Search results for: series hybrid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4311

Search results for: series hybrid

3351 Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications

Authors: Manisha A. Hira, Arup Rakshit

Abstract:

Textile substrates are endowed with flexibility and ease of making–up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics.

Keywords: carbon fiber, conductive textiles, electrostatic dissipative materials, hybrid yarns

Procedia PDF Downloads 304
3350 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification

Procedia PDF Downloads 348
3349 Dairy Wastewater Treatment by Electrochemical and Catalytic Method

Authors: Basanti Ekka, Talis Juhna

Abstract:

Dairy industrial effluents originated by the typical processing activities are composed of various organic and inorganic constituents, and these include proteins, fats, inorganic salts, antibiotics, detergents, sanitizers, pathogenic viruses, bacteria, etc. These contaminants are harmful to not only human beings but also aquatic flora and fauna. Because consisting of large classes of contaminants, the specific targeted removal methods available in the literature are not viable solutions on the industrial scale. Therefore, in this on-going research, a series of coagulation, electrochemical, and catalytic methods will be employed. The bulk coagulation and electrochemical methods can wash off most of the contaminants, but some of the harmful chemicals may slip in; therefore, specific catalysts designed and synthesized will be employed for the removal of targeted chemicals. In the context of Latvian dairy industries, presently, work is under progress on the characterization of dairy effluents by total organic carbon (TOC), Inductively Coupled Plasma Mass Spectrometry (ICP-MS)/ Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), High-Performance Liquid Chromatography (HPLC), Gas Chromatography-Mass Spectrometry (GC-MS), and Mass Spectrometry. After careful evaluation of the dairy effluents, a cost-effective natural coagulant will be employed prior to advanced electrochemical technology such as electrocoagulation and electro-oxidation as a secondary treatment process. Finally, graphene oxide (GO) based hybrid materials will be used for post-treatment of dairy wastewater as graphene oxide has been widely applied in various fields such as environmental remediation and energy production due to the presence of various oxygen-containing groups. Modified GO will be used as a catalyst for the removal of remaining contaminants after the electrochemical process.

Keywords: catalysis, dairy wastewater, electrochemical method, graphene oxide

Procedia PDF Downloads 144
3348 Half Model Testing for Canard of a Hybrid Buoyant Aircraft

Authors: Anwar U. Haque, Waqar Asrar, Ashraf Ali Omar, Erwin Sulaeman, Jaffer Sayed Mohamed Ali

Abstract:

Due to the interference effects, the intrinsic aerodynamic parameters obtained from the individual component testing are always fundamentally different than those obtained for complete model testing. Consideration and limitation for such testing need to be taken into account in any design work related to the component buildup method. In this paper, the scaled model of a straight rectangular canard of a hybrid buoyant aircraft is tested at 50 m/s in IIUM-LSWT (Low-Speed Wind Tunnel). Model and its attachment with the balance are kept rigid to have results free from the aeroelastic distortion. Based on the velocity profile of the test section’s floor; the height of the model is kept equal to the corresponding boundary layer displacement. Balance measurements provide valuable but limited information of the overall aerodynamic behavior of the model. Zero lift coefficient is obtained at -2.2o and the corresponding drag coefficient was found to be less than that at zero angles of attack. As a part of the validation of low fidelity tool, the plot of lift coefficient plot was verified by the experimental data and except the value of zero lift coefficient, the overall trend has under-predicted the lift coefficient. Based on this comparative study, a correction factor of 1.36 is proposed for lift curve slope obtained from the panel method.

Keywords: wind tunnel testing, boundary layer displacement, lift curve slope, canard, aerodynamics

Procedia PDF Downloads 469
3347 Hybrid Learning and Testing at times of Corona: A Case Study at an English Department

Authors: Mimoun Melliti

Abstract:

In the wake of the global pandemic, educational systems worldwide faced unprecedented challenges and had to swiftly adapt to new conditions. This necessitated a fundamental shift in assessment processes, as traditional in-person exams became impractical. The present paper aims to investigate how educational systems have adapted to the new conditions imposed by the outbreak of the pandemic. This paper serves as a case study documenting the various decisions, conditions, experiments, and outcomes associated with transitioning the assessment processes of a higher education institution to a fully online format. The participants of this study consisted of 4666 students from health, engineering, science, and humanities disciplines, who were enrolled in general English (Eng101/104) and English for specific purposes (Eng102/113) courses at a preparatory year institution in Saudi Arabia. The findings of this study indicate that online assessment can be effectively implemented given the fulfillment of specific requirements. These prerequisites encompass the presence of competent staff, administrative flexibility, and the availability of necessary infrastructure and technological support. The significance of this case study lies in its comprehensive description of the various steps and measures undertaken to adapt to the "new normal" situation. Furthermore, it evaluates the impact of these measures and offers detailed recommendations for potential similar future scenarios.

