Search results for: propensity score matching
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2580

Search results for: propensity score matching

1620 A Shift in Approach from Cereal Based Diet to Dietary Diversity in India: A Case Study of Aligarh District

Authors: Abha Gupta, Deepak K. Mishra

Abstract:

Food security issue in India has surrounded over availability and accessibility of cereal which is regarded as the only food group to check hunger and improve nutrition. Significance of fruits, vegetables, meat and other food products have totally been neglected given the fact that they provide essential nutrients to the body. There is a need to shift the emphasis from cereal-based approach to a more diverse diet so that aim of achieving food security may change from just reducing hunger to an overall health. This paper attempts to analyse how far dietary diversity level has been achieved across different socio-economic groups in India. For this purpose, present paper sets objectives to determine (a) percentage share of different food groups to total food expenditure and consumption by background characteristics (b) source of and preference for all food items and, (c) diversity of diet across socio-economic groups. A cross sectional survey covering 304 households selected through proportional stratified random sampling was conducted in six villages of Aligarh district of Uttar Pradesh, India. Information on amount of food consumed, source of consumption and expenditure on food (74 food items grouped into 10 major food groups) was collected with a recall period of seven days. Per capita per day food consumption/expenditure was calculated through dividing consumption/expenditure by household size and number seven. Food variety score was estimated by giving 0 values to those food groups/items which had not been eaten and 1 to those which had been taken by households in last seven days. Addition of all food group/item score gave result of food variety score. Diversity of diet was computed using Herfindahl-Hirschman index. Findings of the paper show that cereal, milk, roots and tuber food groups contribute a major share in total consumption/expenditure. Consumption of these food groups vary across socio-economic groups whereas fruit, vegetables, meat and other food consumption remain low and same. Estimation of dietary diversity show higher concentration of diet due to higher consumption of cereals, milk, root and tuber products and dietary diversity slightly varies across background groups. Muslims, Scheduled caste, small farmers, lower income class, food insecure, below poverty line and labour families show higher concentration of diet as compared to their counterpart groups. These groups also evince lower mean intake of number of food item in a week due to poor economic constraints and resultant lower accessibility to number of expensive food items. Results advocate to make a shift from cereal based diet to dietary diversity which not only includes cereal and milk products but also nutrition rich food items such as fruits, vegetables, meat and other products. Integrating a dietary diversity approach in food security programmes of the country would help to achieve nutrition security as hidden hunger is widespread among the Indian population.

Keywords: dietary diversity, food Security, India, socio-economic groups

Procedia PDF Downloads 340
1619 Post-Earthquake Damage Detection Using System Identification with a Pair of Seismic Recordings

Authors: Lotfi O. Gargab, Ruichong R. Zhang

Abstract:

A wave-based framework is presented for modeling seismic motion in multistory buildings and using measured response for system identification which can be utilized to extract important information regarding structure integrity. With one pair of building response at two locations, a generalized model response is formulated based on wave propagation features and expressed as frequency and time response functions denoted, respectively, as GFRF and GIRF. In particular, GIRF is fundamental in tracking arrival times of impulsive wave motion initiated at response level which is dependent on local model properties. Matching model and measured-structure responses can help in identifying model parameters and infer building properties. To show the effectiveness of this approach, the Millikan Library in Pasadena, California is identified with recordings of the Yorba Linda earthquake of September 3, 2002.

Keywords: system identification, continuous-discrete mass modeling, damage detection, post-earthquake

Procedia PDF Downloads 369
1618 A Longitudinal Study of the Readability of the Chairman’s Narratives in Corporate Reports: Malaysian Evidence

Authors: Azhar Abdul Rahman

Abstract:

This paper examines the readability of the chairman’s narratives, as determined by the Flesch score, of a Malaysian public listed company’s corporate reports from 1962 to 2009. It partially supports earlier studies which demonstrated that corporate reports were difficult to read, and had shown very negligible decrease in difficulty over time. Net profit to sales and readability was significantly positively correlated but number of financial statements was significantly negatively correlated with readability.

Keywords: chairman’s narratives, corporate communications, readability, longitudinal

Procedia PDF Downloads 455
1617 Impact of Emerging Nano-Agrichemicals on the Simultaneous Control of Arsenic and Cadmium in Rice Paddies

Authors: Xingmao Ma, Wenjie Sun

Abstract:

Rice paddies are frequently co-contaminated by arsenic (As) and cadmium (Cd), both of which demonstrate a high propensity for accumulation in rice grains and cause global food safety and public health concern. Even though different agricultural management strategies have been explored for their simultaneous control in rice grains, a viable solution is yet to be developed. Interestingly, several nanoagrichemicals, such as the zinc nanofertilizer and copper nanopesticide have displayed strong potential to reduce As or Cd accumulation in rice tissues. In order to determine whether these nanoagrichemicals can lower the accumulation of both As and Cd in rice, a series of bench studies were performed. Our results show that zinc oxide nanoparticles at 100 mg/Kg significantly lowered both As, and Cd in rice roots and shoots in flood irrigated rice seedlings, while equivalent amount of zinc ions only reduced As concentration in rice shoots. Zinc ions significantly increased Cd concentration in rice shoots by almost 30%. The results demonstrate a unique 'nano-effect' of zinc oxide nanoparticles, which is ascribed to the slow releasing of zinc ions from nanoparticles and the formation of different transformation products in these two treatments. We also evaluated the effect of nanoscale soil amendment, silicon oxide nanoparticles (SiO₂NPs) on the simultaneous reduction in both flooding and alternate wet and dry irrigation scheme. The effect of SiO₂NPs on As and Cd accumulation in rice tissues was strongly affected by the irrigation scheme. While 2000 mg/kg of SiO₂NPs significantly reduced As in rice roots and insignificantly reduced As in rice shoots in flooded rice, it increased As concentration in rice shoots in alternate wet and dry irrigation. In both irrigation scenarios, SiO₂NPs significantly reduced Cd concentration in rice roots, but only reduced Cd concentration in rice shoots in alternate wet and dry irrigation. Our results demonstrate a marked effect of nanoagrichemicals on the accumulation of As and Cd in rice and can be a potential solution to simultaneously control both in certain conditions.

