Search results for: neural stem/precursor cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5687

Search results for: neural stem/precursor cells

4727 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling

Authors: Amin Nezarat, Naeime Seifadini

Abstract:

Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.

Keywords: predicting, deep learning, neural network, urban trip

Procedia PDF Downloads 137
4726 Proinflammatory Response of Agglomerated TiO2 Nanoparticles in Human-Immune Cells

Authors: Vaiyapuri Subbarayn Periasamy, Jegan Athinarayanan, Ali A. Alshatwi

Abstract:

The widespread use of Titanium oxide nanoparticles (TiO2-NPs), now are found with different physic-chemical properties (size, shape, chemical properties, agglomeration, etc.) in many processed foods, agricultural chemicals, biomedical products, food packaging and food contact materials, personal care products, and other consumer products used in daily life. Growing evidences have been highlighted that there are risks of physico-chemical properties dependent toxicity with special attention to “TiO2-NPs and human immune system”. Unfortunately, agglomeration and aggregation have frequently been ignored in immuno-toxicological studies, even though agglomeration and aggregation would be expected to affect nanotoxicity since it changes the size, shape, surface area, and other properties of the TiO2-NPs. In this present investigation, we assessed the immune toxic effect of TiO2-NPs on human immune cells Total WBC including Lymphocytes (T cells (CD3+), T helper cells (CD3+, CD4+), Suppressor/cytotoxic T cells (CD3+/CD8+) and NK cells (CD3-/CD16+ and CD56+), Monocytes (CD14+, CD3-) and B lymphocytes (CD19+, CD3-) in order to find the immunological response (IL1A, IL1B, IL2 IL-4, IL5 IL-6, IL-10, IL-12, IL-13, IFN-γ, TGF-β, and TNF-a) and redox gene regulation (TNF, p53, BCl-2, CAT, GSTA4, TNF, CYP1A, POR, SOD1, GSTM3, GPX1, and GSR1)-linking physicochemical properties with special reference to agglomeration of TiO2-NPs. Our findings suggest that TiO2-NPs altered cytokine production, enhanced phagocytic indexing, metabolic stress through specific immune regulatory- genes expression in different WBC subsets and may contribute to pro-inflammatory response. Although TiO2-NPs have great advantages in the personal care products, biomedical, food and agricultural products, its chronic and acute immune-toxicity still need to be assessed carefully with special reference to food and environmental safety.

Keywords: TiO2 nanoparticles, oxidative stress, cytokine, human immune cells

Procedia PDF Downloads 396
4725 Using Probabilistic Neural Network (PNN) for Extracting Acoustic Microwaves (Bulk Acoustic Waves) in Piezoelectric Material

Authors: Hafdaoui Hichem, Mehadjebia Cherifa, Benatia Djamel

Abstract:

In this paper, we propose a new method for Bulk detection of an acoustic microwave signal during the propagation of acoustic microwaves in a piezoelectric substrate (Lithium Niobate LiNbO3). We have used the classification by probabilistic neural network (PNN) as a means of numerical analysis in which we classify all the values of the real part and the imaginary part of the coefficient attenuation with the acoustic velocity in order to build a model from which we note the Bulk waves easily. These singularities inform us of presence of Bulk waves in piezoelectric materials. By which we obtain accurate values for each of the coefficient attenuation and acoustic velocity for Bulk waves. This study will be very interesting in modeling and realization of acoustic microwaves devices (ultrasound) based on the propagation of acoustic microwaves.

Keywords: piezoelectric material, probabilistic neural network (PNN), classification, acoustic microwaves, bulk waves, the attenuation coefficient

Procedia PDF Downloads 430
4724 Urban Growth Prediction Using Artificial Neural Networks in Athens, Greece

Authors: Dimitrios Triantakonstantis, Demetris Stathakis

Abstract:

Urban areas have been expanded throughout the globe. Monitoring and modeling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modeling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change.