Keywords: hybrid learning, testing, adaptive teaching, EFL

Procedia PDF Downloads 61
3346 Carbon Electrode Materials for Supercapacitors

Authors: Yu. Mateyshina, A. Ulihin, N. Uvarov

Abstract:

Supercapacitors are one of the most promising devices for energy storage applications as they can provide higher power density than batteries and higher energy density than conventional dielectric capacitors. Carbon materials with various microtextures are considered as main candidates for supercapacitors in terms of high surface area, interconnected pore structure, controlled pore size, high electrical conductivity and environmental friendliness. The specific capacitance (C) of the electrode material of the Electrochemical Double Layer Capacitors (EDLC) is known to depend on the specific surface area (Ss) and the pore structure. Activated carbons are most commonly used in supercapacitors because of their high surface area (Ss ≥ 1000 m2/g), good adhesion to electrolytes and low cost. In this work, electrochemical properties of new microporous and mesoporous carbon electrode materials were studied. The aim of the work was to investigate the relationship between the specific capacitance and specific surface area in a series of materials prepared from different organic precursors.. As supporting matrixes different carbon samples with Ss = 100-2000 m2/g were used. The materials were modified by treatment in acids (H2SO4, HNO3, acetic acid) in order to enable surface hydrophilicity. Then nanoparticles of transition metal oxides (for example NiO) were deposited on the carbon surfaces using methods of salts impregnation, mechanical treatment in ball mills and the precursors decomposition. The electrochemical characteristics of electrode hybrid materials were investigated in a symmetrical two-electrode cell using an impedance spectroscopy, voltammetry in both potentiodynamic and galvanostatic modes. It was shown that the value of C for the materials under study strongly depended on the preparation method of the electrode and the type of electrolyte (1 M H2SO4, 6 M KOH, 1 M LiClO4 in acetonitryl). Specific capacity may be increased by the introduction of nanoparticles from 50-100 F/g for initial carbon materials to 150-300 F/g for nanocomposites which may be used in supercapacitors. The work is supported by the по SC-14.604.21.0013.

Keywords: supercapacitors, carbon electrode, mesoporous carbon, electrochemistry

Procedia PDF Downloads 305
3345 Assessing Two Protocols for Positive Reinforcement Training in Captive Olive Baboons (Papio anubis)

Authors: H. Cano, P. Ferrer, N. Garcia, M. Popovic, J. Zapata

Abstract:

Positive Reinforcement Training is a well-known methodology which has been reported frequently to be used in captive non-human primates. As a matter of fact, it is an invaluable tool for different purposes related with animal welfare, such as primate husbandry and environmental enrichment. It is also essential to perform some cognitive experiments. The main propose of this pilot study was to establish an efficient protocol to train captive olive baboons (Papio anubis). This protocol seems to be vital in the context of a larger research program in which it will be necessary to train a complete population of around 40 baboons. Baboons were studied at the Veterinary Research Farm of the University of Murcia. Temporally isolated animals were trained to perform three basic tasks. Firstly, they were required to take food prices directly from the researchers’ hands. Then a clicker sound or bridge stimulus was added each time the animal acceded to the reinforcement. Finally, they were trained to touch a target, consisted of a whip with a red ball in its end, with their hands or their nose. When the subject completed correctly this task, it was also exposed to the bridge stimulus and awarded with a food price, such as a portion of banana, orange, apple, peach or a raisin. Two protocols were tested during this experiment. In both of them, there were 6 series of 2min training periods each day. However, in the first protocol, the series consisted in 3 trials, whereas in the second one, in each series there were 5 trials. A reliable performance was obtained with only 6 days of training in the case of the 5-trials protocol. However, with the 3-trials one, 26 days of training were needed. As a result, the 5-trials protocol seems to be more effective than the 3-trials one, in order to teach these three basic tasks to olive baboons. In consequence, it will be used to train the rest of the colony.

Keywords: captive primates, olive baboon, positive reinforcement training, Papio anubis, training

Procedia PDF Downloads 124
3344 Fast High Voltage Solid State Switch Using Insulated Gate Bipolar Transistor for Discharge-Pumped Lasers

Authors: Nur Syarafina Binti Othman, Tsubasa Jindo, Makato Yamada, Miho Tsuyama, Hitoshi Nakano

Abstract:

A novel method to produce a fast high voltage solid states switch using Insulated Gate Bipolar Transistors (IGBTs) is presented for discharge-pumped gas lasers. The IGBTs are connected in series to achieve a high voltage rating. An avalanche transistor is used as the gate driver. The fast pulse generated by the avalanche transistor quickly charges the large input capacitance of the IGBT, resulting in a switch out of a fast high-voltage pulse. The switching characteristic of fast-high voltage solid state switch has been estimated in the multi-stage series-connected IGBT with the applied voltage of several tens of kV. Electrical circuit diagram and the mythology of fast-high voltage solid state switch as well as experimental results obtained are presented.

Keywords: high voltage, IGBT, solid state switch, bipolar transistor

Procedia PDF Downloads 552
3343 Resource Leveling Optimization in Construction Projects of High Voltage Substations Using Nature-Inspired Intelligent Evolutionary Algorithms

Authors: Dimitrios Ntardas, Alexandros Tzanetos, Georgios Dounias

Abstract:

High Voltage Substations (HVS) are the intermediate step between production of power and successfully transmitting it to clients, making them one of the most important checkpoints in power grids. Nowadays - renewable resources and consequently distributed generation are growing fast, the construction of HVS is of high importance both in terms of quality and time completion so that new energy producers can quickly and safely intergrade in power grids. The resources needed, such as machines and workers, should be carefully allocated so that the construction of a HVS is completed on time, with the lowest possible cost (e.g. not spending additional cost that were not taken into consideration, because of project delays), but in the highest quality. In addition, there are milestones and several checkpoints to be precisely achieved during construction to ensure the cost and timeline control and to ensure that the percentage of governmental funding will be granted. The management of such a demanding project is a NP-hard problem that consists of prerequisite constraints and resource limits for each task of the project. In this work, a hybrid meta-heuristic method is implemented to solve this problem. Meta-heuristics have been proven to be quite useful when dealing with high-dimensional constraint optimization problems. Hybridization of them results in boost of their performance.

