moisture content, methane concentration, oxygen level and also compost at their optimum level. The study revealed the tolerable limit of sulphur without any interference to the methane oxidation as well as the particular sulphur concentration leading to the greatest methane elimination capacity. Due to the sulphur oxidation, pH varies in a transient way which affects the microbial growth behavior. All methanotrophs are incapable of growth at pH values below 5.0 and thus apparently are unable to oxidize methane. Herein, the certain pH for the optimal growth of methanotrophic bacteria is obtained. Finally, monitoring methane concentration over time in the presence of sulphur is also presented for laboratory scale biofilters.

Keywords: global warming, methane biofiltration (MBF), methane oxidation, methanotrophs, pH, sulphur

Procedia PDF Downloads 244
5490 Evaluation of Liquid Fermentation Strategies to Obtain a Biofertilizer Based on Rhizobium sp.

Authors: Andres Diaz Garcia, Ana Maria Ceballos Rojas, Duvan Albeiro Millan Montano

Abstract:

This paper describes the initial technological development stages in the area of liquid fermentation required to reach the quantities of biomass of the biofertilizer microorganism Rhizobium sp. strain B02, for the application of the unitary stages downstream at laboratory scale. In the first stage, the adjustment and standardization of the fermentation process in conventional batch mode were carried out. In the second stage, various fed-batch and continuous fermentation strategies were evaluated in 10L-bioreactor in order to optimize the yields in concentration (Colony Forming Units/ml•h) and biomass (g/l•h), to make feasible the application of unit operations downstream of process. The growth kinetics, the evolution of dissolved oxygen and the pH profile generated in each of the strategies were monitored and used to make sequential adjustments. Once the fermentation was finished, the final concentration and viability of the obtained biomass were determined and performance parameters were calculated with the purpose of select the optimal operating conditions that significantly improved the baseline results. Under the conditions adjusted and standardized in batch mode, concentrations of 6.67E9 CFU/ml were reached after 27 hours of fermentation and a subsequent noticeable decrease was observed associated with a basification of the culture medium. By applying fed-batch and continuous strategies, significant increases in yields were achieved, but with similar concentration levels, which involved the design of several production scenarios based on the availability of equipment usage time and volume of required batch.

Keywords: biofertilizer, liquid fermentation, Rhizobium sp., standardization of processes

Procedia PDF Downloads 179
5489 Perceived Quality of Regional Products in MS Region

Authors: M. Stoklasa, H. Starzyczna, K. Matusinska

Abstract:

This article deals with the perceived quality of regional products in the Moravian-Silesian region in the Czech Republic. Research was focused on finding out what do consumers perceive as a quality product and what characteristics make a quality product. The data were obtained by questionnaire survey and analysed by IBM SPSS. From the thousands of respondents the representative sample of 719 for MS region was created based on demographic factors of gender, age, education and income. The research analysis disclosed that consumers in MS region are still price oriented and that the preference of quality over price does not depend on regional brand knowledge.

Keywords: regional brands, quality products, characteristics of quality, quality over price

Procedia PDF Downloads 421
5488 CO2 Sequestration for Enhanced Coal Bed Methane Recovery: A New Approach

Authors: Abhinav Sirvaiya, Karan Gupta, Pankaj Garg

Abstract:

The global warming due to the increased atmospheric carbon dioxide (CO2) concentration is the most prominent issue of environment that the world is facing today. To solve this problem at global level, sequestration of CO2 in deep and unmineable coal seams has come out as one of the attractive alternatives to reduce concentration in atmosphere. This sequestration technology is not only going to help in storage of CO2 beneath the sub-surface but is also playing a major role in enhancing the coal bed methane recovery (ECBM) by displacing the adsorbed methane. This paper provides the answers for the need of CO2 injection in coal seams and how recovery is enhanced. We have discussed the recent development in enhancing the coal bed methane recovery and the economic scenario of the same. The effect of injection on the coal reservoir has also been discussed. Coal is a good absorber of CO2. That is why the sequestration of CO2 is emerged out to be a great approach, not only for storage purpose but also for enhancing coal bed methane recovery.

