Search results for: open source energy modeling system (OSeMOSYS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30500

Search results for: open source energy modeling system (OSeMOSYS)

20600 Three-Stage Least Squared Models of a Station-Level Subway Ridership: Incorporating an Analysis on Integrated Transit Network Topology Measures

Authors: Jungyeol Hong, Dongjoo Park

Abstract:

The urban transit system is a critical part of a solution to the economic, energy, and environmental challenges. Furthermore, it ultimately contributes the improvement of people’s quality of lives. For taking these kinds of advantages, the city of Seoul has tried to construct an integrated transit system including both subway and buses. The effort led to the fact that approximately 6.9 million citizens use the integrated transit system every day for their trips. Diagnosing the current transit network is a significant task to provide more convenient and pleasant transit environment. Therefore, the critical objective of this study is to establish a methodological framework for the analysis of an integrated bus-subway network and to examine the relationship between subway ridership and parameters such as network topology measures, bus demand, and a variety of commercial business facilities. Regarding a statistical approach to estimate subway ridership at a station level, many previous studies relied on Ordinary Least Square regression, but there was lack of studies considering the endogeneity issues which might show in the subway ridership prediction model. This study focused on both discovering the impacts of integrated transit network topology measures and endogenous effect of bus demand on subway ridership. It could ultimately contribute to developing more accurate subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers Seoul city in South Korea, and it includes 243 subway stations and 10,120 bus stops with the temporal scope set during twenty-four hours with one-hour interval time panels each. The subway and bus ridership information in detail was collected from the Seoul Smart Card data in 2015 and 2016. First, integrated subway-bus network topology measures which have characteristics regarding connectivity, centrality, transitivity, and reciprocity were estimated based on the complex network theory. The results of integrated transit network topology analysis were compared to subway-only network topology. Also, the non-recursive approach which is Three-Stage Least Square was applied to develop the daily subway ridership model as capturing the endogeneity between bus and subway demands. Independent variables included roadway geometry, commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. Consequently, it was found that network topology measures were significant size effect. Especially, centrality measures showed that the elasticity was a change of 4.88% for closeness centrality, 24.48% for betweenness centrality while the elasticity of bus ridership was 8.85%. Moreover, it was proved that bus demand and subway ridership were endogenous in a non-recursive manner as showing that predicted bus ridership and predicted subway ridership is statistically significant in OLS regression models. Therefore, it shows that three-stage least square model appears to be a plausible model for efficient subway ridership estimation. It is expected that the proposed approach provides a reliable guideline that can be used as part of the spectrum of tools for evaluating a city-wide integrated transit network.

Keywords: integrated transit system, network topology measures, three-stage least squared, endogeneity, subway ridership

Procedia PDF Downloads 177
20599 Transcendence, Spirituality and Well-Being: A Cognitive-Theological Perspective

Authors: Monir Ahmed

Abstract:

This paper aims at discussing transcendence, spirituality, and well-being in light of the psychology of religion and spirituality. The main purpose of this paper is i) to demonstrate the importance of cognitive psychological process (thoughts, faith, and beliefs) and the doctrine of creation (‘creatio ex nihilo’) in transcendence, spirituality, and well-being; ii) to discuss the relationships among transcendence, spirituality, and well-being. Psychological studies of spiritual and religious phenomena have been advanced in the decade, mainly to understand how faith, spiritual and religious rituals influence or contribute to well-being. Psychologists of religion and spirituality have put forward methods, tools, and approaches necessary for promoting well-being. For instance, Kenneth I. Pargament, an American psychologist of religion and spirituality, developed spiritually integrated psychotherapy for clinical practice in dealing with the spiritual and religious issues affecting well-being. However, not much progress has been made in understanding the ability of transcendence and how such ability influences spirituality and religion as well as well-being. A possible reason could be that well-being has only been understood in a spiritual and religious context. It appears that transcendence, the core element of spirituality and religion, has not been explored adequately for well-being. In other words, the approaches that have been used so far for spirituality, religion, and well-being lack an integrated approach combining theology and psychology. The author of this paper proposes that cognitive-theological understanding involving faith and belief about the creation and the creator, the transcendent God is likely to offer a comprehensive understanding of transcendence as well as spirituality, religion, and their relationships with well-being. The importance of transcendence and the integration of psychology and theology can advance our knowledge of transcendence, spirituality, and well-being. It is inevitable that the creation is contingent and that the ultimate origin, source of the contingent physical reality, is a non-contingent being, the divine creator. As such, it is not unreasonable for many individuals to believe that the source of existence of non-contingent being, although undiscoverable in physical reality but transcendentally exists. ‘Creatio ex nihilo’ is the most fundamental doctrine in the Abrahamic faiths, i.e., Judaism, Christianity and Islam, and is widely accepted scriptural and philosophical background about the creation, creator, the divine that God created the universe out of nothing. Therefore, it is crucial to integrate theology, i.e., ‘creatio ex nihilo’ doctrine and psychology for a comprehensive understanding of transcendence, spirituality and their relationships with well-being.

Keywords: transcendence, spirituality, well-being, ‘creatio ex nihilo’ doctrine

Procedia PDF Downloads 140
20598 A Project in the Framework “Nextgenerationeu”: Sustainable Photoelectrochemical Hydrogen Evolution - SERGIO

Authors: Patrizia Frontera, Anastasia Macario, Simona Crispi, Angela Malara, Pierantonio De Luca, Stefano Trocino

Abstract:

The exploration of solar energy for the photoelectrochemical splitting of water into hydrogen and oxygen has been extensively researched as a means of generating sustainable H₂ fuel. However, despite these efforts, commercialization of this technology has not yet materialized. Presently, the primary impediments to commercialization include low solar-to-hydrogen efficiency (2-3% in PEC with an active area of up to 10-15 cm²), the utilization of costly and critical raw materials (e.g., BiVO₄), and energy losses during the separation of H₂ from O₂ and H₂O vapours in the output stream. The SERGIO partners have identified an advanced approach to fabricate photoelectrode materials, coupled with an appropriate scientific direction to achieve cost-effective solar-driven H₂ production in a tandem photoelectrochemical cell. This project is designed to reach Technology Readiness Level (TRL) 4 by validating the technology in the laboratory using a cell with an active area of up to 10 cm², boasting a solar-to-hydrogen efficiency of 5%, and ensuring acceptable hydrogen purity (99.99%). Our objectives include breakthroughs in cost efficiency, conversion efficiency, and H₂ purity.