Keywords: hybrid meta-heuristic methods, substation construction, resource allocation, time-cost efficiency

Procedia PDF Downloads 152
3342 Deep Learning for SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network

Procedia PDF Downloads 68
3341 Switching of Series-Parallel Connected Modules in an Array for Partially Shaded Conditions in a Pollution Intensive Area Using High Powered MOSFETs

Authors: Osamede Asowata, Christo Pienaar, Johan Bekker

Abstract:

Photovoltaic (PV) modules may become a trend for future PV systems because of their greater flexibility in distributed system expansion, easier installation due to their nature, and higher system-level energy harnessing capabilities under shaded or PV manufacturing mismatch conditions. This is as compared to the single or multi-string inverters. Novel residential scale PV arrays are commonly connected to the grid by a single DC–AC inverter connected to a series, parallel or series-parallel string of PV panels, or many small DC–AC inverters which connect one or two panels directly to the AC grid. With an increasing worldwide interest in sustainable energy production and use, there is renewed focus on the power electronic converter interface for DC energy sources. Three specific examples of such DC energy sources that will have a role in distributed generation and sustainable energy systems are the photovoltaic (PV) panel, the fuel cell stack, and batteries of various chemistries. A high-efficiency inverter using Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) for all active switches is presented for a non-isolated photovoltaic and AC-module applications. The proposed configuration features a high efficiency over a wide load range, low ground leakage current and low-output AC-current distortion with no need for split capacitors. The detailed power stage operating principles, pulse width modulation scheme, multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter is described. Experimental results of a hardware prototype, show that not only are MOSFET efficient in the system, it also shows that the ground leakage current issues are alleviated in the proposed inverter and also a 98 % maximum associated driver circuit is achieved. This, in turn, provides the need for a possible photovoltaic panel switching technique. This will help to reduce the effect of cloud movements as well as improve the overall efficiency of the system.

Keywords: grid connected photovoltaic (PV), Matlab efficiency simulation, maximum power point tracking (MPPT), module integrated converters (MICs), multilevel converter, series connected converter

Procedia PDF Downloads 127
3340 To Ensure Maximum Voter Privacy in E-Voting Using Blockchain, Convolutional Neural Network, and Quantum Key Distribution

Authors: Bhaumik Tyagi, Mandeep Kaur, Kanika Singla

Abstract:

The advancement of blockchain has facilitated scholars to remodel e-voting systems for future generations. Server-side attacks like SQL injection attacks and DOS attacks are the most common attacks nowadays, where malicious codes are injected into the system through user input fields by illicit users, which leads to data leakage in the worst scenarios. Besides, quantum attacks are also there which manipulate the transactional data. In order to deal with all the above-mentioned attacks, integration of blockchain, convolutional neural network (CNN), and Quantum Key Distribution is done in this very research. The utilization of blockchain technology in e-voting applications is not a novel concept. But privacy and security issues are still there in a public and private blockchains. To solve this, the use of a hybrid blockchain is done in this research. This research proposed cryptographic signatures and blockchain algorithms to validate the origin and integrity of the votes. The convolutional neural network (CNN), a normalized version of the multilayer perceptron, is also applied in the system to analyze visual descriptions upon registration in a direction to enhance the privacy of voters and the e-voting system. Quantum Key Distribution is being implemented in order to secure a blockchain-based e-voting system from quantum attacks using quantum algorithms. Implementation of e-voting blockchain D-app and providing a proposed solution for the privacy of voters in e-voting using Blockchain, CNN, and Quantum Key Distribution is done.

Keywords: hybrid blockchain, secure e-voting system, convolutional neural networks, quantum key distribution, one-time pad

Procedia PDF Downloads 94
3339 Finite Element Analysis of Hollow Structural Shape (HSS) Steel Brace with Infill Reinforcement under Cyclic Loading

Authors: Chui-Hsin Chen, Yu-Ting Chen

Abstract:

Special concentrically braced frames is one of the seismic load resisting systems, which dissipates seismic energy when bracing members within the frames undergo yielding and buckling while sustaining their axial tension and compression load capacities. Most of the inelastic deformation of a buckling bracing member concentrates in the mid-length region. While experiencing cyclic loading, the region dissipates most of the seismic energy being input into the frame. Such a concentration makes the braces vulnerable to failure modes associated with low-cycle fatigue. In this research, a strategy to improve the cyclic behavior of the conventional steel bracing member is proposed by filling the Hollow Structural Shape (HSS) member with reinforcement. It prevents the local section from concentrating large plastic deformation caused by cyclic loading. The infill helps spread over the plastic hinge region into a wider area hence postpone the initiation of local buckling or even the rupture of the braces. The finite element method is introduced to simulate the complicated bracing member behavior and member-versus-infill interaction under cyclic loading. Fifteen 3-D-element-based models are built by ABAQUS software. The verification of the FEM model is done with unreinforced (UR) HSS bracing members’ cyclic test data and aluminum honeycomb plates’ bending test data. Numerical models include UR and filled HSS bracing members with various compactness ratios based on the specification of AISC-2016 and AISC-1989. The primary variables to be investigated include the relative bending stiffness and the material of the filling reinforcement. The distributions of von Mises stress and equivalent plastic strain (PEEQ) are used as indices to tell the strengths and shortcomings of each model. The result indicates that the change of relative bending stiffness of the infill is much more influential than the change of material in use to increase the energy dissipation capacity. Strengthen the relative bending stiffness of the reinforcement results in additional energy dissipation capacity to the extent of 24% and 46% in model based on AISC-2016 (16-series) and AISC-1989 (89-series), respectively. HSS members with infill show growth in 𝜂Local Buckling, normalized energy cumulated until the happening of local buckling, comparing to UR bracing members. The 89-series infill-reinforced members have more energy dissipation capacity than unreinforced 16-series members by 117% to 166%. The flexural rigidity of infills should be less than 29% and 13% of the member section itself for 16-series and 89-series bracing members accordingly, thereby guaranteeing the spread over of the plastic hinge and the happening of it within the reinforced section. If the parameters are properly configured, the ductility, energy dissipation capacity, and fatigue-life of HSS SCBF bracing members can be improved prominently by the infill-reinforced method.