Keywords: global warming, carbon dioxide (CO2), CO2 sequestration, enhance coal bed methane (ECBM)

Procedia PDF Downloads 508
5487 Application of Biopolymer for Adsorption of Methylene Blue Dye from Simulated Effluent: A Green Method for Textile Industry Wastewater Treatment

Authors: Rabiya, Ramkrishna Sen

Abstract:

The textile industry releases huge volume of effluent containing reactive dyes in the nearby water bodies. These effluents are significant source of water pollution since most of the dyes are toxic in nature. Moreover, it scavenges the dissolved oxygen essential to the aquatic species. Therefore, it is necessary to treat the dye effluent before it is discharged in the nearby water bodies. The present study focuses on removing the basic dye methylene blue from simulated wastewater using biopolymer. The biopolymer was partially purified from the culture of Bacillus licheniformis by ultrafiltration. Based on the elution profile of the biopolymer from ion exchange column, it was found to be a negatively charged molecule. Its net anionic nature allows the biopolymer to adsorb positively charged molecule, methylene blue. The major factors which influence the removal of dye by the biopolymer such as incubation time, pH, initial dye concentration were evaluated. The methylene blue uptake by the biopolymer is more (14.84 mg/g) near neutral pH than in acidic pH (12.05mg/g) of the water. At low pH, the lower dissociation of the dye molecule as well as the low negative charge available on the biopolymer reduces the interaction between the biopolymer and dye. The optimum incubation time for maximum removal of dye was found to be 60 min. The entire study was done with 25 mL of dye solution in 100 mL flask at 25 °C with an amount of 11g/L of biopolymer. To study the adsorption isotherm, the dye concentration was varied in the range of 25mg/L to 205mg/L. The dye uptake by the biopolymer against the equilibrium concentration was plotted. The plot indicates that the adsorption of dye by biopolymer follows the Freundlich adsorption isotherm (R-square 0.99). Hence, these studies indicate the potential use of biopolymer for the removal of basic dye from textile wastewater in an ecofriendly and sustainable way.

Keywords: biopolymer, methylene blue dye, textile industry, wastewater

Procedia PDF Downloads 145
5486 A Comparative Study of Single- and Multi-Walled Carbon Nanotube Incorporation to Indium Tin Oxide Electrodes for Solar Cells

Authors: G. Gokceli, O. Eksik, E. Ozkan Zayim, N. Karatepe

Abstract:

Alternative electrode materials for optoelectronic devices have been widely investigated in recent years. Since indium tin oxide (ITO) is the most preferred transparent conductive electrode, producing ITO films by simple and cost-effective solution-based techniques with enhanced optical and electrical properties has great importance. In this study, single- and multi-walled carbon nanotubes (SWCNT and MWCNT) incorporated into the ITO structure to increase electrical conductivity, mechanical strength, and chemical stability. Carbon nanotubes (CNTs) were firstly functionalized by acid treatment (HNO3:H2SO4), and the thermal resistance of CNTs after functionalization was determined by thermogravimetric analysis (TGA). Thin films were then prepared by spin coating technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), four-point probe measurement system and UV-Vis spectrophotometer. The effects of process parameters were compared for ITO, MWCNT-ITO, and SWCNT-ITO films. Two factors including CNT concentration and annealing temperature were considered. The UV-Vis measurements demonstrated that the transmittance of ITO films was 83.58% at 550 nm, which was decreased depending on the concentration of CNT dopant. On the other hand, both CNT dopants provided an enhancement in the crystalline structure and electrical conductivity. Due to compatible diameter and better dispersibility of SWCNTs in the ITO solution, the best result in terms of electrical conductivity was obtained by SWCNT-ITO films with the 0.1 g/L SWCNT dopant concentration and heat-treatment at 550 °C for 1 hour.

Keywords: CNT incorporation, ITO electrode, spin coating, thin film

Procedia PDF Downloads 120
5485 Restored CO₂ from Flue Gas and Utilization by Converting to Methanol by 3 Step Processes: Steam Reforming, Reverse Water Gas Shift and Hydrogenation

Authors: Rujira Jitrwung, Kuntima Krekkeitsakul, Weerawat Patthaveekongka, Chiraphat Kumpidet, Jarukit Tepkeaw, Krissana Jaikengdee, Anantachai Wannajampa

Abstract:

Flue gas discharging from coal fired or gas combustion power plant contains around 12% Carbon dioxide (CO₂), 6% Oxygen (O₂), and 82% Nitrogen (N₂).CO₂ is a greenhouse gas which has been concerned to the global warming. Carbon Capture, Utilization, and Storage (CCUS) is a topic which is a tool to deal with this CO₂ realization. Flue gas is drawn down from the chimney and filtered, then it is compressed to build up the pressure until 8 bar. This compressed flue gas is sent to three stages Pressure Swing Adsorption (PSA), which is filled with activated carbon. Experiments were showed the optimum adsorption pressure at 7bar, which CO₂ can be adsorbed step by step in 1st, 2nd, and 3rd stage, obtaining CO₂ concentration 29.8, 66.4, and 96.7 %, respectively. The mixed gas concentration from the last step is composed of 96.7% CO₂,2.7% N₂, and 0.6%O₂. This mixed CO₂product gas obtained from 3 stages PSA contained high concentration CO₂, which is ready to use for methanol synthesis. The mixed CO₂ was experimented in 5 Liter/Day of methanol synthesis reactor skid by 3 step processes as followed steam reforming, reverse water gas shift, and then hydrogenation. The result showed that proportional of mixed CO₂ and CH₄ 70/30, 50/50, 30/70 % (v/v), and 10/90 yielded methanol 2.4, 4.3, 5.6, and 6.0 Liter/day and save CO₂ 40, 30, 20, and 5 % respectively. The optimum condition resulted both methanol yield and CO₂ consumption using CO₂/CH₄ ratio 43/57 % (v/v), which yielded 4.8 Liter/day methanol and save CO₂ 27% comparing with traditional methanol production from methane steam reforming (5 Liter/day)and absent CO₂ consumption.

Keywords: carbon capture utilization and storage, pressure swing adsorption, reforming, reverse water gas shift, methanol

Procedia PDF Downloads 190
5484 Agro-Industrial Waste as a Source of Catalyst Production

Authors: Brenda Cecilia Ledesma, Andrea Beltramone

Abstract:

This work deals with the bio-waste valorization approach for catalyst development, the use of products derived from biomass as raw material and the obtaining of biofuels. In this research, activated carbons were synthesized from the orange peel using different synthesis conditions. With the activated carbons obtained with the best structure and texture, PtIr bimetallic catalysts were prepared. Carbon activation was carried out through a chemical process with phosphoric acid as an activating agent, varying the acid concentration, the ratio substrate/activating agent and time of contact between them. The best support was obtained using a carbonization time of 1 h, the temperature of carbonization of 470oC, the phosphoric acid concentration of 50 wt.% and a BET area of 1429 m2/g. Subsequently, the metallic nanoparticles were deposited in the activated carbon to use the solid as a catalytic material for the hydrogenation of HMF to 2,5-DMF. The catalyst presented an excellent performance for biofuels generation.

Keywords: orange peel, bio-waste valorization, platinum, iridium, 5-hydroxymethylfurfural

Procedia PDF Downloads 202
5483 Optimization Study of Adsorption of Nickel(II) on Bentonite

Authors: B. Medjahed, M. A. Didi, B. Guezzen

Abstract:

This work concerns with the experimental study of the adsorption of the Ni(II) on bentonite. The effects of various parameters such as contact time, stirring rate, initial concentration of Ni(II), masse of clay, initial pH of aqueous solution and temperature on the adsorption yield, were carried out. The study of the effect of the ionic strength on the yield of adsorption was examined by the identification and the quantification of the present chemical species in the aqueous phase containing the metallic ion Ni(II). The adsorbed species were investigated by a calculation program using CHEAQS V. L20.1 in order to determine the relation between the percentages of the adsorbed species and the adsorption yield. The optimization process was carried out using 23 factorial designs. The individual and combined effects of three process parameters, i.e. initial Ni(II) concentration in aqueous solution (2.10−3 and 5.10−3 mol/L), initial pH of the solution (2 and 6.5), and mass of bentonite (0.03 and 0.3 g) on Ni(II) adsorption, were studied.

Keywords: adsorption, bentonite, factorial design, Nickel(II)

Procedia PDF Downloads 163
5482 Optimal Data Selection in Non-Ergodic Systems: A Tradeoff between Estimator Convergence and Representativeness Errors

Authors: Jakob Krause

Abstract:

Past Financial Crisis has shown that contemporary risk management models provide an unjustified sense of security and fail miserably in situations in which they are needed the most. In this paper, we start from the assumption that risk is a notion that changes over time and therefore past data points only have limited explanatory power for the current situation. Our objective is to derive the optimal amount of representative information by optimizing between the two adverse forces of estimator convergence, incentivizing us to use as much data as possible, and the aforementioned non-representativeness doing the opposite. In this endeavor, the cornerstone assumption of having access to identically distributed random variables is weakened and substituted by the assumption that the law of the data generating process changes over time. Hence, in this paper, we give a quantitative theory on how to perform statistical analysis in non-ergodic systems. As an application, we discuss the impact of a paragraph in the last iteration of proposals by the Basel Committee on Banking Regulation. We start from the premise that the severity of assumptions should correspond to the robustness of the system they describe. Hence, in the formal description of physical systems, the level of assumptions can be much higher. It follows that every concept that is carried over from the natural sciences to economics must be checked for its plausibility in the new surroundings. Most of the probability theory has been developed for the analysis of physical systems and is based on the independent and identically distributed (i.i.d.) assumption. In Economics both parts of the i.i.d. assumption are inappropriate. However, only dependence has, so far, been weakened to a sufficient degree. In this paper, an appropriate class of non-stationary processes is used, and their law is tied to a formal object measuring representativeness. Subsequently, that data set is identified that on average minimizes the estimation error stemming from both, insufficient and non-representative, data. Applications are far reaching in a variety of fields. In the paper itself, we apply the results in order to analyze a paragraph in the Basel 3 framework on banking regulation with severe implications on financial stability. Beyond the realm of finance, other potential applications include the reproducibility crisis in the social sciences (but not in the natural sciences) and modeling limited understanding and learning behavior in economics.

Keywords: banking regulation, non-ergodicity, risk management, semimartingale modeling

Procedia PDF Downloads 153
5481 Peristaltic Transport of a Jeffrey Fluid with Double-Diffusive Convection in Nanofluids in the Presence of Inclined Magnetic Field

Authors: Safia Akram

Abstract:

In this article, the effects of peristaltic transport with double-diffusive convection in nanofluids through an asymmetric channel with different waveforms is presented. Mathematical modelling for two-dimensional and two directional flows of a Jeffrey fluid model along with double-diffusive convection in nanofluids are given. Exact solutions are obtained for nanoparticle fraction field, concentration field, temperature field, stream functions, pressure gradient and pressure rise in terms of axial and transverse coordinates under the restrictions of long wavelength and low Reynolds number. With the help of computational and graphical results the effects of Brownian motion, thermophoresis, Dufour, Soret, and Grashof numbers (thermal, concentration, nanoparticles) on peristaltic flow patterns with double-diffusive convection are discussed.

Keywords: nanofluid particles, peristaltic flow, Jeffrey fluid, magnetic field, asymmetric channel, different waveforms

Procedia PDF Downloads 386
5480 Amperometric Biosensor for Glucose Determination Based on a Recombinant Mn Peroxidase from Corn Cross-linked to a Gold Electrode

Authors: Anahita Izadyar, My Ni Van, Kayleigh Amber Rodriguez, Ilwoo Seok, Elizabeth E. Hood

Abstract:

Using a recombinant enzyme derived from corn and a simple modification, we fabricated a facile, fast, and cost-beneficial biosensor to measure glucose. The Nafion/ Plant Produced Mn Peroxidase (PPMP)– glucose oxidase (GOx)- Bovine serum albumin (BSA) /Au electrode showed an excellent amperometric response to detect glucose. This biosensor is capable of responding to a wide range of glucose—20.0 µM−15.0 mM and has a lower detection limit (LOD) of 2.90µM. The reproducibility response using six electrodes is also very substantial and indicates the high capability of this biosensor to detect a wide range of 3.10±0.19µM to 13.2±1.8 mM glucose concentration. Selectivity of this electrode was investigated in an optimized experimental solution contains 10% diet green tea with citrus containing ascorbic acid (AA), and citric acid (CA) in a wide concentration of glucose at 0.02 to 14.0mM with an LOD of 3.10µM. Reproducibility was also investigated using 4 electrodes in this sample and shows notable results in the wide concentration range of 3.35±0.45µM to of 13.0 ± 0.81 mM. We also used other voltammetry methods to evaluate this biosensor. We applied linear sweep voltammetry (LSV) and this technique shows a wide range of 0.10−15.0 mM to detect glucose with a lower detection limit of 19.5µM. The performance and strength of this enzyme biosensor were the simplicity, wide linear ranges, sensitivities, selectivity, and low limits of detection. We expect that the modified biosensor has the potential for monitoring various biofluids.