Keywords: photoelectrolysis, green hydrogen, photoelectrochemical cell, semiconductors

Procedia PDF Downloads 67
20597 Pilot-Assisted Direct-Current Biased Optical Orthogonal Frequency Division Multiplexing Visible Light Communication System

Authors: Ayad A. Abdulkafi, Shahir F. Nawaf, Mohammed K. Hussein, Ibrahim K. Sileh, Fouad A. Abdulkafi

Abstract:

Visible light communication (VLC) is a new approach of optical wireless communication proposed to support the congested radio frequency (RF) spectrum. VLC systems are combined with orthogonal frequency division multiplexing (OFDM) to achieve high rate transmission and high spectral efficiency. In this paper, we investigate the Pilot-Assisted Channel Estimation for DC biased Optical OFDM (PACE-DCO-OFDM) systems to reduce the effects of the distortion on the transmitted signal. Least-square (LS) and linear minimum mean-squared error (LMMSE) estimators are implemented in MATLAB/Simulink to enhance the bit-error-rate (BER) of PACE-DCO-OFDM. Results show that DCO-OFDM system based on PACE scheme has achieved better BER performance compared to conventional system without pilot assisted channel estimation. Simulation results show that the proposed PACE-DCO-OFDM based on LMMSE algorithm can more accurately estimate the channel and achieves better BER performance when compared to the LS based PACE-DCO-OFDM and the traditional system without PACE. For the same signal to noise ratio (SNR) of 25 dB, the achieved BER is about 5×10-4 for LMMSE-PACE and 4.2×10-3 with LS-PACE while it is about 2×10-1 for system without PACE scheme.

Keywords: channel estimation, OFDM, pilot-assist, VLC

Procedia PDF Downloads 180
20596 Monitoring Soil Moisture Dynamic in Root Zone System of Argania spinosa Using Electrical Resistivity Imaging

Authors: F. Ainlhout, S. Boutaleb, M. C. Diaz-Barradas, M. Zunzunegui

Abstract:

Argania spinosa is an endemic tree of the southwest of Morocco, occupying 828,000 Ha, distributed mainly between Mediterranean vegetation and the desert. This tree can grow in extremely arid regions in Morocco, where annual rainfall ranges between 100-300 mm where no other tree species can live. It has been designated as a UNESCO Biosphere reserve since 1998. Argania tree is of great importance in human and animal feeding of rural population as well as for oil production, it is considered as a multi-usage tree. Admine forest located in the suburbs of Agadir city, 5 km inland, was selected to conduct this work. The aim of the study was to investigate the temporal variation in root-zone moisture dynamic in response to variation in climatic conditions and vegetation water uptake, using a geophysical technique called Electrical resistivity imaging (ERI). This technique discriminates resistive woody roots, dry and moisture soil. Time-dependent measurements (from April till July) of resistivity sections were performed along the surface transect (94 m Length) at 2 m fixed electrode spacing. Transect included eight Argan trees. The interactions between the tree and soil moisture were estimated by following the tree water status variations accompanying the soil moisture deficit. For that purpose we measured midday leaf water potential and relative water content during each sampling day, and for the eight trees. The first results showed that ERI can be used to accurately quantify the spatiotemporal distribution of root-zone moisture content and woody root. The section obtained shows three different layers: middle conductive one (moistured); a moderately resistive layer corresponding to relatively dry soil (calcareous formation with intercalation of marly strata) on top, this layer is interspersed by very resistant layer corresponding to woody roots. Below the conductive layer, we find the moderately resistive layer. We note that throughout the experiment, there was a continuous decrease in soil moisture at the different layers. With the ERI, we can clearly estimate the depth of the woody roots, which does not exceed 4 meters. In previous work on the same species, analyzing the δ18O in water of xylem and in the range of possible water sources, we argued that rain is the main water source in winter and spring, but not in summer, trees are not exploiting deep water from the aquifer as the popular assessment, instead of this they are using soil water at few meter depth. The results of the present work confirm the idea that the roots of Argania spinosa are not growing very deep.

Keywords: Argania spinosa, electrical resistivity imaging, root system, soil moisture

Procedia PDF Downloads 328
20595 Optimizing Parallel Computing Systems: A Java-Based Approach to Modeling and Performance Analysis

Authors: Maher Ali Rusho, Sudipta Halder

Abstract:

The purpose of the study is to develop optimal solutions for models of parallel computing systems using the Java language. During the study, programmes were written for the examined models of parallel computing systems. The result of the parallel sorting code is the output of a sorted array of random numbers. When processing data in parallel, the time spent on processing and the first elements of the list of squared numbers are displayed. When processing requests asynchronously, processing completion messages are displayed for each task with a slight delay. The main results include the development of optimisation methods for algorithms and processes, such as the division of tasks into subtasks, the use of non-blocking algorithms, effective memory management, and load balancing, as well as the construction of diagrams and comparison of these methods by characteristics, including descriptions, implementation examples, and advantages. In addition, various specialised libraries were analysed to improve the performance and scalability of the models. The results of the work performed showed a substantial improvement in response time, bandwidth, and resource efficiency in parallel computing systems. Scalability and load analysis assessments were conducted, demonstrating how the system responds to an increase in data volume or the number of threads. Profiling tools were used to analyse performance in detail and identify bottlenecks in models, which improved the architecture and implementation of parallel computing systems. The obtained results emphasise the importance of choosing the right methods and tools for optimising parallel computing systems, which can substantially improve their performance and efficiency.

Keywords: algorithm optimisation, memory management, load balancing, performance profiling, asynchronous programming.

Procedia PDF Downloads 12
20594 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line

Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez

Abstract:

Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.

Keywords: deep-learning, image classification, image identification, industrial engineering.

Procedia PDF Downloads 161
20593 The Influence of Apple Pomace on Colour and Chemical Composition of Extruded Corn Snack Product

Authors: Jovana Petrovic, Biljana Pajin, Ivana Loncarevic, Aleksandar Fistes, Antun Jozinivic, Durdica Ackar, Drago Subaric

Abstract:

Recovery of food wastes and their conversion to economically viable products will play a vital role for the management strategies in the years to come. Apple pomace may be considered as wastes, but they contain considerable amounts of high value reusable materials. Apple pomace, the by-product of apple juice and cider production, is a good source of fibre, particularly insoluble one. The remaining apple pulp contains 12% dry residue, which is half dietary fibre. Another remarkable aspect is its richness in polyphenols, components with antioxidant activity. Apple pomace could be an interesting alternative source for fibre and polyphenols in extruded corn meals. The extruded corn meals with the addition of finely ground apple pomace were prepared (the ratio of corn meal: apple pomace was 85:15 and 70:30). Characterization of the extrudates in terms of determining the chemical composition and colour was performed. The color of samples was measured by MINOLTA Chroma Meter CR-400 (Minolta Co., Ltd., Osaka, Japan) using D 65 lighting, a 2º standard observer angle and an 8-mm aperture in the measuring head. The following CIELab color coordinates were determined: L* – lightness, a* – redness to greenness and b* – yellowness to blueness. Protein content decreased significantly from 7.91% to 5.19% with increase in pomace from 0% to 30%, while total fibre content increase from 3.39% to 16.62%. The apple pomace addition produced extrudates with a significantly lower L* value and significantly higher a* value. This study has been fully supported by the Provincial Secretariat for High Education and Scientific Research of the Government of Autonomous Province of Vojvodina, Republic of Serbia, project 142-451-2483/2017 and the Ministry of Science and Technological Development of the Republic of Serbia (Project no. 31014).