Keywords: special concentrically braced frames, HSS, cyclic loading, infill reinforcement, finite element analysis, PEEQ

Procedia PDF Downloads 93
3338 Deep Learning Based Polarimetric SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry

Procedia PDF Downloads 90
3337 Effect of Cabbage and Cauliflower Emitted Volatile Organic Compounds on Foraging Response of Plutella xylostella

Authors: Sumbul Farhat, Pratyay Vaibhav, Sarah Jain, Kapinder Kumar, Archna Kumar

Abstract:

The Diamondback Moth, Plutella xylostella (Linnaeus), is a major pest of cole crops that causes approximately 50% loss in global production. The utilization of inorganic pesticides is reflected in the development of resistance to this pest. Thus, there is a great need for an eco-friendly, sustainable strategy for the control of this pest. Although this pest, several natural enemies are reported worldwide, none of them can control it efficiently. Therefore, a proposed study is planned to understand the Volatile Organic Compounds (VOCs) mediated signaling interaction mechanism of the plant, pest, and natural enemy. For VOCs collection during different deployment stages of Cabbage POI, Green Ball, Pusa Cabbage, Cabbage Local, Snowball 16, Kanchan Plus, Pusa Meghna, Farm Sona Hybrid F1, and Samridhi F1 Hybrid, the Solid-phase microextraction (SPME) method was employed. Characterization of VOCs was conducted by Gas Chromatography-Mass Spectrometry (GC-MS). The impact of collected VOCs was assessed through Y-Tube Bioassays. The results indicate that the Cabbage variety Green Ball shows maximum repellency for P. xylostella (-100%). The cues present in this variety may be exploited for efficient management of P. xylostella in the cole crop ecosystem.

Keywords: Plutella xylostella, cole crops, volatile organic compounds, GC-MS, Green Ball

Procedia PDF Downloads 126
3336 Study on High Performance Fiber Reinforced Concrete (HPFRC) Beams on Subjected to Cyclic Loading

Authors: A. Siva, K. Bala Subramanian, Kinson Prabu

Abstract:

Concrete is widely used construction materials all over the world. Now a day’s fibers are used in this construction due to its advantages like increase in stiffness, energy absorption, ductility and load carrying capacity. The fiber used in the concrete to increases the structural integrity of the member. It is one of the emerging techniques used in the construction industry. In this paper, the effective utilization of high-performance fiber reinforced concrete (HPFRC) beams has been experimental investigated. The experimental investigation has been conducted on different steel fibers (Hooked, Crimpled, and Hybrid) under cyclic loading. The behaviour of HPFRC beams is compared with the conventional beams. Totally four numbers of specimens were cast with different content of fiber concrete and compared conventional concrete. The fibers are added to the concrete by base volume replacement of concrete. The silica fume and superplasticizers were used to modify the properties of concrete. Single point loading was carried out for all the specimens, and the beam specimens were subjected to cyclic loading. The load-deflection behaviour of fibers is compared with the conventional concrete. The ultimate load carrying capacity, energy absorption and ductility of hybrid fiber reinforced concrete is higher than the conventional concrete by 5% to 10%.

Keywords: cyclic loading, ductility, high performance fiber reinforced concrete, structural integrity

Procedia PDF Downloads 275
3335 From Avatars to Humans: A Hybrid World Theory and Human Computer Interaction Experimentations with Virtual Reality Technologies

Authors: Juan Pablo Bertuzzi, Mauro Chiarella

Abstract:

Employing a communication studies perspective and a socio-technological approach, this paper introduces a theoretical framework for understanding the concept of hybrid world; the avatarization phenomena; and the communicational archetype of co-hybridization. This analysis intends to make a contribution to future design of virtual reality experimental applications. Ultimately, this paper presents an ongoing research project that proposes the study of human-avatar interactions in digital educational environments, as well as an innovative reflection on inner digital communication. The aforementioned project presents the analysis of human-avatar interactions, through the development of an interactive experience in virtual reality. The goal is to generate an innovative communicational dimension that could reinforce the hypotheses presented throughout this paper. Being thought for its initial application in educational environments, the analysis and results of this research are dependent and have been prepared in regard of a meticulous planning of: the conception of a 3D digital platform; the interactive game objects; the AI or computer avatars; the human representation as hybrid avatars; and lastly, the potential of immersion, ergonomics and control diversity that can provide the virtual reality system and the game engine that were chosen. The project is divided in two main axes: The first part is the structural one, as it is mandatory for the construction of an original prototype. The 3D model is inspired by the physical space that belongs to an academic institution. The incorporation of smart objects, avatars, game mechanics, game objects, and a dialogue system will be part of the prototype. These elements have all the objective of gamifying the educational environment. To generate a continuous participation and a large amount of interactions, the digital world will be navigable both, in a conventional device and in a virtual reality system. This decision is made, practically, to facilitate the communication between students and teachers; and strategically, because it will help to a faster population of the digital environment. The second part is concentrated to content production and further data analysis. The challenge is to offer a scenario’s diversity that compels users to interact and to question their digital embodiment. The multipath narrative content that is being applied is focused on the subjects covered in this paper. Furthermore, the experience with virtual reality devices proposes users to experiment in a mixture of a seemingly infinite digital world and a small physical area of movement. This combination will lead the narrative content and it will be crucial in order to restrict user’s interactions. The main point is to stimulate and to grow in the user the need of his hybrid avatar’s help. By building an inner communication between user’s physicality and user’s digital extension, the interactions will serve as a self-guide through the gameworld. This is the first attempt to make explicit the avatarization phenomena and to further analyze the communicational archetype of co-hybridization. The challenge of the upcoming years will be to take advantage from these forms of generalized avatarization, in order to create awareness and establish innovative forms of hybridization.

Keywords: avatar, hybrid worlds, socio-technology, virtual reality

Procedia PDF Downloads 142
3334 Parametric Study of a Solar-Heating-And-Cooling System with Hybrid Photovoltaic/Thermal Collectors in North China

Authors: Ruobing Liang, Jili Zhang, Chao Zhou

Abstract:

A solar-heating-and-cooling (SHC) system, consisting of a hybrid photovoltaic/ thermal collector array, a hot water storage tank, and an absorption chiller unit is designed and modeled to satisfy thermal loads (space heating, domestic hot water, and space cooling). The system is applied for Dalian, China, a location with cold climate conditions, where cooling demand is moderate, while space heating demand is slightly high. The study investigates the potential of a solar system installed and operated onsite in a detached single-family household to satisfy all necessary thermal loads. The hot water storage tank is also connected to an auxiliary heater (electric boiler) to supplement solar heating, when needed. The main purpose of the study is to model the overall system and contact a parametric study that will determine the optimum economic system performance in terms of design parameters. The system is compared, through a cost analysis, to an electric heat pump (EHP) system. This paper will give the optimum system combination of solar collector area and volumetric capacity of the hot water storage tank, respectively.

Keywords: absorption chiller, solar PVT collector, solar heating and cooling, solar air-conditioning, parametric study, cost analysis

Procedia PDF Downloads 422
3333 Design and Development of High Strength Aluminium Alloy from Recycled 7xxx-Series Material Using Bayesian Optimisation

Authors: Alireza Vahid, Santu Rana, Sunil Gupta, Pratibha Vellanki, Svetha Venkatesh, Thomas Dorin

Abstract:

Aluminum is the preferred material for lightweight applications and its alloys are constantly improving. The high strength 7xxx alloys have been extensively used for structural components in aerospace and automobile industries for the past 50 years. In the next decade, a great number of airplanes will be retired, providing an obvious source of valuable used metals and great demand for cost-effective methods to re-use these alloys. The design of proper aerospace alloys is primarily based on optimizing strength and ductility, both of which can be improved by controlling the additional alloying elements as well as heat treatment conditions. In this project, we explore the design of high-performance alloys with 7xxx as a base material. These designed alloys have to be optimized and improved to compare with modern 7xxx-series alloys and to remain competitive for aircraft manufacturing. Aerospace alloys are extremely complex with multiple alloying elements and numerous processing steps making optimization often intensive and costly. In the present study, we used Bayesian optimization algorithm, a well-known adaptive design strategy, to optimize this multi-variable system. An Al alloy was proposed and the relevant heat treatment schedules were optimized, using the tensile yield strength as the output to maximize. The designed alloy has a maximum yield strength and ultimate tensile strength of more than 730 and 760 MPa, respectively, and is thus comparable to the modern high strength 7xxx-series alloys. The microstructure of this alloy is characterized by electron microscopy, indicating that the increased strength of the alloy is due to the presence of a high number density of refined precipitates.

Keywords: aluminum alloys, Bayesian optimization, heat treatment, tensile properties

Procedia PDF Downloads 119
3332 An Optimal Hybrid EMS System for a Hyperloop Prototype Vehicle

Authors: J. F. Gonzalez-Rojo, Federico Lluesma-Rodriguez, Temoatzin Gonzalez

Abstract:

Hyperloop, a new mode of transport, is gaining significance. It consists of the use of a ground-based transport system which includes a levitation system, that avoids rolling friction forces, and which has been covered with a tube, controlling the inner atmosphere lowering the aerodynamic drag forces. Thus, hyperloop is proposed as a solution to the current limitation on ground transportation. Rolling and aerodynamic problems, that limit large speeds for traditional high-speed rail or even maglev systems, are overcome using a hyperloop solution. Zeleros is one of the companies developing technology for hyperloop application worldwide. It is working on a concept that reduces the infrastructure cost and minimizes the power consumption as well as the losses associated with magnetic drag forces. For this purpose, Zeleros proposes a Hybrid ElectroMagnetic Suspension (EMS) for its prototype. In the present manuscript an active and optimal electromagnetic suspension levitation method based on nearly zero power consumption individual modules is presented. This system consists of several hybrid permanent magnet-coil levitation units that can be arranged along the vehicle. The proposed unit manages to redirect the magnetic field along a defined direction forming a magnetic circuit and minimizing the loses due to field dispersion. This is achieved using an electrical steel core. Each module can stabilize the gap distance using the coil current and either linear or non-linear control methods. The ratio between weight and levitation force for each unit is 1/10. In addition, the quotient between the lifted weight and power consumption at the target gap distance is 1/3 [kg/W]. One degree of freedom (DoF) (along the gap direction) is controlled by a single unit. However, when several units are present, a 5 DoF control (2 translational and 3 rotational) can be achieved, leading to the full attitude control of the vehicle. The proposed system has been successfully tested reaching TRL-4 in a laboratory test bench and is currently in TRL-5 state development if the module association in order to control 5 DoF is considered.

Keywords: active optimal control, electromagnetic levitation, HEMS, high-speed transport, hyperloop

Procedia PDF Downloads 146
3331 An Efficient Design of Static Synchronous Series Compensator Based Fractional Order PID Controller Using Invasive Weed Optimization Algorithm

Authors: Abdelghani Choucha, Lakhdar Chaib, Salem Arif

Abstract:

This paper treated the problem of power system stability with the aid of Static Synchronous Series Compensator (SSSC) installed in the transmission line of single machine infinite bus (SMIB) power system. A fractional order PID (FOPID) controller has been applied as a robust controller for optimal SSSC design to control the power system characteristics. Additionally, the SSSC based FOPID parameters are smoothly tuned using Invasive Weed Optimization algorithm (IWO). To verify the strength of the proposed controller, SSSC based FOPID controller is validated in a wide range of operating condition and compared with the conventional scheme SSSC-POD controller. The main purpose of the proposed process is greatly enhanced the dynamic states of the tested system. Simulation results clearly prove the superiority and performance of the proposed controller design.

Keywords: SSSC-FOPID, SSSC-POD, SMIB power system, invasive weed optimization algorithm

Procedia PDF Downloads 188
3330 Recognizing Customer Preferences Using Review Documents: A Hybrid Text and Data Mining Approach

Authors: Oshin Anand, Atanu Rakshit

Abstract:

The vast increment in the e-commerce ventures makes this area a prominent research stream. Besides several quantified parameters, the textual content of reviews is a storehouse of many information that can educate companies and help them earn profit. This study is an attempt in this direction. The article attempts to categorize data based on a computed metric that quantifies the influencing capacity of reviews rendering two categories of high and low influential reviews. Further, each of these document is studied to conclude several product feature categories. Each of these categories along with the computed metric is converted to linguistic identifiers and are used in an association mining model. The article makes a novel attempt to combine feature attraction with quantified metric to categorize review text and finally provide frequent patterns that depict customer preferences. Frequent mentions in a highly influential score depict customer likes or preferred features in the product whereas prominent pattern in low influencing reviews highlights what is not important for customers. This is achieved using a hybrid approach of text mining for feature and term extraction, sentiment analysis, multicriteria decision-making technique and association mining model.

Keywords: association mining, customer preference, frequent pattern, online reviews, text mining

Procedia PDF Downloads 388
3329 Integrated Machine Learning Framework for At-Home Patients Personalized Risk Prediction Using Activities, Biometric, and Demographic Features

Authors: Claire Xu, Welton Wang, Manasvi Pinnaka, Anqi Pan, Michael Han

Abstract:

Hospitalizations account for one-third of the total health care spending in the US. Early risk detection and intervention can reduce this high cost and increase the satisfaction of both patients and physicians. Due to the lack of awareness of the potential arising risks in home environment, the opportunities for patients to seek early actions of clinical visits are dramatically reduced. This research aims to offer a highly personalized remote patients monitoring and risk assessment AI framework to identify the potentially preventable hospitalization for both acute as well as chronic diseases. A hybrid-AI framework is trained with data from clinical setting, patients surveys, as well as online databases. 20+ risk factors are analyzed ranging from activities, biometric info, demographic info, socio-economic info, hospitalization history, medication info, lifestyle info, etc. The AI model yields high performance of 87% accuracy and 88 sensitivity with 20+ features. This hybrid-AI framework is proven to be effective in identifying the potentially preventable hospitalization. Further, the high indicative features are identified by the models which guide us to a healthy lifestyle and early intervention suggestions.

Keywords: hospitalization prevention, machine learning, remote patient monitoring, risk prediction

Procedia PDF Downloads 230
3328 Machine Installation and Maintenance Management

Authors: Mohammed Benmostefa

Abstract:

In the industrial production of large series or even medium series, there are vibration problems. In continuous operations, technical devices result in vibrations in solid bodies and machine components, which generate solid noise and/or airborne noise. This is because vibrations are the mechanical oscillations of an object near its equilibrium point. In response to the problems resulting from these vibrations, a number of remedial acts and solutions have been put forward. These include insulation of machines, insulation of concrete masses, insulation under screeds, insulation of sensitive equipment, point insulation of machines, linear insulation of machines, full surface insulation of machines, and the like. Following this, the researcher sought not only to raise awareness on the possibility of lowering the vibration frequency in industrial machines but also to stress the significance of procedures involving the pre-installation process of machinery, namely, setting appropriate installation and start-up methods of the machine, allocating and updating imprint folders to each machine, and scheduling maintenance of each machine all year round to have reliable equipment, gain cost reduction and maintenance efficiency to eventually ensure the overall economic performance of the company.