Keywords: plant-produced manganese peroxidase, enzyme-based biosensors, glucose, modified gold electrode, glucose oxidase

Procedia PDF Downloads 145
5479 Brewing in a Domestic Refrigerator Using Freeze-Dried Raw Materials

Authors: Angelika-Ioanna Gialleli, Gousi Mantha, Maria Kanellaki, Bekatorou Argyro, Athanasios Koutinas

Abstract:

In this study, a new brewing technology with dry raw materials is proposed with potential application in home brewing. Bio catalysts were prepared by immobilization of the psychrotolerant yeast strain Saccharomyces cerevisiae AXAZ-1 on tubular cellulose. Both the word and the biocatalysts were freeze-dried without any cryoprotectants and used for low temperature brewing. The combination of immobilization and freeze-drying techniques was applied successfully, giving a potential for supplying breweries with preserved and ready-to-use immobilized cells. The effect of wort sugar concentration (7°, 8.5°, 10°Be), temperature (2, 5, 7° C) and carrier concentration (5, 10, 20 g/L) on fermentation kinetics and final product quality (volatiles, colour, polyphenols, bitterness) was assessed. The same procedure was repeated with free cells for comparison of the results. The results for immobilized cells were better compared to free cells regarding fermentation kinetics and organoleptic characteristics.

Keywords: brewing, tubular cellulose, low temperature, biocatalyst

Procedia PDF Downloads 328
5478 Metabolic Pathway Analysis of Microbes using the Artificial Bee Colony Algorithm

Authors: Serena Gomez, Raeesa Tanseen, Netra Shaligram, Nithin Francis, Sandesh B. J.

Abstract:

The human gut consists of a community of microbes which has a lot of effects on human health disease. Metabolic modeling can help to predict relative populations of stable microbes and their effect on health disease. In order to study and visualize microbes in the human gut, we developed a tool that offers the following modules: Build a tool that can be used to perform Flux Balance Analysis for microbes in the human gut using the Artificial Bee Colony optimization algorithm. Run simulations for an individual microbe in different conditions, such as aerobic and anaerobic and visualize the results of these simulations.

Keywords: microbes, metabolic modeling, flux balance analysis, artificial bee colony

Procedia PDF Downloads 105
5477 Application of Response Surface Methodology (RSM) for Optimization of Fluoride Removal by Using Banana Peel

Authors: Pallavi N., Gayatri Jadhav

Abstract:

Good quality water is of prime importance for a healthy living. Fluoride is one such mineral present in water which causes many health problems in humans and specially children. Fluoride is said to be a double edge sword because lesser and higher concentration of fluoride in drinking water can cause both dental and skeletal fluorosis. Fluoride is one of the important mineral usually present at a higher concentration in ground water. There are many researches being carried out for defluoridation method. In the present research, fluoride removal is demonstrated using banana peel which is a biowaste as a biocoagulant. Response Surface Methodology (RSM) is a statistical design tool which is used to design the experiment. Central Composite Design (CCD) was used to determine the influence of the pH and dosage of the coagulant on the optimal removal of fluoride from a simulated water sample. 895 of fluoride removal were obtained in a acidic pH range of 4 – 9 and bio coagulant dosage of dosage of 18 – 20mg/L.

Keywords: Fluoride, Response Surface Methodology, Dosage, banana peel

Procedia PDF Downloads 168
5476 Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties

Authors: M. Kheirandish, S. Borhani

Abstract:

In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.

Keywords: electrospininng, nanoparticle, polystyrene, ZnO

Procedia PDF Downloads 246
5475 Indoor Temperature, Relative Humidity and CO₂ Level Assessment in a Publically Managed Hospital Building

Authors: Ayesha Asif, Muhammad Zeeshan

Abstract:

The sensitivity of hospital-microenvironments for all types of pollutants, due to the presence of patients with immune deficiencies, makes them complex indoor spaces. Keeping in view, this study investigated indoor air quality (IAQ) of two most sensitive places, i.e., operation theater (OT) and intensive care unit (ICU), of a publically managed hospital. Taking CO₂ concentration as air quality indicator and temperature (T) and relative humidity (RH) as thermal comfort parameters, continuous monitoring of the three variables was carried out. Measurements were recorded at an interval of 1 min for weekdays and weekends, including occupational and non-occupational hours. Outdoor T and RH measurements were also used in the analysis. Results show significant variation (p < 0.05) in CO₂, T and RH values over the day during weekdays while no significant variation (p > 0.05) have been observed during weekends of both the monitored sites. Maximum observed values of CO₂ in OT and ICU were found to be 2430 and 624 ppm, T as 24.7ºC and 28.9ºC and RH as 29.6% and 32.2% respectively.

Keywords: indoor air quality, CO₂ concentration, hospital building, comfort assessment

Procedia PDF Downloads 137