Keywords: apple pomace, chemical composition, colour, extruded corn snack products, food waste recovery

Procedia PDF Downloads 225
20592 Development of the Integrated Quality Management System of Cooked Sausage Products

Authors: Liubov Lutsyshyn, Yaroslava Zhukova

Abstract:

Over the past twenty years, there has been a drastic change in the mode of nutrition in many countries which has been reflected in the development of new products, production techniques, and has also led to the expansion of sales markets for food products. Studies have shown that solution of the food safety problems is almost impossible without the active and systematic activity of organizations directly involved in the production, storage and sale of food products, as well as without management of end-to-end traceability and exchange of information. The aim of this research is development of the integrated system of the quality management and safety assurance based on the principles of HACCP, traceability and system approach with creation of an algorithm for the identification and monitoring of parameters of technological process of manufacture of cooked sausage products. Methodology of implementation of the integrated system based on the principles of HACCP, traceability and system approach during the manufacturing of cooked sausage products for effective provision for the defined properties of the finished product has been developed. As a result of the research evaluation technique and criteria of performance of the implementation and operation of the system of the quality management and safety assurance based on the principles of HACCP have been developed and substantiated. In the paper regularities of influence of the application of HACCP principles, traceability and system approach on parameters of quality and safety of the finished product have been revealed. In the study regularities in identification of critical control points have been determined. The algorithm of functioning of the integrated system of the quality management and safety assurance has also been described and key requirements for the development of software allowing the prediction of properties of finished product, as well as the timely correction of the technological process and traceability of manufacturing flows have been defined. Based on the obtained results typical scheme of the integrated system of the quality management and safety assurance based on HACCP principles with the elements of end-to-end traceability and system approach for manufacture of cooked sausage products has been developed. As a result of the studies quantitative criteria for evaluation of performance of the system of the quality management and safety assurance have been developed. A set of guidance documents for the implementation and evaluation of the integrated system based on the HACCP principles in meat processing plants have also been developed. On the basis of the research the effectiveness of application of continuous monitoring of the manufacturing process during the control on the identified critical control points have been revealed. The optimal number of critical control points in relation to the manufacture of cooked sausage products has been substantiated. The main results of the research have been appraised during 2013-2014 under the conditions of seven enterprises of the meat processing industry and have been implemented at JSC «Kyiv meat processing plant».

Keywords: cooked sausage products, HACCP, quality management, safety assurance

Procedia PDF Downloads 248
20591 Development of a Process Method to Manufacture Spreads from Powder Hardstock

Authors: Phakamani Xaba, Robert Huberts, Bilainu Oboirien

Abstract:

It has been over 200 years since margarine was discovered and manufactured using liquid oil, liquified hardstock oils and other oil phase & aqueous phase ingredients. Henry W. Bradley first used vegetable oils in liquid state and around 1871, since then; spreads have been traditionally manufactured using liquified oils. The main objective of this study was to develop a process method to produce spreads using spray dried hardstock fat powders as a structing fats in place of current liquid structuring fats. A high shear mixing system was used to condition the fat phase and the aqueous phase was prepared separately. Using a single scraped surface heat exchanger and pin stirrer, margarine was produced. The process method was developed for to produce spreads with 40%, 50% and 60% fat . The developed method was divided into three steps. In the first step, fat powders were conditioned by melting and dissolving them into liquid oils. The liquified portion of the oils were at 65 °C, whilst the spray dried fat powder was at 25 °C. The two were mixed using a mixing vessel at 900 rpm for 4 minutes. The rest of the ingredients i.e., lecithin, colorant, vitamins & flavours were added at ambient conditions to complete the fat/ oil phase. The water phase was prepared separately by mixing salt, water, preservative, acidifier in the mixing tank. Milk was also separately prepared by pasteurizing it at 79°C prior to feeding it into the aqueous phase. All the water phase contents were chilled to 8 °C. The oil phase and water phase were mixed in a tank, then fed into a single scraped surface heat exchanger. After the scraped surface heat exchanger, the emulsion was fed in a pin stirrer to work the formed crystals and produce margarine. The margarine produced using the developed process had fat levels of 40%, 50% and 60%. The margarine passed all the qualitative, stability, and taste assessments. The scores were 6/10, 7/10 & 7.5/10 for the 40%, 50% & 60% fat spreads, respectively. The success of the trials brought about differentiated knowledge on how to manufacture spreads using non micronized spray dried fat powders as hardstock. Manufacturers do not need to store structuring fats at 80-90°C and even high in winter, instead, they can adapt their processes to use fat powders which need to be stored at 25 °C. The developed process method used one scrape surface heat exchanger instead of the four to five currently used in votator based plants. The use of a single scraped surface heat exchanger translated to about 61% energy savings i.e., 23 kW per ton of product. Furthermore, it was found that the energy saved by implementing separate pasteurization was calculated to be 6.5 kW per ton of product produced.

Keywords: margarine emulsion, votator technology, margarine processing, scraped sur, fat powders

Procedia PDF Downloads 90
20590 Vegetation Integrated with Architecture: A Comparative Study in Vijayawada

Authors: Clince Rodrigues

Abstract:

Due to high dense areas, there is a continuous increase in the global warming and urban pollution, thus integrating green with the built environment is vital. The paper deals with the understanding of vegetation in architecture and how a proper design strategy can aim at improving not only the performances of buildings but also the outdoor climate. In the present scenario of cities, one cannot inhale pure air. Vegetations combat global warming by absorbing the carbon emitted by vehicles, lowering carbon emissions from fossil fuel-burning plants, and reducing the energy used for climate control in buildings by the use of plants which can reduce the carbon emission and thus, making the environment less polluted. A comparative study of areas, neighborhood and dwelling unit has been used as a scope for understanding different scenarios and scale. By comparing a system (area; building) with and without vegetation, and then finding out the difference. Understanding the Vijayawada city by taking its past and present conditions, and how these changes have affected the environment and people at a macro and micro level. Built environment and climactic performance at the building level and surrounding spaces are the areas that are covered in the study.

Keywords: climate, environment, neighborhood, pollution, vegetation, Vijayawada, urban

Procedia PDF Downloads 157
20589 KPI and Tool for the Evaluation of Competency in Warehouse Management for Furniture Business

Authors: Kritchakhris Na-Wattanaprasert

Abstract:

The objective of this research is to design and develop a prototype of a key performance indicator system this is suitable for warehouse management in a case study and use requirement. In this study, we design a prototype of key performance indicator system (KPI) for warehouse case study of furniture business by methodology in step of identify scope of the research and study related papers, gather necessary data and users requirement, develop key performance indicator base on balance scorecard, design pro and database for key performance indicator, coding the program and set relationship of database and finally testing and debugging each module. This study use Balance Scorecard (BSC) for selecting and grouping key performance indicator. The system developed by using Microsoft SQL Server 2010 is used to create the system database. In regard to visual-programming language, Microsoft Visual C# 2010 is chosen as the graphic user interface development tool. This system consists of six main menus: menu login, menu main data, menu financial perspective, menu customer perspective, menu internal, and menu learning and growth perspective. Each menu consists of key performance indicator form. Each form contains a data import section, a data input section, a data searches – edit section, and a report section. The system generates outputs in 5 main reports, the KPI detail reports, KPI summary report, KPI graph report, benchmarking summary report and benchmarking graph report. The user will select the condition of the report and period time. As the system has been developed and tested, discovers that it is one of the ways to judging the extent to warehouse objectives had been achieved. Moreover, it encourages the warehouse functional proceed with more efficiency. In order to be useful propose for other industries, can adjust this system appropriately. To increase the usefulness of the key performance indicator system, the recommendations for further development are as follows: -The warehouse should review the target value and set the better suitable target periodically under the situation fluctuated in the future. -The warehouse should review the key performance indicators and set the better suitable key performance indicators periodically under the situation fluctuated in the future for increasing competitiveness and take advantage of new opportunities.