Keywords: arsenic, cadmium, rice, nanoagrichemicals

Procedia PDF Downloads 158
1616 Study and Design of Novel Structure of Circularly Polarized Dual Band Microstrip Antenna Fed by Hybrid Coupler for RFID Applications

Authors: M. Taouzari, A. Sardi, J. El Aoufi, Ahmed Mouhsen

Abstract:

The purpose of this work is to design a reader antenna fed by 90° hybrid coupler that would ensure a tag which is detected regardless of its orientation for the radio frequency identification system covering the UHF and ISM bands frequencies. Based on this idea, the proposed work is dividing in two parts, first part is about study and design hybrid coupler using the resonators planar called T-and Pi networks operating in commercial bands. In the second part, the proposed antenna fed by the hybrid coupler is designed on FR4 substrate with dielectric permittivity 4.4, thickness dielectric 1.6mm and loss tangent 0.025. The T-slot is inserted in patch of the proposed antenna fed by the hybrid coupler is first designed, optimized and simulated using electromagnetic simulator ADS and then simulated in a full wave simulation software CST Microwave Studio. The simulated antenna by the both softwares achieves the expected performances in terms of matching, pattern radiation, phase shifting, gain and size.

Keywords: dual band antenna, RFID, hybrid coupler, polarization, radiation pattern

Procedia PDF Downloads 131
1615 Numerical Modelling of a Vacuum Consolidation Project in Vietnam

Authors: Nguyen Trong Nghia, Nguyen Huu Uy Vu, Dang Huu Phuoc, Sanjay Kumar Shukla, Le Gia Lam, Nguyen Van Cuong

Abstract:

This paper introduces a matching scheme for selection of soil/drain properties in analytical solution and numerical modelling (axisymmetric and plane strain conditions) of a ground improvement project by using Prefabricated Vertical Drains (PVD) in combination with vacuum and surcharge preloading. In-situ monitoring data from a case history of a road construction project in Vietnam was adopted in the back-analysis. Analytical solution and axisymmetric analysis can approximate well the field data meanwhile the horizontal permeability need to be adjusted in plane strain scenario to achieve good agreement. In addition, the influence zone of the ground treatment was examined. The residual settlement was investigated to justify the long-term settlement in compliance with the design code. Moreover, the degree of consolidation of non-PVD sub-layers was also studied by means of two different approaches.

Keywords: numerical modelling, prefabricated vertical drains, vacuum consolidation, soft soil

Procedia PDF Downloads 230
1614 Modeling of a Small Unmanned Aerial Vehicle

Authors: Ahmed Elsayed Ahmed, Ashraf Hafez, A. N. Ouda, Hossam Eldin Hussein Ahmed, Hala Mohamed ABD-Elkader

Abstract:

Unmanned Aircraft Systems (UAS) are playing increasingly prominent roles in defense programs and defense strategies around the world. Technology advancements have enabled the development of it to do many excellent jobs as reconnaissance, surveillance, battle fighters, and communications relays. Simulating a small unmanned aerial vehicle (SUAV) dynamics and analyzing its behavior at the preflight stage is too important and more efficient. The first step in the UAV design is the mathematical modeling of the nonlinear equations of motion. In this paper, a survey with a standard method to obtain the full non-linear equations of motion is utilized,and then the linearization of the equations according to a steady state flight condition (trimming) is derived. This modeling technique is applied to an Ultrastick-25e fixed wing UAV to obtain the valued linear longitudinal and lateral models. At the end, the model is checked by matching between the behavior of the states of the non-linear UAV and the resulted linear model with doublet at the control surfaces.

Keywords: UAV, equations of motion, modeling, linearization

Procedia PDF Downloads 743
1613 Investigating Visual Statistical Learning during Aging Using the Eye-Tracking Method

Authors: Zahra Kazemi Saleh, Bénédicte Poulin-Charronnat, Annie Vinter

Abstract:

This study examines the effects of aging on visual statistical learning, using eye-tracking techniques to investigate this cognitive phenomenon. Visual statistical learning is a fundamental brain function that enables the automatic and implicit recognition, processing, and internalization of environmental patterns over time. Some previous research has suggested the robustness of this learning mechanism throughout the aging process, underscoring its importance in the context of education and rehabilitation for the elderly. The study included three distinct groups of participants, including 21 young adults (Mage: 19.73), 20 young-old adults (Mage: 67.22), and 17 old-old adults (Mage: 79.34). Participants were exposed to a series of 12 arbitrary black shapes organized into 6 pairs, each with different spatial configurations and orientations (horizontal, vertical, and oblique). These pairs were not explicitly revealed to the participants, who were instructed to passively observe 144 grids presented sequentially on the screen for a total duration of 7 min. In the subsequent test phase, participants performed a two-alternative forced-choice task in which they had to identify the most familiar pair from 48 trials, each consisting of a base pair and a non-base pair. Behavioral analysis using t-tests revealed notable findings. The mean score for the first group was significantly above chance, indicating the presence of visual statistical learning. Similarly, the second group also performed significantly above chance, confirming the persistence of visual statistical learning in young-old adults. Conversely, the third group, consisting of old-old adults, showed a mean score that was not significantly above chance. This lack of statistical learning in the old-old adult group suggests a decline in this cognitive ability with age. Preliminary eye-tracking results showed a decrease in the number and duration of fixations during the exposure phase for all groups. The main difference was that older participants focused more often on empty cases than younger participants, likely due to a decline in the ability to ignore irrelevant information, resulting in a decrease in statistical learning performance.