Keywords: maintenance, vibration, efficiency, production, machinery

Procedia PDF Downloads 87
3327 Blind Hybrid ARQ Retransmissions with Different Multiplexing between Time and Frequency for Ultra-Reliable Low-Latency Communications in 5G

Authors: Mohammad Tawhid Kawser, Ishrak Kabir, Sadia Sultana, Tanjim Ahmad

Abstract:

A promising service category of 5G, popularly known as Ultra-Reliable Low-Latency Communications (URLLC), is devoted to providing users with the staunchest fail-safe connections in the splits of a second. The reliability of data transfer, as offered by Hybrid ARQ (HARQ), should be employed as URLLC applications are highly error-sensitive. However, the delay added by HARQ ACK/NACK and retransmissions can degrade performance as URLLC applications are highly delay-sensitive too. To improve latency while maintaining reliability, this paper proposes the use of blind transmissions of redundancy versions exploiting the frequency diversity of wide bandwidth of 5G. The blind HARQ retransmissions proposed so far consider narrow bandwidth cases, for example, dedicated short range communication (DSRC), shared channels for device-to-device (D2D) communication, etc., and thus, do not gain much from the frequency diversity. The proposal also combines blind and ACK/NACK based retransmissions for different multiplexing options between time and frequency depending on the current radio channel quality and stringency of latency requirements. The wide bandwidth of 5G justifies that the proposed blind retransmission, without waiting for ACK/NACK, is not palpably extravagant. A simulation is performed to demonstrate the improvement in latency of the proposed scheme.

Keywords: 5G, URLLC, HARQ, latency, frequency diversity

Procedia PDF Downloads 36
3326 Time-Series Analysis of Port State Control Inspections for Tankers

Authors: Chien-Chung Yuan, Cunqiang Cai, Wu-Hsun Chung, Shu-Te Sung

Abstract:

A tanker is a critical vessel used to transport or store liquids or gases in bulk in maritime shipping. However, it is more dangerous than other types of vessels. Port State Control (PSC) inspection is an important measure to ensure maritime safety when such vessels traveling between ports. However, the current inspection system lacks a useful tool to observe the inspections for tankers and to identify non-random instances in PSC inspections. This study collects the inspection records in Taiwan’s ports from 2015 to 2018 and utilizes run charts to map the PSC inspections for tankers in terms of deficiencies. Based on these time-series charts, several patterns of deficiencies are identified. The results demonstrate that run charts are a useful tool to observe how the PSC inspections for tankers are performed. Also, the charts can help port administrations to identify abnormal phenomena for further investigation. Furthermore, with valuable information from the analysis, port administrations can take proactive improvement measures to ensure the safety of tanker shipping.

Keywords: port state control, tanker, run chart, deficiency

Procedia PDF Downloads 157
3325 Visualization and Performance Measure to Determine Number of Topics in Twitter Data Clustering Using Hybrid Topic Modeling

Authors: Moulana Mohammed

Abstract:

Topic models are widely used in building clusters of documents for more than a decade, yet problems occurring in choosing optimal number of topics. The main problem is the lack of a stable metric of the quality of topics obtained during the construction of topic models. The authors analyzed from previous works, most of the models used in determining the number of topics are non-parametric and quality of topics determined by using perplexity and coherence measures and concluded that they are not applicable in solving this problem. In this paper, we used the parametric method, which is an extension of the traditional topic model with visual access tendency for visualization of the number of topics (clusters) to complement clustering and to choose optimal number of topics based on results of cluster validity indices. Developed hybrid topic models are demonstrated with different Twitter datasets on various topics in obtaining the optimal number of topics and in measuring the quality of clusters. The experimental results showed that the Visual Non-negative Matrix Factorization (VNMF) topic model performs well in determining the optimal number of topics with interactive visualization and in performance measure of the quality of clusters with validity indices.

Keywords: interactive visualization, visual mon-negative matrix factorization model, optimal number of topics, cluster validity indices, Twitter data clustering

Procedia PDF Downloads 134
3324 Reconsidering Taylor’s Law with Chaotic Population Dynamical Systems

Authors: Yuzuru Mitsui, Takashi Ikegami

Abstract:

The exponents of Taylor’s law in deterministic chaotic systems are computed, and their meanings are intensively discussed. Taylor’s law is the scaling relationship between the mean and variance (in both space and time) of population abundance, and this law is known to hold in a variety of ecological time series. The exponents found in the temporal Taylor’s law are different from those of the spatial Taylor’s law. The temporal Taylor’s law is calculated on the time series from the same locations (or the same initial states) of different temporal phases. However, with the spatial Taylor’s law, the mean and variance are calculated from the same temporal phase sampled from different places. Most previous studies were done with stochastic models, but we computed the temporal and spatial Taylor’s law in deterministic systems. The temporal Taylor’s law evaluated using the same initial state, and the spatial Taylor’s law was evaluated using the ensemble average and variance. There were two main discoveries from this work. First, it is often stated that deterministic systems tend to have the value two for Taylor’s exponent. However, most of the calculated exponents here were not two. Second, we investigated the relationships between chaotic features measured by the Lyapunov exponent, the correlation dimension, and other indexes with Taylor’s exponents. No strong correlations were found; however, there is some relationship in the same model, but with different parameter values, and we will discuss the meaning of those results at the end of this paper.