Keywords: key performance indicator, warehouse management, warehouse operation, logistics management

Procedia PDF Downloads 431
20588 Sustainable Lighting Solutions in Residential Interiors to Combat the Ever-Growing Problem of Environmental Degradation

Authors: Ankita Sharma, Reenu Singh

Abstract:

In order to conserve the ecology and the environment, there is a need to focus on sustainable lighting solutions such as LED bulbs instead of incandescent bulbs, candle-powered lamps, self-cooling smart bulbs, and many more, that are both eco-friendly and practical. This paper focuses on such sustainable solutions to lighting, which will have a major positive impact on the environment in the coming future. A questionnaire survey was conducted to note the responses of people living in high-rise buildings in metropolitan cities with regards to such sustainable lighting choices in their homes. The result of such questionnaire survey has helped to design parameters which are used to ideate design interventions in this field of sustainable lighting choices. This paper includes proposals to facilitate the reduction of electric power in interior lighting through various lighting accessory design interventions. Thus, such design interventions will allow us to design more sustainable interior spaces, and renewable energy strategies can be developed in the field of lighting, which will not only help to save energy but also positively affect other aspects of human well-being such as productivity, heritage conservation and economic well-being too!

Keywords: sustainable, interior lighting, lighting design, environmental impact, metropolitan cities

Procedia PDF Downloads 205
20587 Determination of Material Constants and Zener-Hollomon Parameter of AA2017 Aluminium Alloy under Hot Compression Test

Authors: C. H. Shashikanth, M. J. Davidson, V. Suresh Babu

Abstract:

The formability of metals depends on a number of variables such as strain, strain rate, and temperature. Though most of the metals are formable at room temperature, few are not. To evaluate the workability of such metals at elevated temperatures, thermomechanical experiments should be carried out to find out the forming temperatures and strain rates. Though a number of constitutive relations are available to correlate the material parameters and the corresponding formability at elevated temperatures, the constitutive rule proposed by Arrhenius has been used in this work. Thus, in the present work, the material constants such as A (constant), α (stress multiplier), β (constant), and n (stress exponent) of AA 2017 has been found by conducting a series of hot compression tests at different temperatures such as 400°C, 450°C, 500°C, and 550°C and at different strain rates such as 0.16, 0.18, and 0.2. True stress (σt), true strains (εt) deformation activation energy (Q), and the Zener-Hollomon parameter (Z value) were also calculated. The results indicate that the value of ln (Z) decreases as the temperature increases and it increases as the strain rate increases.

Keywords: hot compression test, aluminium alloy, flow stress, activation energy

Procedia PDF Downloads 622
20586 Welfare and Sustainability in Beef Cattle Production on Tropical Pasture

Authors: Andre Pastori D'Aurea, Lauriston Bertelli Feranades, Luis Eduardo Ferreira, Leandro Dias Pinto, Fabiana Ayumi Shiozaki

Abstract:

The aim of this study was to improve the production of beef cattle on tropical pasture without harming this environment. On tropical pastures, cattle's live weight gain is lower than feedlot, and forage production is seasonable, changing from season to season. Thus, concerned with sustainable livestock production, the Premix Company has developed strategies to improve the production of beef cattle on tropical pasture to ensure sustainability of welfare and production. There are two important principles in this productivity system: 1) increase individual gains with use of better supplementation and 2) increase the productivity units with better forage quality like corn silage or other forms of forage conservations, actually used only in winter, and adding natural additives in the diet. This production system was applied from June 2017 to May 2018 in the Research Center of Premix Company, Patrocínio Paulista, São Paulo State, Brazil. The area used had 9 hectares of pasture of Brachiaria brizantha. 36 steers Nellore were evaluated for one year. The initial weight was 253 kg. The parameters used were daily average gain and gain per area. This indicated the corrections to be made and helped design future fertilization. In this case, we fertilized the pasture with 30 kg of nitrogen per animal divided into two parts. The diet was pasture and protein-energy supplements (0.4% of live weight). The supplement used was added with natural additive Fator P® – Premix Company). Fator P® is an additive composed by amino acids (lysine, methionine and tyrosine, 16400, 2980 and 3000 mg.kg-1 respectively), minerals, probiotics (Saccharomyces cerevisiae, 7 x 10E8 CFU.kg-1) and essential fatty acids (linoleic and oleic acids, 108.9 and 99g.kg-1 respectively). Due to seasonal changes, in the winter we supplemented the diet by increasing the offer of forage, supplementing with maize silage. It was offered 1% of live weight in silage corn and 0.4% of the live weight in protein-energetic supplements with additive Fator P ®. At the end of the period, the productivity was calculated by summing the individual gains for the area used. The average daily gain of the animals were 693 grams per day and was produced 1.005 kg /hectare/year. This production is about 8 times higher than the average of Brazilian meat national production. To succeed in this project, it is necessary to increase the gains per area, so it is necessary to increase the capacity per area. Pasture management is very important to the project's success because the dietary decisions were taken from the quantity and quality of the forage. We, therefore, recommend the use of animals in the growth phase because the response to supplementation is greater in that phase and we can allocate more animals per area. This system's carbon footprint reduces emissions by 61.2 percent compared to the Brazilian average. This beef cattle production system can be efficient and environmentally friendly to the natural. Another point is that bovines will benefit from their natural environment without competing or having an impact on human food production.

Keywords: cattle production, environment, pasture, sustainability

Procedia PDF Downloads 149
20585 A Study on Adsorption Ability of MnO2 Nanoparticles to Remove Methyl Violet Dye from Aqueous Solution

Authors: Zh. Saffari, A. Naeimi, M. S. Ekrami-Kakhki, Kh. Khandan-Barani

Abstract:

The textile industries are becoming a major source of environmental contamination because an alarming amount of dye pollutants are generated during the dyeing processes. Organic dyes are one of the largest pollutants released into wastewater from textile and other industrial processes, which have shown severe impacts on human physiology. Nano-structure compounds have gained importance in this category due their anticipated high surface area and improved reactive sites. In recent years several novel adsorbents have been reported to possess great adsorption potential due to their enhanced adsorptive capacity. Nano-MnO2 has great potential applications in environment protection field and has gained importance in this category because it has a wide variety of structure with large surface area. The diverse structures, chemical properties of manganese oxides are taken advantage of in potential applications such as adsorbents, sensor catalysis and it is also used for wide catalytic applications, such as degradation of dyes. In this study, adsorption of Methyl Violet (MV) dye from aqueous solutions onto MnO2 nanoparticles (MNP) has been investigated. The surface characterization of these nano particles was examined by Particle size analysis, Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy and X-Ray Diffraction (XRD). The effects of process parameters such as initial concentration, pH, temperature and contact duration on the adsorption capacities have been evaluated, in which pH has been found to be most effective parameter among all. The data were analyzed using the Langmuir and Freundlich for explaining the equilibrium characteristics of adsorption. And kinetic models like pseudo first- order, second-order model and Elovich equation were utilized to describe the kinetic data. The experimental data were well fitted with Langmuir adsorption isotherm model and pseudo second order kinetic model. The thermodynamic parameters, such as Free energy of adsorption (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) were also determined and evaluated.