Keywords: aging, eye tracking, implicit learning, visual statistical learning

Procedia PDF Downloads 77
1612 Corpus-Based Neural Machine Translation: Empirical Study Multilingual Corpus for Machine Translation of Opaque Idioms - Cloud AutoML Platform

Authors: Khadija Refouh

Abstract:

Culture bound-expressions have been a bottleneck for Natural Language Processing (NLP) and comprehension, especially in the case of machine translation (MT). In the last decade, the field of machine translation has greatly advanced. Neural machine translation NMT has recently achieved considerable development in the quality of translation that outperformed previous traditional translation systems in many language pairs. Neural machine translation NMT is an Artificial Intelligence AI and deep neural networks applied to language processing. Despite this development, there remain some serious challenges that face neural machine translation NMT when translating culture bounded-expressions, especially for low resources language pairs such as Arabic-English and Arabic-French, which is not the case with well-established language pairs such as English-French. Machine translation of opaque idioms from English into French are likely to be more accurate than translating them from English into Arabic. For example, Google Translate Application translated the sentence “What a bad weather! It runs cats and dogs.” to “يا له من طقس سيء! تمطر القطط والكلاب” into the target language Arabic which is an inaccurate literal translation. The translation of the same sentence into the target language French was “Quel mauvais temps! Il pleut des cordes.” where Google Translate Application used the accurate French corresponding idioms. This paper aims to perform NMT experiments towards better translation of opaque idioms using high quality clean multilingual corpus. This Corpus will be collected analytically from human generated idiom translation. AutoML translation, a Google Neural Machine Translation Platform, is used as a custom translation model to improve the translation of opaque idioms. The automatic evaluation of the custom model will be compared to the Google NMT using Bilingual Evaluation Understudy Score BLEU. BLEU is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Human evaluation is integrated to test the reliability of the Blue Score. The researcher will examine syntactical, lexical, and semantic features using Halliday's functional theory.

Keywords: multilingual corpora, natural language processing (NLP), neural machine translation (NMT), opaque idioms

Procedia PDF Downloads 149
1611 Exploring Health-Related Inequalities between Private, Public and Active Transport Users, Using Relative Importance Index: Case Study on Santiago de Chile

Authors: Beatriz Mella Lira, Karla Yohannessen, Robin Hickman

Abstract:

The aim of the paper is recognising inequalities through the self-assessment of health-related factors, in the context of daily mobilities in Santiago de Chile. Human capabilities will be used as the theoretical basis for the recognition and assessment of these factors regarding the functioning (what people are currently able to do) and capabilities (what people want to achieve and what is valuable for them), reflecting differences across social groups and among types of transport users. The self-assessment of health-related factors considers perceptions of stress, physical effort, proximity to other transport users, pollution, safety, and comfort. The types of transport users are classified as: private (cars, taxis, colectivos, motos), public (buses and metro) and active (bicycles and walking). The methodology follows a capability-based questionnaire, which was applied in different areas of Santiago de Chile, considering concepts extracted from the human capabilities list. The self-assessment of these health-related factors examines the context of peoples’ mobilities for performing their daily activities, considering socioeconomic differences as income, age, gender, disabilities, residence location and primary mode choice. The paper uses Relative Importance Index (RII) for weighting the relative influence or valuation of the factors. The respondents were asked to rate the importance of each factor on a scale from 1 to 5, in an ascending order of importance. The results suggest that these health-related factors impact not just the perceptions of users, but their well-being and their propensity for achieving their capabilities and the things they value in life. The paper is focused on the development of an applicable approach, measuring factors that should be included in transport project appraisal, as a more comprehensive and complementary method.

Keywords: active transport, health, human capabilities, Santiago de Chile, transport inequalities, transportation planning, urban planning

Procedia PDF Downloads 189
1610 Cr³⁺/SiO₄⁴⁻ Codoped Hydroxyapatite Nanorods: Fabrication and Microstructure Analysis

Authors: Ammar Z. Alshemary, Zafer Evis

Abstract:

In this study, nanorods of Cr³⁺/SiO₄⁴⁻ codoped hydroxyapatite (Cr³⁺/SiO₄⁴⁻-HA) were synthesized successfully and rapidly through microwave irradiation technique, using (Ca(NO₃)₂•4H₂O), ((NH₄)₂HPO₄), (SiC₈H₂₀O₄) and (Cr(NO₃)₃.9H₂O) as source materials for Ca²⁺, PO₄³⁻, SiO₄⁴⁻ and Cr³⁺ ions, respectively. The impact of dopants on the phase formation and microstructure of the powders were investigated by means of X-ray diffraction (XRD), Fourier transform infrared spectrum analysis (FT-IR) and Field emission electron microscopy (FESEM) techniques. XRD analysis showed that with an incorporation of Cr³⁺/SiO₄⁴⁻ ions into HA structure resulted in peak broadening and reduced peak height due to the amorphous nature and reduced crystallinity of the resulting HA powder. FTIR spectroscopy revealed the existence of the different vibrational modes matching to phosphates and hydroxyl groups. The FESEM analysis showed a change in the crystal shape from spherical to rod shaped particles upon Cr³⁺ doping into the crystal structure. Acknowledgments: This study was supported by Karabük University (Project no. KBÜBAP-17-YD-144). The authors would like to thank for support.

Keywords: nano-hydroxyapatite, microwave, dopants, characterization, microstructure

Procedia PDF Downloads 228
1609 Development of a Psychometric Testing Instrument Using Algorithms and Combinatorics to Yield Coupled Parameters and Multiple Geometric Arrays in Large Information Grids

Authors: Laith F. Gulli, Nicole M. Mallory

Abstract:

The undertaking to develop a psychometric instrument is monumental. Understanding the relationship between variables and events is important in structural and exploratory design of psychometric instruments. Considering this, we describe a method used to group, pair and combine multiple Philosophical Assumption statements that assisted in development of a 13 item psychometric screening instrument. We abbreviated our Philosophical Assumptions (PA)s and added parameters, which were then condensed and mathematically modeled in a specific process. This model produced clusters of combinatorics which was utilized in design and development for 1) information retrieval and categorization 2) item development and 3) estimation of interactions among variables and likelihood of events. The psychometric screening instrument measured Knowledge, Assessment (education) and Beliefs (KAB) of New Addictions Research (NAR), which we called KABNAR. We obtained an overall internal consistency for the seven Likert belief items as measured by Cronbach’s α of .81 in the final study of 40 Clinicians, calculated by SPSS 14.0.1 for Windows. We constructed the instrument to begin with demographic items (degree/addictions certifications) for identification of target populations that practiced within Outpatient Substance Abuse Counseling (OSAC) settings. We then devised education items, beliefs items (seven items) and a modifiable “barrier from learning” item that consisted of six “choose any” choices. We also conceptualized a close relationship between identifying various degrees and certifications held by Outpatient Substance Abuse Therapists (OSAT) (the demographics domain) and all aspects of their education related to EB-NAR (past and present education and desired future training). We placed a descriptive (PA)1tx in both demographic and education domains to trace relationships of therapist education within these two domains. The two perceptions domains B1/b1 and B2/b2 represented different but interrelated perceptions from the therapist perspective. The belief items measured therapist perceptions concerning EB-NAR and therapist perceptions using EB-NAR during the beginning of outpatient addictions counseling. The (PA)s were written in simple words and descriptively accurate and concise. We then devised a list of parameters and appropriately matched them to each PA and devised descriptive parametric (PA)s in a domain categorized information grid. Descriptive parametric (PA)s were reduced to simple mathematical symbols. This made it easy to utilize parametric (PA)s into algorithms, combinatorics and clusters to develop larger information grids. By using matching combinatorics we took paired demographic and education domains with a subscript of 1 and matched them to the column with each B domain with subscript 1. Our algorithmic matching formed larger information grids with organized clusters in columns and rows. We repeated the process using different demographic, education and belief domains and devised multiple information grids with different parametric clusters and geometric arrays. We found benefit combining clusters by different geometric arrays, which enabled us to trace parametric variables and concepts. We were able to understand potential differences between dependent and independent variables and trace relationships of maximum likelihoods.

Keywords: psychometric, parametric, domains, grids, therapists

Procedia PDF Downloads 278
1608 Trajectory Tracking Control for Quadrotor Helicopter by Controlled Lagrangian Method

Authors: Ce Liu, Wei Huo

Abstract:

A nonlinear trajectory tracking controller for quadrotor helicopter based on controlled Lagrangian (CL) method is proposed in this paper. A Lagrangian system with virtual angles as generated coordinates rather than Euler angles is developed. Based on the model, the matching conditions presented by nonlinear partial differential equations are simplified and explicitly solved. Smooth tracking control laws and the range of control parameters are deduced based on the controlled energy of closed-loop system. Besides, a constraint condition for reference accelerations is deduced to identify the trackable reference trajectories by the proposed controller and to ensure the stability of the closed-loop system. The proposed method in this paper does not rely on the division of the quadrotor system, and the design of the control torques does not depend on the thrust as in backstepping or hierarchical control method. Simulations for a quadrotor model demonstrate the feasibility and efficiency of the theoretical results.

Keywords: quadrotor, trajectory tracking control, controlled lagrangians, underactuated system

Procedia PDF Downloads 120
1607 Incidence and Risk Factors of Central Venous Associated Infections in a Tunisian Medical Intensive Care Unit

Authors: Ammar Asma, Bouafia Nabiha, Ghammam Rim, Ezzi Olfa, Ben Cheikh Asma, Mahjoub Mohamed, Helali Radhia, Sma Nesrine, Chouchène Imed, Boussarsar Hamadi, Njah Mansour

Abstract:

Background: Central venous catheter associated infections (CVC-AI) are among the serious hospital-acquired infections. The aims of this study are to determine the incidence of CVC-AI, and their risk factors among patients followed in a Tunisian medical intensive care unit (ICU). Materials / Methods: A prospective cohort study conducted between September 15th, 2015 and November 15th, 2016 in an 8-bed medical ICU including all patients admitted for more than 48h. CVC-AI were defined according to CDC of ATLANTA criteria. The enrollment was based on clinical and laboratory diagnosis of CVC-AI. For all subjects, age, sex, underlying diseases, SAPS II score, ICU length of stay, exposure to CVC (number of CVC placed, site of insertion and duration catheterization) were recorded. Risk factors were analyzed by conditional stepwise logistic regression. The p-value of < 0.05 was considered significant. Results: Among 192 eligible patients, 144 patients (75%) had a central venous catheter. Twenty-eight patients (19.4%) had developed CVC-AI with density rate incidence 20.02/1000 CVC-days. Among these infections, 60.7% (n=17) were systemic CVC-AI (with negative blood culture), and 35.7% (n=10) were bloodstream CVC-AI. The mean SAPS II of patients with CVC-AI was 32.76 14.48; their mean Charlson index was 1.77 1.55, their mean duration of catheterization was 15.46 10.81 days and the mean duration of one central line was 5.8+/-3.72 days. Gram-negative bacteria was determined in 53.5 % of CVC-AI (n= 15) dominated by multi-drug resistant Acinetobacter baumani (n=7). Staphylococci were isolated in 3 CVC-AI. Fourteen (50%) patients with CVC-AI died. Univariate analysis identified men (p=0.034), the referral from another hospital department (p=0.03), tobacco (p=0.006), duration of sedation (p=0.003) and the duration of catheterization (p=0), as possible risk factors of CVC-AI. Multivariate analysis showed that independent factors of CVC-AI were, male sex; OR= 5.73, IC 95% [2; 16.46], p=0.001, Ramsay score; OR= 1.57, IC 95% [1.036; 2.38], p=0.033, and duration of catheterization; OR=1.093, IC 95% [1.035; 1.15], p=0.001. Conclusion: In a monocenter cohort, CVC-AI had a high density and is associated with poor outcome. Identifying the risk factors is necessary to find solutions for this major health problem.

Keywords: central venous catheter associated infection, intensive care unit, prospective cohort studies, risk factors

Procedia PDF Downloads 361
1606 Distributed Perceptually Important Point Identification for Time Series Data Mining

Authors: Tak-Chung Fu, Ying-Kit Hung, Fu-Lai Chung

Abstract:

In the field of time series data mining, the concept of the Perceptually Important Point (PIP) identification process is first introduced in 2001. This process originally works for financial time series pattern matching and it is then found suitable for time series dimensionality reduction and representation. Its strength is on preserving the overall shape of the time series by identifying the salient points in it. With the rise of Big Data, time series data contributes a major proportion, especially on the data which generates by sensors in the Internet of Things (IoT) environment. According to the nature of PIP identification and the successful cases, it is worth to further explore the opportunity to apply PIP in time series ‘Big Data’. However, the performance of PIP identification is always considered as the limitation when dealing with ‘Big’ time series data. In this paper, two distributed versions of PIP identification based on the Specialized Binary (SB) Tree are proposed. The proposed approaches solve the bottleneck when running the PIP identification process in a standalone computer. Improvement in term of speed is obtained by the distributed versions.