Keywords: chaos, density effect, population dynamics, Taylor’s law

Procedia PDF Downloads 174
3323 Morphological Differentiation and Temporal Variability in Essential Oil Yield and Composition among Origanum vulgare ssp. hirtum L., Origanum onites L. and Origanum x intercedens from Ikaria Island (Greece)

Authors: A.Assariotakis, P. Vahamidis, P. Tarantilis, G. Economou

Abstract:

Greece, due to its geographical location and the particular climatic conditions, presents high biodiversity of Medicinal and Aromatic Plants. Among them, the genus Origanum not only presents a wide distribution, but it also has great economic importance. After extensive surveys in Ikaria Island (Greece), 3 species of the genus Origanum were identified, namely, Origanum vulgare ssp. hirtum (Greek oregano), Origanum onites (Turkish oregano) and Origanum x intercedens (hybrid), a naturally occurring hybrid between O. hirtum and O. onites. The purpose of this study was to determine their morphological as well as their temporal variability in essential oil yield and composition under field conditions. For this reason, a plantation of each species was created using vegetative propagation and was established at the experimental field of the Agricultural University of Athens (A.U.A.). From the establishment year and for the following two years (3 years of observations), several observations were taken during each growing season with the purpose of identifying the morphological differences among the studied species. Each year collected plant (at bloom stage) material was air-dried at room temperature in the shade. The essential oil content was determined by hydrodistillation using a Clevenger-type apparatus. The chemical composition of essential oils was investigated by Gas Chromatography-Mass Spectrometry (GC – MS). Significant differences were observed among the three oregano species in terms of plant height, leaf size, inflorescence features, as well as concerning their biological cycle. O. intercedens inflorescence presented more similarities with O. hirtum than with O. onites. It was found that calyx morphology could serve as a clear distinction feature between O. intercedens and O. hirtum. The calyx in O. hirtum presents five isometric teeth whereas in O. intercedens two high and three shorter. Essential oil content was significantly affected by genotype and year. O. hirtum presented higher essential oil content than the other two species during the first year of cultivation, however during the second year the hybrid (O. intercedens) recorded the highest values. Carvacrol, p-cymene and γ-terpinene were the main essential oil constituents of the three studied species. In O. hirtum carvacrol content varied from 84,28 - 93,35%, in O. onites from 86,97 - 91,89%, whereas in O. intercedens it was recorded the highest carvacrol content, namely from 89,25 - 97,23%.

Keywords: variability, oregano biotypes, essential oil, carvacrol

Procedia PDF Downloads 126
3322 Mechanism of Action of New Sustainable Flame Retardant Additives in Polyamide 6,6

Authors: I. Belyamani, M. K. Hassan, J. U. Otaigbe, W. R. Fielding, K. A. Mauritz, J. S. Wiggins, W. L. Jarrett

Abstract:

We have investigated the flame-retardant efficiency of special new phosphate glass (P-glass) compositions having different glass transition temperatures (Tg) on the processing conditions of polyamide 6,6 (PA6,6) and the final hybrid flame retardancy (FR). We have showed that the low Tg P glass composition (i.e., ILT 1) is a promising flame retardant for PA6,6 at a concentration of up to 15 wt. % compared to intermediate (IIT 3) and high (IHT 1) Tg P glasses. Cone calorimetry data showed that the ILT 1 decreased both the peak heat release rate and the total heat amount released from the PA6,6/ILT 1 hybrids, resulting in an efficient formation of a glassy char layer. These intriguing findings prompted to address several questions concerning the mechanism of action of the different P glasses studied. The general mechanism of action of phosphorous based FR additives occurs during the combustion stage by enhancing the morphology of the char and the thermal shielding effect. However, the present work shows that P glass based FR additives act during melt processing of PA6,6/P glass hybrids. Dynamic mechanical analysis (DMA) revealed that the Tg of PA6,6/ILT 1 was significantly shifted to a lower Tg (~65 oC) and another transition appeared at high temperature (~ 166 oC), thus indicating a strong interaction between PA6,6 and ILT 1. This was supported by a drop in the melting point and crystallinity of the PA6,6/ILT 1 hybrid material as detected by differential scanning calorimetry (DSC). The dielectric spectroscopic investigation of the networks’ molecular level structural variations (i.e. hybrids chain motion, Tg and sub-Tg relaxations) agreed very well with the DMA and DSC findings; it was found that the three different P glass compositions did not show any effect on the PA6,6 sub-Tg relaxations (related to the NH2 and OH chain end groups motions). Nevertheless, contrary to IIT 3 and IHT 1 based hybrids, the PA6,6/ILT 1 hybrid material showed an evidence of splitting the PA6,6 Tg relaxations into two peaks. Finally, the CPMAS 31P-NMR data confirmed the miscibility between ILT 1 and PA6,6 at the molecular level, as a much larger enhancement in cross-polarization for the PA6,6/15%ILT 1 hybrids was observed. It can be concluded that compounding low Tg P-glass (i.e. ILT 1) with PA6,6 facilitates hydrolytic chain scission of the PA6,6 macromolecules through a potential chemical interaction between phosphate and the alpha-Carbon of the amide bonds of the PA6,6, leading to better flame retardant properties.

Keywords: broadband dielectric spectroscopy, composites, flame retardant, polyamide, phosphate glass, sustainable

Procedia PDF Downloads 237