Keywords: MnO2 nanoparticles, adsorption, methyl violet, isotherm models, kinetic models, surface chemistry

Procedia PDF Downloads 258
20584 Comparative Growth Kinetic Studies of Two Strains Saccharomyces cerevisiae Isolated from Dates and a Commercial Strain

Authors: Nizar Chaira

Abstract:

Dates, main products of the oases, due to their therapeutic interests, are considered highly nutritious fruit. Several studies on the valuation biotechnology and technology of dates are made, and several products are already prepared. Isolation of the yeast Saccharomyces cerevisiae, naturally presents in a scrap of date, optimization of growth in the medium based on date syrup and production biomass can potentially expand the range of secondary products of dates. To this end, this paper tries to study the suitability for processing dates technology and biotechnology to use the date pulp as a carbon source for biological transformation. Two strains of Saccharomyces cerevisiae isolated from date syrup (S1, S2) and a commercial strain have used for this study. After optimization of culture conditions, production in a fermenter on two different media (date syrup and beet molasses) was performed. This is followed by studying the kinetics of growth, protein production and consumption of sugars in crops strain 1, 2 and the commercial strain and on both media. The results obtained showed that a concentration of 2% sugar, 2.5 g/l yeast extract, pH 4.5 and a temperature between 25 and 35°C are the optimal conditions for cultivation in a bioreactor. The exponential phase of the specific growth rate of a strain on both media showed that it is about 0.3625 h-1 for the production of a medium based on date syrup and 0.3521 h-1 on beet molasses with a generation time equal to 1.912 h and on the medium based on date syrup, yeast consumes preferentially the reducing sugars. For the production of protein, we showed that this latter presents an exponential phase when the medium starts to run out of reducing sugars. For strain 2, the specific growth rate is about 0.261h-1 for the production on a medium based on date syrup and 0207 h-1 on beet molasses and the base medium syrup date of the yeast consumes preferentially reducing sugars. For the invertase and other metabolits, these increases rapidly after exhaustion of reducing sugars. The comparison of productivity between the three strains on the medium based on date syrup showed that the maximum value is obtained with the second strain: p = 1072 g/l/h as it is about of 0923 g/l/h for strain 1 and 0644 g/l/h for the commercial strain. Thus, isolates of date syrup are more competitive than the commercial strain and can give the same performance in a shorter time with energy gain.

Keywords: date palm, fermentation, molasses, Saccharomyces, syrup

Procedia PDF Downloads 321
20583 Design Systems and the Need for a Usability Method: Assessing the Fitness of Components and Interaction Patterns in Design Systems Using Atmosphere Methodology

Authors: Patrik Johansson, Selina Mardh

Abstract:

The present study proposes a usability test method, Atmosphere, to assess the fitness of components and interaction patterns of design systems. The method covers the user’s perception of the components of the system, the efficiency of the logic of the interaction patterns, perceived ease of use as well as the user’s understanding of the intended outcome of interactions. These aspects are assessed by combining measures of first impression, visual affordance and expectancy. The method was applied to a design system developed for the design of an electronic health record system. The study was conducted involving 15 healthcare personnel. It could be concluded that the Atmosphere method provides tangible data that enable human-computer interaction practitioners to analyze and categorize components and patterns based on perceived usability, success rate of identifying interactive components and success rate of understanding components and interaction patterns intended outcome.

Keywords: atomic design, atmosphere methodology, design system, expectancy testing, first impression testing, usability testing, visual affordance testing

Procedia PDF Downloads 180
20582 Simulating Economic Order Quantity and Reorder Point Policy for a Repairable Items Inventory System

Authors: Mojahid F. Saeed Osman

Abstract:

Repairable items inventory system is a management tool used to incorporate all information concerning inventory levels and movements for repaired and new items. This paper presents development of an effective simulation model for managing the inventory of repairable items for a production system where production lines send their faulty items to a repair shop considering the stochastic failure behavior and repair times. The developed model imitates the process of handling the on-hand inventory of repaired items and the replenishment of the inventory of new items using Economic Order Quantity and Reorder Point ordering policy in a flexible and risk-free environment. We demonstrate the appropriateness and effectiveness of the proposed simulation model using an illustrative case problem. The developed simulation model can be used as a reliable tool for estimating a healthy on-hand inventory of new and repaired items, backordered items, and downtime due to unavailability of repaired items, and validating and examining Economic Order Quantity and Reorder Point ordering policy, which would further be compared with other ordering strategies as future work.

Keywords: inventory system, repairable items, simulation, maintenance, economic order quantity, reorder point

Procedia PDF Downloads 144
20581 Leadership Styles and Adoption of Risk Governance in Insurance and Energy Industry: A Comparative Case Study

Authors: Ruchi Agarwal

Abstract:

In today’s world, companies are operating in dynamic, uncertain and ambiguous business environments. Globally, more companies are failing due to Environmental, Social and Governance (ESG) factors than ever. Corporate governance and risk management are intertwined in nature. For decades, corporate governance and risk management have been influenced by internal and external factors. Three schools of thought have influenced risk governance for decades: Agency theory, Contingency theory, and Institutional theory. Agency theory argues that agents have interests conflicting with principal interests and the information problem. Contingency theory suggests that risk management adoption is influenced by internal and external factors, while Institutional theory suggests that organizations legitimize risk management with regulators, competitors, and professional bodies. The conflicting objectives of theories have created problems for executives in organizations in the adoption of Risk Governance. So far, there are many studies that discussed risk culture and the role of actors in risk governance, but there are rare studies discussing the role of risk culture in the adoption of risk governance from a leadership style perspective. This study explores the adoption of risk governance in two contrasting industries, such as the Insurance and energy business, to understand whether risk governance is influenced by internal/external factors or whether risk culture is influenced by leaders. We draw empirical evidence by comparing the cases of an Indian insurance company and a renewable energy-based firm in India. We interviewed more than 20 senior executives of companies and collected annual reports, risk management policies, and more than 10 PPTs and other reports from 2017 to 2024. We visited the company for follow-up questions several times. The findings of my research revealed that both companies have used risk governance for strategic renewal of the company. Insurance companies use a transactional leadership style based on performance and reward for improving risk, while energy companies use rather symbolic management to make debt restructuring meaningful for stakeholders. Overall, both companies turned from loss-making to profitable ones in a few years. This comparative study highlights the role of different leadership styles in the adoption of risk governance. The study is also distinct as previous research rarely studied risk governance in two contrasting industries in reference to leadership styles.