Keywords: distributed computing, performance analysis, Perceptually Important Point identification, time series data mining

Procedia PDF Downloads 435
1605 Similarity of the Disposition of the Electrostatic Potential of Tetrazole and Carboxylic Group to Investigate Their Bioisosteric Relationship

Authors: Alya A. Arabi

Abstract:

Bioisosteres are functional groups that can be interchangeably used without affecting the potency of the drug. Bioisosteres have similar pharmacological properties. Bioisosterism is useful for modifying the physicochemical properties of a drug while obeying the Lipinski’s rules. Bioisosteres are key in optimizing the pharmacokinetic and pharmacodynamics properties of a drug. Tetrazole and carboxylate anions are non-classic bioisosteres. Density functional theory was used to obtain the wavefunction of the molecules and the optimized geometries. The quantum theory of atoms in molecules (QTAIM) was used to uncover the similarity of the average electron density in tetrazole and carboxylate anions. This similarity between the bioisosteres capped by a methyl group was valid despite the fact that the groups have different volumes, charges, energies, or electron populations. The biochemical correspondence of tetrazole and carboxylic acid was also determined to be a result of the similarity of the topography of the electrostatic potential (ESP). The ESP demonstrates the pharmacological and biochemical resemblance for a matching “key-and-lock” interaction.

Keywords: bioisosteres, carboxylic acid, density functional theory, electrostatic potential, tetrazole

Procedia PDF Downloads 435
1604 Uplift Segmentation Approach for Targeting Customers in a Churn Prediction Model

Authors: Shivahari Revathi Venkateswaran

Abstract:

Segmenting customers plays a significant role in churn prediction. It helps the marketing team with proactive and reactive customer retention. For the reactive retention, the retention team reaches out to customers who already showed intent to disconnect by giving some special offers. When coming to proactive retention, the marketing team uses churn prediction model, which ranks each customer from rank 1 to 100, where 1 being more risk to churn/disconnect (high ranks have high propensity to churn). The churn prediction model is built by using XGBoost model. However, with the churn rank, the marketing team can only reach out to the customers based on their individual ranks. To profile different groups of customers and to frame different marketing strategies for targeted groups of customers are not possible with the churn ranks. For this, the customers must be grouped in different segments based on their profiles, like demographics and other non-controllable attributes. This helps the marketing team to frame different offer groups for the targeted audience and prevent them from disconnecting (proactive retention). For segmentation, machine learning approaches like k-mean clustering will not form unique customer segments that have customers with same attributes. This paper finds an alternate approach to find all the combination of unique segments that can be formed from the user attributes and then finds the segments who have uplift (churn rate higher than the baseline churn rate). For this, search algorithms like fast search and recursive search are used. Further, for each segment, all customers can be targeted using individual churn ranks from the churn prediction model. Finally, a UI (User Interface) is developed for the marketing team to interactively search for the meaningful segments that are formed and target the right set of audience for future marketing campaigns and prevent them from disconnecting.

Keywords: churn prediction modeling, XGBoost model, uplift segments, proactive marketing, search algorithms, retention, k-mean clustering

Procedia PDF Downloads 71
1603 Pain Intensity, Functional Disability and Physical Activity among Elderly Individuals with Chronic Mechanical Low Back Pain

Authors: Adesola Odole, Nse Odunaiya, Samuel Adewale

Abstract:

Chronic Mechanical Low Back Pain (CMLBP) is prevalent in the aging population; some studies have documented the association among pain intensity, functional disability and physical activity in the general population but very few studies in the elderly. This study was designed to investigate the association among pain intensity, functional disability and physical activity of elderly individuals with CMLBP in the University College Hospital (UCH), Ibadan, Nigeria and also to determine the difference in physical activity, pain intensity and functional disability between males and females. A total of 96 participants diagnosed with CMLBP participated in this cross-sectional survey. They were conveniently sampled from selected units in the UCH, Ibadan, Nigeria. Data on sex, marital status, occupation and duration of onset of pain of participants were obtained from the participants. The Physical Activity Scale for the Elderly, Visual Analogue Scale and Oswestry Disability Questionnaire were used to measure the physical activity, pain intensity and functional disability of the participants respectively. Data was analysed using Spearman correlation, independent t-test; and α was set at 0.05. Participants (25 males, 71 females) were aged 69.64±7.43 years. The majority (76.0%) of the participants were married, and over half (55.2%) were retirees. Participants’ mean pain intensity score was 5.21±2.03 and mean duration of onset of low back pain was 63.63 ± 90.01 months. The majority (67.6%) of the participants reported severe to crippled functional disability. Their mean functional disability was 46.91 ± 13.99. Participants’ mean physical activity score was 97.47 ± 82.55. There was significant association between physical activity and pain intensity (r = -0.21, p = 0.04). There was significant association between physical activity and functional disability (r = -0.47, p = 0.00). Male (87.26 ± 79.94) and female (101.07 ± 83.71) participants did not differ significantly in physical activity (t = 0.00, p = 0.48). In addition, male (5.48 ± 2.06) and female (5.11 ± 2.02) participants’ pain intensity were comparable (t = 0.26, p = 0.44). There was also no significant difference in functional disability (t = 0.05, p = 0.07) between male (42.56 ±13.85) and female (48.45 ± 13.81) participants. It can be concluded from this study that majority of the elderly individuals with chronic mechanical low back pain had a severe to crippled functional disability. Those who reported increased physical activity had reduced pain intensity and functional disability. Male and female elderly individuals with chronic mechanical low back pain are comparable in their pain intensity, functional disability, and physical activity. Elderly individuals with CMLBP should be educated on the importance of participating in physical activity which could reduce their pain symptoms and improve functional disability.