Keywords: leadership style, corporate governance, risk management, risk culture, strategic renewal

Procedia PDF Downloads 48
20580 The Pore–Scale Darcy–Brinkman–Stokes Model for the Description of Advection–Diffusion–Precipitation Using Level Set Method

Authors: Jiahui You, Kyung Jae Lee

Abstract:

Hydraulic fracturing fluid (HFF) is widely used in shale reservoir productions. HFF contains diverse chemical additives, which result in the dissolution and precipitation of minerals through multiple chemical reactions. In this study, a new pore-scale Darcy–Brinkman–Stokes (DBS) model coupled with Level Set Method (LSM) is developed to address the microscopic phenomena occurring during the iron–HFF interaction, by numerically describing mass transport, chemical reactions, and pore structure evolution. The new model is developed based on OpenFOAM, which is an open-source platform for computational fluid dynamics. Here, the DBS momentum equation is used to solve for velocity by accounting for the fluid-solid mass transfer; an advection-diffusion equation is used to compute the distribution of injected HFF and iron. The reaction–induced pore evolution is captured by applying the LSM, where the solid-liquid interface is updated by solving the level set distance function and reinitialized to a signed distance function. Then, a smoothened Heaviside function gives a smoothed solid-liquid interface over a narrow band with a fixed thickness. The stated equations are discretized by the finite volume method, while the re-initialized equation is discretized by the central difference method. Gauss linear upwind scheme is used to solve the level set distance function, and the Pressure–Implicit with Splitting of Operators (PISO) method is used to solve the momentum equation. The numerical result is compared with 1–D analytical solution of fluid-solid interface for reaction-diffusion problems. Sensitivity analysis is conducted with various Damkohler number (DaII) and Peclet number (Pe). We categorize the Fe (III) precipitation into three patterns as a function of DaII and Pe: symmetrical smoothed growth, unsymmetrical growth, and dendritic growth. Pe and DaII significantly affect the location of precipitation, which is critical in determining the injection parameters of hydraulic fracturing. When DaII<1, the precipitation uniformly occurs on the solid surface both in upstream and downstream directions. When DaII>1, the precipitation mainly occurs on the solid surface in an upstream direction. When Pe>1, Fe (II) transported deeply into and precipitated inside the pores. When Pe<1, the precipitation of Fe (III) occurs mainly on the solid surface in an upstream direction, and they are easily precipitated inside the small pore structures. The porosity–permeability relationship is subsequently presented. This pore-scale model allows high confidence in the description of Fe (II) dissolution, transport, and Fe (III) precipitation. The model shows fast convergence and requires a low computational load. The results can provide reliable guidance for injecting HFF in shale reservoirs to avoid clogging and wellbore pollution. Understanding Fe (III) precipitation, and Fe (II) release and transport behaviors give rise to a highly efficient hydraulic fracture project.

Keywords: reactive-transport , Shale, Kerogen, precipitation

Procedia PDF Downloads 164
20579 Need of Medicines Information OPD in Tertiary Health Care Settings: A Cross Sectional Study

Authors: Swanand Pathak, Kiran R. Giri, Reena R. Giri, Kamlesh Palandurkar, Sangita Totade, Rajesh Jha, S. S. Patel

Abstract:

Background: Population burden, illiteracy, availability of few doctors for larger group of population leads to many unanswered questions left in a patient’s mind. Incomplete information results into noncompliance, therapeutic failure, and adverse drug reactions (ADR). It is very important to establish a system which will provide noncommercial, independent, unbiased source of medicine information. Medicines Info OPD is a concept and step towards safe and appropriate use of medicines. Objective: (1) to assess the present status of knowledge about the medicines in the patients and its correlation with education; (2) to assess the medicine information dispensing modalities, their use and sufficiency from the patients view point; (3) to assess the overall need for Medicines Information OPD in present scenario. Materials and Methods: A pre-validated questionnaire based study was conducted amongst 500 patients of tertiary health care hospital. The questionnaire consisted of specific questions regarding understanding of prescription, knowledge about adverse drug reaction, view about self-medication and opinion regarding the need of Medicines Info OPD. Results: Significantly large proportion of patients opined that doctors do not have sufficient time in current Indian healthcare to explain the prescription and they are not aware of adverse drug reactions, expiry date or use the package inserts etc. Conclusion: Clinically relevant, up to date, user specific, independent, objective and unbiased Medicines Info OPD is essential for appropriate drug use and can help in a big way to common public to address many problems faced by them.

Keywords: information, prescription, unbiased, clinically relevant

Procedia PDF Downloads 442
20578 Dendrimer-Encapsulated N, Pt Co-Doped TiO₂ for the Photodegration of Contaminated Wastewater

Authors: S. K. M. Nzaba, H. H. Nyoni, B. Ntsendwana, B. B. Mamba, A. T. Kuvarega

Abstract:

Azo dye effluents, released into water bodies are not only toxic to the ecosystem but also pose a serious impact on human health due to the carcinogenic and mutagenic effects of the compounds present in the dye discharge. Conventional water treatment methods such as adsorption, flocculation/coagulation and biological processes are not effective in completely removing most of the dyes and their natural degradation by-products. Advanced oxidation processes (AOPs) have proven to be effective technologies for complete mineralization of these recalcitrant pollutants. Therefore, there is a need for new technology that can solve the problem. Thus, this study examined the photocatalytic degradation of an azo dye brilliant black (BB) using non-metal/metal codoped TiO₂. N, Pt co-doped TiO₂ photocatalysts were prepared by a modified sol-gel method using amine-terminated polyamidoamine dendrimer generation 0 (PAMAM G0), amine-terminated polyamidoamine dendrimer generation 1 ( PAMAM G1) and hyperbranched polyethyleneimine (HPEI) as templates and source of nitrogen. Structural, morphological, and textural properties were evaluated using scanning electron microscopy coupled to energy dispersive X-ray spectroscopy (SEM/EDX), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), Fourier- transform infrared (FTIR), Raman spectroscopy (RS), photoluminescence (PL) and ultra-violet /visible spectroscopy (UV-Vis). The synthesized photocatalysts exhibited lower band gap energies as compared to the Degussa P-25 revealing a red shift in band gap towards the visible light absorption region. Photocatalytic activity of N, Pt co-doped TiO₂ was measured by the reaction of photocatalytic degradation of brilliant black (BB) dye. The N, metal codoped TiO₂ containing 0.5 wt. % of the metal consisted mainly of the anatase phase as confirmed by XRD results of all three samples, with a particle size range of 13–30 nm. The particles were largely spherical and shifted the absorption edge well into the visible region. Band gap reduction was more pronounced for the N, Pt HPEI (Pt 0.5 wt. %) codoped TiO₂ compared to PAMAM G0 and PAMAM G1. Consequently, codoping led to an enhancement in the photocatalytic activity of the materials for the degradation of brilliant black (BB).

Keywords: codoped TiO₂, dendrimer, photodegradation, wastewater

Procedia PDF Downloads 174
20577 Comparative Study of Impact Strength and Fracture Morphological of Nano-CaCO3 and Nanoclay Reinforced HDPE Nanocomposites

Authors: Harun Sepet, Necmettin Tarakcioglu

Abstract:

The present study investigated the impact strength and fracture mechanism of nano-CaCO3 and nanoclay reinforced HDPE nanocomposites by using Charpy impact test. The nano-CaCO3 and nanoclay reinforced HDPE granules were prepared by the melt blending method using a compounder system, which consists of industrial banbury mixer, single screw extruder and granule cutting in industrial-scale. The nano-CaCO3 and nanoclay reinforced HDPE granules were molded using an injection-molding machine as plates, and then impact samples were cut by using punching die from the nanocomposite plates. As a result of impact experiments, nano-CaCO3 and nanoclay reinforced HDPE nanocomposites were determined to have lower impact energy level than neat HDPE. Also, the impact strength of HDPE further decreased by addition nanoclay compared to nano-CaCO3. The occurred fracture areas with the impact were detected by SEM examination. It is understood that fracture surface morphology changes when nano-CaCO3 and nanoclay ratio increases. The fracture surface changes were examined to determine the fracture mechanism of nano-CaCO3 and nanoclay reinforced HDPE nanocomposites.

Keywords: charpy, HDPE, industrial scale nano-CaCO3, nanoclay, nanocomposite

Procedia PDF Downloads 411
20576 Correction Factors for Soil-Structure Interaction Predicted by Simplified Models: Axisymmetric 3D Model versus Fully 3D Model

Authors: Fu Jia

Abstract:

The effects of soil-structure interaction (SSI) are often studied using axial-symmetric three-dimensional (3D) models to avoid the high computational cost of the more realistic, fully 3D models, which require 2-3 orders of magnitude more computer time and storage. This paper analyzes the error and presents correction factors for system frequency, system damping, and peak amplitude of structural response computed by axisymmetric models, embedded in uniform or layered half-space. The results are compared with those for fully 3D rectangular foundations of different aspect ratios. Correction factors are presented for a range of the model parameters, such as fixed-base frequency, structure mass, height and length-to-width ratio, foundation embedment, soil-layer stiffness and thickness. It is shown that the errors are larger for stiffer, taller and heavier structures, deeper foundations and deeper soil layer. For example, for a stiff structure like Millikan Library (NS response; length-to-width ratio 1), the error is 6.5% in system frequency, 49% in system damping and 180% in peak amplitude. Analysis of a case study shows that the NEHRP-2015 provisions for reduction of base shear force due to SSI effects may be unsafe for some structures and need revision. The presented correction factor diagrams can be used in practical design and other applications.

Keywords: 3D soil-structure interaction, correction factors for axisymmetric models, length-to-width ratio, NEHRP-2015 provisions for reduction of base shear force, rectangular embedded foundations, SSI system frequency, SSI system damping

Procedia PDF Downloads 267
20575 Realizing Teleportation Using Black-White Hole Capsule Constructed by Space-Time Microstrip Circuit Control

Authors: Mapatsakon Sarapat, Mongkol Ketwongsa, Somchat Sonasang, Preecha Yupapin

Abstract:

The designed and performed preliminary tests on a space-time control circuit using a two-level system circuit with a 4-5 cm diameter microstrip for realistic teleportation have been demonstrated. It begins by calculating the parameters that allow a circuit that uses the alternative current (AC) at a specified frequency as the input signal. A method that causes electrons to move along the circuit perimeter starting at the speed of light, which found satisfaction based on the wave-particle duality. It is able to establish the supersonic speed (faster than light) for the electron cloud in the middle of the circuit, creating a timeline and propulsive force as well. The timeline is formed by the stretching and shrinking time cancellation in the relativistic regime, in which the absolute time has vanished. In fact, both black holes and white holes are created from time signals at the beginning, where the speed of electrons travels close to the speed of light. They entangle together like a capsule until they reach the point where they collapse and cancel each other out, which is controlled by the frequency of the circuit. Therefore, we can apply this method to large-scale circuits such as potassium, from which the same method can be applied to form the system to teleport living things. In fact, the black hole is a hibernation system environment that allows living things to live and travel to the destination of teleportation, which can be controlled from position and time relative to the speed of light. When the capsule reaches its destination, it increases the frequency of the black holes and white holes canceling each other out to a balanced environment. Therefore, life can safely teleport to the destination. Therefore, there must be the same system at the origin and destination, which could be a network. Moreover, it can also be applied to space travel as well. The design system will be tested on a small system using a microstrip circuit system that we can create in the laboratory on a limited budget that can be used in both wired and wireless systems.

Keywords: quantum teleportation, black-white hole, time, timeline, relativistic electronics

Procedia PDF Downloads 75
20574 Phytochemical and Vitamin Composition of Wild Edible Plants Consumed in South West Ethiopia

Authors: Abebe Yimer, Sirawdink Fikereyesus Forsido, Getachew Addis, Abebe Ayelign

Abstract:

Background: Oxidative stress has been an important health problem as itinduceschronic diseases such as cancer, cardiovascular, diabetics, and neurodegenerative disease. Plant source natural antioxidant has gained attention as synthetic antioxidant negatively impact human health. Wild edible plants arecheap source of dietary-medicine in mainly rural communityin south-west Ethiopia and elsewhere the country. Thus, the study aimed to determine total pheneol,flavoinoids, antioxidant, vitamin C, and beta-carotene content from wild edible plants Solanum nigrum L., Vigna membranacea A. Rich, Dioscorea praehensilis Benth., Trilepisium madagascariense D.C.andCleome gynandra L. Methods: Methanol was used to extract samples of oven-dried edible plants. Total phenolic compound (TPC) was determined using a Folin Ciocalteu method, whereas total flavonoid content (TFC) was determined using the Aluminium chloride colorimetric method. By using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) tests, antioxidant activities were evaluated in vitro. Additionally, beta-carotene was assessed using a spectrophotometric technique, whilst vitamin C was determined using a titration approach. Results: Total flavonoid contentranged from 0.85±0.03 to 11.25±0.01 mg CE/g in D. praehensilis Benth. tuber and C. gynandra L, respectively. Total phenolic compounds varied from 0.25±0.06 GAE/g in D. praehensilis Benth tuber to 35.73±2.52 GAE/g in S.nigrum L. leaves. In the DPPH test, the highest antioxidant value (87.65%) was obtained in the S.nigrum L. leaves, whereas the smallest amount of antioxidant (50.12%)was contained in D. praehensilis Benth tuber. Similarly in FRAP assay,D. praehensilis Benth tuber showed the least reducing potential(49.16± 2.13mM Fe2+/100 g)whilst the highest reducing potential was presented in the S.nigrum L. leaves(188.12±1.13 mM Fe2+/100 g). The beta-carotene content was found between 11.81±0.00 mg/100g in D. praehensilis Benth tubers to 34.49±0.95 mg/100g in V. membranacea A. Rich leaves. The concentration of vitamin C ranged from 10.00±0.61 in D. praehensilis Benth tubers to 45±1.80 mg/100g in V. membranacea A. Rich leaves. The results showed that high positive linear correlations between TPC and TFC of WEPs (r=0.828), as well as between FRAP and total phenolic contents (r = 0.943) and FRAP and vitamin C (r= 0.928). Conclusion: These findings showed the total phenolic and flavonoid contents of Solanum nigrum L. and Cleome gynandra L, respectively, are abundant. The outcome may be used as a natural supply of dietary antioxidants, which may be useful in preventing oxidative stress. The study's findings also showed that Vigna membranacea A. Rich leaves were cheap source of vitamin C and beta-carotene for people who consumed these wild green. Additional research on the in vivo antioxidant activity, toxicological analysis, and promotion of these wild food plants for agricultural production should be taken into consideration.