Keywords: elderly, functional disability, mechanical low back pain, pain intensity, physical activity

Procedia PDF Downloads 320
1602 A Deep Learning Based Approach for Dynamically Selecting Pre-processing Technique for Images

Authors: Revoti Prasad Bora, Nikita Katyal, Saurabh Yadav

Abstract:

Pre-processing plays an important role in various image processing applications. Most of the time due to the similar nature of images, a particular pre-processing or a set of pre-processing steps are sufficient to produce the desired results. However, in the education domain, there is a wide variety of images in various aspects like images with line-based diagrams, chemical formulas, mathematical equations, etc. Hence a single pre-processing or a set of pre-processing steps may not yield good results. Therefore, a Deep Learning based approach for dynamically selecting a relevant pre-processing technique for each image is proposed. The proposed method works as a classifier to detect hidden patterns in the images and predicts the relevant pre-processing technique needed for the image. This approach experimented for an image similarity matching problem but it can be adapted to other use cases too. Experimental results showed significant improvement in average similarity ranking with the proposed method as opposed to static pre-processing techniques.

Keywords: deep-learning, classification, pre-processing, computer vision, image processing, educational data mining

Procedia PDF Downloads 163
1601 Numerical Simulation of the Production of Ceramic Pigments Using Microwave Radiation: An Energy Efficiency Study Towards the Decarbonization of the Pigment Sector

Authors: Pedro A. V. Ramos, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

Global warming mitigation is one of the main challenges of this century, having the net balance of greenhouse gas (GHG) emissions to be null or negative in 2050. Industry electrification is one of the main paths to achieving carbon neutrality within the goals of the Paris Agreement. Microwave heating is becoming a popular industrial heating mechanism due to the absence of direct GHG emissions, but also the rapid, volumetric, and efficient heating. In the present study, a mathematical model is used to simulate the production using microwave heating of two ceramic pigments, at high temperatures (above 1200 Celsius degrees). The two pigments studied were the yellow (Pr, Zr)SiO₂ and the brown (Ti, Sb, Cr)O₂. The chemical conversion of reactants into products was included in the model by using the kinetic triplet obtained with the model-fitting method and experimental data present in the Literature. The coupling between the electromagnetic, thermal, and chemical interfaces was also included. The simulations were computed in COMSOL Multiphysics. The geometry includes a moving plunger to allow for the cavity impedance matching and thus maximize the electromagnetic efficiency. To accomplish this goal, a MATLAB controller was developed to automatically search the position of the moving plunger that guarantees the maximum efficiency. The power is automatically and permanently adjusted during the transient simulation to impose stationary regime and total conversion, the two requisites of every converged solution. Both 2D and 3D geometries were used and a parametric study regarding the axial bed velocity and the heat transfer coefficient at the boundaries was performed. Moreover, a Verification and Validation study was carried out by comparing the conversion profiles obtained numerically with the experimental data available in the Literature; the numerical uncertainty was also estimated to attest to the result's reliability. The results show that the model-fitting method employed in this work is a suitable tool to predict the chemical conversion of reactants into the pigment, showing excellent agreement between the numerical results and the experimental data. Moreover, it was demonstrated that higher velocities lead to higher thermal efficiencies and thus lower energy consumption during the process. This work concludes that the electromagnetic heating of materials having high loss tangent and low thermal conductivity, like ceramic materials, maybe a challenge due to the presence of hot spots, which may jeopardize the product quality or even the experimental apparatus. The MATLAB controller increased the electromagnetic efficiency by 25% and global efficiency of 54% was obtained for the titanate brown pigment. This work shows that electromagnetic heating will be a key technology in the decarbonization of the ceramic sector as reductions up to 98% in the specific GHG emissions were obtained when compared to the conventional process. Furthermore, numerical simulations appear as a suitable technique to be used in the design and optimization of microwave applicators, showing high agreement with experimental data.

Keywords: automatic impedance matching, ceramic pigments, efficiency maximization, high-temperature microwave heating, input power control, numerical simulation

Procedia PDF Downloads 138
1600 Application of Raman Spectroscopy for Ovarian Cancer Detection: Comparative Analysis of Fresh, Formalin-Fixed, and Paraffin-Embedded Samples

Authors: Zeinab Farhat, Nicolas Errien, Romuald Wernert, Véronique Verriele, Frédéric Amiard, Philippe Daniel

Abstract:

Ovarian cancer, also known as the silent killer, is the fifth most common cancer among women worldwide, and its death rate is higher than that of other gynecological cancers. The low survival rate of women with high-grade serous ovarian carcinoma highlights the critical need for the development of new methods for early detection and diagnosis of the disease. The aim of this study was to evaluate if Raman spectroscopy combined with chemometric methods such as Principal Component Analysis (PCA) could differentiate between cancerous and normal tissues from different types of samples, such as paraffin embedding, chemical deparaffinized, formalin-fixed and fresh samples of the same normal and malignant ovarian tissue. The method was applied specifically to two critical spectral regions: the signature region (860-1000 〖cm〗^(-1)) and the high-frequency region (2800-3100 〖cm〗^(-1) ). The mean spectra of paraffin-embedded in normal and malignant tissues showed almost similar intensity. On the other hand, the mean spectra of normal and cancer tissues from chemical deparaffinized, formalin-fixed, and fresh samples show significant intensity differences. These spectral differences reflect variations in the molecular composition of the tissues, particularly lipids and proteins. PCA, which was applied to distinguish between cancer and normal tissues, was performed on whole spectra and on selected regions—the PCA score plot of paraffin-embedded shows considerable overlap between the two groups. However, the PCA score of chemicals deparaffinized, formalin-fixed, and fresh samples showed a good discrimination of tissue types. Our findings were validated by analyses of a set of samples whose status (normal and cancerous) was not previously known. The results of this study suggest that Raman Spectroscopy associated with PCA methods has the capacity to provide clinically significant differentiation between normal and cancerous ovarian tissues.

Keywords: Raman spectroscopy, ovarian cancer, signal processing, Principal Component Analysis, classification

Procedia PDF Downloads 29
1599 Detecting Covid-19 Fake News Using Deep Learning Technique

Authors: AnjalI A. Prasad

Abstract:

Nowadays, social media played an important role in spreading misinformation or fake news. This study analyzes the fake news related to the COVID-19 pandemic spread in social media. This paper aims at evaluating and comparing different approaches that are used to mitigate this issue, including popular deep learning approaches, such as CNN, RNN, LSTM, and BERT algorithm for classification. To evaluate models’ performance, we used accuracy, precision, recall, and F1-score as the evaluation metrics. And finally, compare which algorithm shows better result among the four algorithms.

Keywords: BERT, CNN, LSTM, RNN

Procedia PDF Downloads 206
1598 Industrial Relations as Communication: The Strange Case of the FCA-UAW Agreement

Authors: Francesco Nespoli

Abstract:

After having posed a theoretical framework combining framing theory and new rhetoric, the paper analyze the shift in communication both adopted by UAW and FCA during the negotiations in fall 2015. The paper argues that mistakes and adjustments played a determinant role respectively in the rejection of the first tentative agreement and in the ratification of the contract. The purpose of the paper is to set a new theoretical framework for the analysis of communication in industrial relations, by describing a narrative construction of reality from the perspective of the new rhetoric. The paper thus analyze all public text, speeches, tweets and Facebook posts by the union reading them as part of the narrative set by the organization condensed by the slogan 'it’s our time'. That narrative tried to gain consensus from the members matching the expectations due to the industry recovery after more than five years of workers' sacrifices. In doing so, the analysis points out a shift in the communication strategy of the union after the first rejection of a tentative agreement in 15 years. The findings suggest that, from the communication point of view, consultation in industrial relations can be conceived as a particular kind of political communication where identification with the audience through deliberate narrative may not be effective if it is not preceded by a listening campaign.

Keywords: communication, consultation, automotive, FCA

Procedia PDF Downloads 189
1597 Fight the Burnout: Phase Two of a NICU Nurse Wellness Bundle

Authors: Megan Weisbart

Abstract:

Background/Significance: The Intensive Care Unit (ICU) environment contributes to nurse burnout. Burnout costs include decreased employee compassion, missed workdays, worse patient outcomes, diminished job performance, high turnover, and higher organizational cost. Meaningful recognition, nurturing of interpersonal connections, and mindfulness-based interventions are associated with decreased burnout. The purpose of this quality improvement project was to decrease Neonatal ICU (NICU) nurse burnout using a Wellness Bundle that fosters meaningful recognition, interpersonal connections and includes mindfulness-based interventions. Methods: The Professional Quality of Life Scale Version 5 (ProQOL5) was used to measure burnout before Wellness Bundle implementation, after six months, and will be given yearly for three years. Meaningful recognition bundle items include Online submission and posting of staff shoutouts, recognition events, Nurses Week and Unit Practice Council member gifts, and an employee recognition program. Fostering of interpersonal connections bundle items include: Monthly staff games with prizes, social events, raffle fundraisers, unit blog, unit wellness basket, and a wellness resource sheet. Quick coherence techniques were implemented at staff meetings and huddles as a mindfulness-based intervention. Findings: The mean baseline burnout score of 14 NICU nurses was 20.71 (low burnout). The baseline range was 13-28, with 11 nurses experiencing low burnout, three nurses experiencing moderate burnout, and zero nurses experiencing high burnout. After six months of the Wellness Bundle Implementation, the mean burnout score of 39 NICU nurses was 22.28 (low burnout). The range was 14-31, with 22 nurses experiencing low burnout, 17 nurses experiencing moderate burnout, and zero nurses experiencing high burnout. Conclusion: A NICU Wellness Bundle that incorporated meaningful recognition, fostering of interpersonal connections, and mindfulness-based activities was implemented to improve work environments and decrease nurse burnout. Participation bias and low baseline response rate may have affected the reliability of the data and necessitate another comparative measure of burnout in one year.

Keywords: burnout, NICU, nurse, wellness

Procedia PDF Downloads 88
1596 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application

Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob

Abstract:

Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.

Keywords: robotic vision, image processing, applications of robotics, artificial intelligent

Procedia PDF Downloads 97
1595 Method for Improving Antidepressants Adherence in Patients with Depressive Disorder: Systemic Review and Meta-Analysis

Authors: Juntip Kanjanasilp, Ratree Sawangjit, Kanokporn Meelap, Kwanchanok Kruthakool

Abstract:

Depression is a common mental health disorder. Antidepressants are effective pharmacological treatments, but most patients have low medication adherence. This study aims to systematic review and meta-analysis what method increase the antidepressants adherence efficiently and improve clinical outcome. Systematic review of articles of randomized controlled trials obtained by a computerized literature search of The Cochrane, Library, Pubmed, Embase, PsycINFO, CINAHL, Education search, Web of Science and ThaiLIS (28 December 2017). Twenty-three studies were included and assessed the quality of research by ROB 2.0. The results reported that printing media improved in number of people who had medication adherence statistical significantly (p= 0.018), but education, phone call, and program utilization were no different (p=0.172, p=0.127, p=0.659). There was no significant difference in pharmacist’s group, health care team’s group and physician’s group (p=0.329, p=0.070, p=0.040). Times of intervention at 1 month and 6 months improved medication adherence significantly (p= 0.0001, p=0.013). There was significantly improved adherence in single intervention (p=0.027) but no different in multiple interventions (p=0.154). When we analyzed medication adherence with the mean score, no improved adherence was found, not relevant with who gives the intervention and times to intervention. However, the multiple interventions group was statistically significant improved medication adherence (p=0.040). Phone call and the physician’s group were statistically significant improved clinical outcomes in number of improved patients (0.025 and 0.020, respectively). But in the pharmacist’s group and physician’s group were not found difference in the mean score of clinical outcomes (p=0.993, p=0.120, respectively). Times to intervention and number of intervention were not significant difference than usual care. The overall intervention can increase antidepressant adherence, especially the printing media, and the appropriate timing of the intervention is at least 6 months. For effective treatment, the provider should have experience and expert in caring for patients with depressive disorders, such as a psychiatrist. Medical personnel should have knowledge in caring for these patients also.