Keywords: antioxidant activity, beta-carotene, flavonoids, phenolic content, and vitamin c

Procedia PDF Downloads 102
20573 Optimizing Hydrogen Production from Biomass Pyro-Gasification in a Multi-Staged Fluidized Bed Reactor

Authors: Chetna Mohabeer, Luis Reyes, Lokmane Abdelouahed, Bechara Taouk

Abstract:

In the transition to sustainability and the increasing use of renewable energy, hydrogen will play a key role as an energy carrier. Biomass has the potential to accelerate the realization of hydrogen as a major fuel of the future. Pyro-gasification allows the conversion of organic matter mainly into synthesis gas, or “syngas”, majorly constituted by CO, H2, CH4, and CO2. A second, condensable fraction of biomass pyro-gasification products are “tars”. Under certain conditions, tars may decompose into hydrogen and other light hydrocarbons. These conditions include two types of cracking: homogeneous cracking, where tars decompose under the effect of temperature ( > 1000 °C), and heterogeneous cracking, where catalysts such as olivine, dolomite or biochar are used. The latter process favors cracking of tars at temperatures close to pyro-gasification temperatures (~ 850 °C). Pyro-gasification of biomass coupled with water-gas shift is the most widely practiced process route for biomass to hydrogen today. In this work, an innovating solution will be proposed for this conversion route, in that all the pyro-gasification products, not only methane, will undergo processes that aim to optimize hydrogen production. First, a heterogeneous cracking step was included in the reaction scheme, using biochar (remaining solid from the pyro-gasification reaction) as catalyst and CO2 and H2O as gasifying agents. This process was followed by a catalytic steam methane reforming (SMR) step. For this, a Ni-based catalyst was tested under different reaction conditions to optimize H2 yield. Finally, a water-gas shift (WGS) reaction step with a Fe-based catalyst was added to optimize the H2 yield from CO. The reactor used for cracking was a fluidized bed reactor, and the one used for SMR and WGS was a fixed bed reactor. The gaseous products were analyzed continuously using a µ-GC (Fusion PN 074-594-P1F). With biochar as bed material, it was seen that more H2 was obtained with steam as a gasifying agent (32 mol. % vs. 15 mol. % with CO2 at 900 °C). CO and CH4 productions were also higher with steam than with CO2. Steam as gasifying agent and biochar as bed material were hence deemed efficient parameters for the first step. Among all parameters tested, CH4 conversions approaching 100 % were obtained from SMR reactions using Ni/γ-Al2O3 as a catalyst, 800 °C, and a steam/methane ratio of 5. This gave rise to about 45 mol % H2. Experiments about WGS reaction are currently being conducted. At the end of this phase, the four reactions are performed consecutively, and the results analyzed. The final aim is the development of a global kinetic model of the whole system in a multi-stage fluidized bed reactor that can be transferred on ASPEN PlusTM.

Keywords: multi-staged fluidized bed reactor, pyro-gasification, steam methane reforming, water-gas shift

Procedia PDF Downloads 138
20572 An Exploratory Study Regarding the Effects of Auditor Switch, Auditee’s Industry, and Auditee’s Location on Audit Fees in Australia

Authors: Ashkan Mirzay Fashami

Abstract:

This study examines the effects of auditor switch, auditee’s industry, and auditee’s location on audit fees in Australia. It uses fee data of Australian Securities Exchange 500 companies, considering all industry classifications throughout the country from 2006 until 2016. Main findings show that auditor switch does not affect audit fees. However, auditee’s industry affects audit fees. This effect occurs in information technology, financials, energy, and materials sectors among the top 500 companies. Financials, energy, and materials sectors face a fee rise, whereas information technology has a fee cut. The extent of fee changes is different among various industries, wherein the financial sector has the highest increase. Further, auditee’s location affects audit fees. Top 500 companies in Hobart, Perth, and Brisbane face a fee reduction, wherein the highest cut is in Hobart. Further analysis suggests that the Australian audit market is being increasingly concentrated in the hands of the Big Four audit firms.

Keywords: audit, auditor switch, Australia, fee, low-balling

Procedia PDF Downloads 140
20571 Study on Chinese High School Students’ Physical Activity Promotion

Authors: Min Wang, Hui Tian

Abstract:

Health promotion of high school students is essential for the construction of ‘Healthy China’, and increasing high school students’ physical activity is a must for their health promotion. School plays a crucial role in increasing high school students’ physical activity. Therefore, to have a comprehensive command of the school physical activity promotion strategies is of great significance for the health promotion of high school students in China and will shed some light on physical activity promotion worldwide. Literature review and interview survey are the main methods adopted for this research. It has been found that reforms of P.E. classes, improving the overall quality of P.E. teachers, and construction of school fields and facilities are among the major strategies to promote students’ physical activities. Even though it has been stipulated that primary and middle school students should take 3-4 times of P.E. classes per week, the execution is greatly influenced by the exam-oriented educational system. Randomly canceling P.E. classes or taking up the time to study other subjects is common, so it is difficult to guarantee the quantity of P.E. classes. According to national surveys, only 20%-40% of schools have 3-4 times of P.E. classes per week. In order to reduce the hindering effects of the exam-oriented educational system, a physical education test is included in the senior middle school entrance exam. The exam items include 1000m run for boys, 800m run for girls, and the basic skills for basketball/football/volleyball. The scores of the physical education test will greatly influence the admission of senior middle schools. China is now developing the ‘campus football’ policy and has established 20,000 football featured schools by 2017. Especially in these schools, football has become an important part of the students’ P.E. classes and a major means to promote students’ physical activity. As the Winter Olympics will be held in Beijing in 2022, China has promoted the ‘winter sports for all’ movement. The aim is to encourage 300 million people to winter sports, and the high school students are among the most potential participants. The primary and middle schools in Beijing have introduced winter sports to their P.E. curriculum, providing opportunities for the students to experience ice hockey and curling. Some Winter Olympics champions also go to the schools to popularize winter sports among the students. This greatly adds variety to the students’ physical activity regimen at school. In November 2017, seven ministries, including the General Administration of Sport of China and Ministry of Education of the People’s Republic of China, release Youth Sport Promotion Strategy. The strategy stipulates to strengthen the construction of youth sport facilities and implement the cultivation plan for P.E. teachers. It also emphasizes that school sport facilities should be open to students during holidays and vacations for free or at an affordable price. Overall speaking, the Chinese government stresses the importance of youth physical activity promotion and has issued a series of related policies and strategies, but the implementation still needs improvement.

Keywords: China, physical activity, promotion, school

Procedia PDF Downloads 99