Keywords: depression, medication adherence, clinical outcomes, systematic review, meta-analysis

Procedia PDF Downloads 134
1594 Tele-Rehabilitation for Multiple Sclerosis: A Case Study

Authors: Sharon Harel, Rachel Kizony, Yoram Feldman, Gabi Zeilig, Mordechai Shani

Abstract:

Multiple Sclerosis (MS) is a neurological disease that may cause restriction in participation in daily activities of young adults. Main symptoms include fatigue, weakness and cognitive decline. The appearance of symptoms, their severity and deterioration rate, change between patients. The challenge of health services is to provide long-term rehabilitation services to people with MS. The objective of this presentation is to describe a course of tele-rehabilitation service of a woman with MS. Methods; R is a 48 years-old woman, diagnosed with MS when she was 22. She started to suffer from weakness of her non-dominant left upper extremity about ten years after the diagnosis. She was referred to the tele-rehabilitation service by her rehabilitation team, 16 years after diagnosis. Her goals were to improve ability to use her affected upper extremity in daily activities. On admission her score in the Mini-Mental State Exam was 30/30. Her Fugl-Meyer Assessment (FMA) score of the left upper extremity was 48/60, indicating mild weakness and she had a limitation of her shoulder abduction (90 degrees). In addition, she reported little use of her arm in daily activities as shown in her responses to the Motor Activity Log (MAL) that were equal to 1.25/5 in amount and 1.37 in quality of use. R. received two 30 minutes on-line sessions per week in the tele-rehabilitation service, with the CogniMotion system. These were complemented by self-practice with the system. The CogniMotion system provides a hybrid (synchronous-asynchronous), the home-based tele-rehabilitation program to improve the motor, cognitive and functional status of people with neurological deficits. The system consists of a computer, large monitor, and the Microsoft’s Kinect 3D sensor. This equipment is located in the client’s home and connected to a clinician’s computer setup in a remote clinic via WiFi. The client sits in front of the monitor and uses his body movements to interact with games and tasks presented on the monitor. The system provides feedback in the form of ‘knowledge of results’ (e.g., the success of a game) and ‘knowledge of performance’ (e.g., alerts for compensatory movements) to enhance motor learning. The games and tasks were adapted for R. motor abilities and level of difficulty was gradually increased according to her abilities. The results of her second assessment (after 35 on-line sessions) showed improvement in her FMA score to 52 and shoulder abduction to 140 degrees. Moreover, her responses to the MAL indicated an increased amount (2.4) and quality (2.2) of use of her left upper extremity in daily activities. She reported high level of enjoyment from the treatments (5/5), specifically the combination of cognitive challenges while moving her body. In addition, she found the system easy to use as reflected by her responses to the System Usability Scale (85/100). To-date, R. continues to receive treatments in the tele-rehabilitation service. To conclude, this case report shows the potential of using tele-rehabilitation for people with MS to provide strategies to enhance the use of the upper extremity in daily activities as well as for maintaining motor function.

Keywords: motor function, multiple-sclerosis, tele-rehabilitation, daily activities

Procedia PDF Downloads 180
1593 3D Receiver Operator Characteristic Histogram

Authors: Xiaoli Zhang, Xiongfei Li, Yuncong Feng

Abstract:

ROC curves, as a widely used evaluating tool in machine learning field, are the tradeoff of true positive rate and negative rate. However, they are blamed for ignoring some vital information in the evaluation process, such as the amount of information about the target that each instance carries, predicted score given by each classification model to each instance. Hence, in this paper, a new classification performance method is proposed by extending the Receiver Operator Characteristic (ROC) curves to 3D space, which is denoted as 3D ROC Histogram. In the histogram, the

Keywords: classification, performance evaluation, receiver operating characteristic histogram, hardness prediction

Procedia PDF Downloads 314
1592 Impact of Gaming Environment in Education

Authors: Md. Ataur Rahman Bhuiyan, Quazi Mahabubul Hasan, Md. Rifat Ullah

Abstract:

In this research, we did explore the effectiveness of the gaming environment in education and compared it with the traditional education system. We take several workshops in both learning environments. We measured student’s performance by providing a grading score (by professional academics) on their attitude in different criteria. We also collect data from survey questionnaires to understand student’s experiences towards education and study. Finally, we examine the impact of the different learning environments by applying statistical hypothesis tests, the T-test, and the ANOVA test.

Keywords: gamification, game-based learning, education, statistical analysis, human-computer interaction

Procedia PDF Downloads 232
1591 The Effect of Tele Rehabilitation Training on Complications of Hip Osteoarthritis: A Quasi-Experimental Study

Authors: Mahnaz Seyedoshohadaee, Azadeh Nematolahi, Parsa Rahimi

Abstract:

Introduction: Rehabilitation training after hip joint surgery is one of the priorities of nursing, which can be helpful in today's world with the advancement of technology. This study was conducted with the aim of the effect of Tele rehabilitation Education on outcomes of hip osteoarthritis. Methods: The present study was a semi-experimental study that was conducted on patients after hip replacement in the first half of 2023. To perform the work, 70 patients who were available were included in the study and were divided into two intervention and control groups by a nonrandom method. Inclusion criteria included: a maximum of 6 months had passed since the hip joint replacement, age between 30-70 years, the ability to follow instructions by the subject, the absence of accompanying orthopedic lesions such as fractures, and having access to the Internet, a smartphone, and the Skype program. Exclusion criteria were severe speech disorder and non-participation in a training session. The research tool included a demographic profile form and Hip disability and osteoarthritis outcome score (HOOS), which were completed by the patients before and after the training. Training for people in the intervention group in 4 sessions, including introduction of the disease, risk factors, symptoms, management of disease symptoms, medication, diet, appropriate exercises and pain relief methods, one session per week for 30 to 45 minutes in the groups 4 to 6 people were offered through Skype software. SPSS version 22 statistical software was used to analyze the data. Results: The average score of osteoarthritis outcomes in the patients before the intervention was 112.74±29.64 in the test group and 110.41±16.34 in the control group, which had no significant difference (P=0.682). After the intervention, it reached 85.25±21.43 and 109.94±15.74, respectively, and this difference was significant (P<0.001). The comparison of the average scores of osteoarthritis results in the test group indicated a significant difference from the pre-test to the post-test time (p<0.001). But in the control group, this difference was not significant (p=0.130). Conclusion: The results showed that Tele rehabilitation Education has a positive effect on reducing the outcomes of hip osteoarthritis, so it is recommended that nurses use Tele rehabilitation Education in their training in order to empower patients.

Keywords: training, rehabilitation, hip osteoarthritides, patient, complications

Procedia PDF Downloads 5