Keywords: artificial neural networks, CORINE, urban atlas, urban growth prediction

Procedia PDF Downloads 527
4723 Alternating Electric fields-Induced Senescence in Glioblastoma

Authors: Eun Ho Kim

Abstract:

Innovations have conjured up a mode of treating GBM cancer cells in the newly diagnosed patients in a period of 4.9 months at an improved median OS, which brings along only a few minor side effects in the phase III of the clinical trial. This mode has been termed the Alternating Electric Fields (AEF). The study at hand is aimed at determining whether the AEF treatment is beneficial in sensitizing the GBM cancer cells through the process of increasing the AEF –induced senescence. The methodology to obtain the findings for this research ranged across various components, such as obtaining and testing SA-β-gal staining, flow cytometry, Western blotting, morphology, and Positron Emission Tomography (PET) / Computed Tomography (CT), immunohistochemical staining and microarray. The number of cells that displayed a senescence-specific morphology and positive SA-ß-Gal activity gradually increased up to 5 days. These results suggest that p16, p21 and p27 are essential regulators of AEF -induced senescence via NF-κB activation. The results showed that the AEF treatment is functional in enhancing the AEF –induced senescence in the GBM cells via an apoptosis- independent mechanism. This research concludes that this mode of treatment is a trustworthy protocol that can be effectively employed to overcome the limitations of the conventional mode of treatment on GBM.

Keywords: alternating electric fields, senescence, glioblastoma, cell death

Procedia PDF Downloads 90
4722 Functional Gene Expression in Human Cells Using Linear Vectors Derived from Bacteriophage N15 Processing

Authors: Kumaran Narayanan, Pei-Sheng Liew

Abstract:

This paper adapts the bacteriophage N15 protelomerase enzyme to assemble linear chromosomes as vectors for gene expression in human cells. Phage N15 has the unique ability to replicate as a linear plasmid with telomeres in E. coli during its prophage stage of life-cycle. The virus-encoded protelomerase enzyme cuts its circular genome and caps its ends to form hairpin telomeres, resulting in a linear human-chromosome-like structure in E. coli. In mammalian cells, however, no enzyme with TelN-like activities has been found. In this work, we show for the first-time transfer of the protelomerase from phage into human and mouse cells and demonstrate recapitulation of its activity in these hosts. The function of this enzyme is assayed by demonstrating cleavage of its target DNA, followed by detecting telomere formation based on its resistance to recBCD enzyme digestion. We show protelomerase expression persists for at least 60 days, which indicates limited silencing of its expression. Next, we show that an intact human β-globin gene delivered on this linear chromosome accurately retains its expression in the human cellular environment for at least 60 hours, demonstrating its stability and potential as a vector. These results demonstrate that the N15 protelomerse is able to function in mammalian cells to cut and heal DNA to create telomeres, which provides a new tool for creating novel structures by DNA resolution in these hosts.

Keywords: chromosome, beta-globin, DNA, gene expression, linear vector

Procedia PDF Downloads 190
4721 Cytotoxic and Biocompatible Evaluation of Silica Coated Silver Nanoparticle Against Nih-3t3 Cells

Authors: Chen-En Lin, Lih-Rou Rau, Jiunn-Woei Liaw, Shiao-Wen Tsai

Abstract:

The unique optical properties of plasmon resonance metallic particles have attracted considerable applications in the fields of physics, chemistry and biology. Metal-Enhanced Fluorescence (MEF) effect is one of the useful applications. MEF effect stated that fluorescence intensity can be quenched or be enhanced depending on the distance between fluorophores and the metal nanoparticles. Silver nanoparticles have used widely in antibacterial studies. However, the major limitation for silver nanoparticles (AgNPs) in biomedical application is well-known cytotoxicity on cells. There were numerous literatures have been devoted to overcome the disadvantage. The aim of the study is to evaluate the cytotoxicity and biocompatibility of silica coated AgNPs against NIH-3T3 cells. The results were shown that NIH-3T3 cells started to detach, shrink, become rounded and finally be irregular in shape after 24 h of exposure at 10 µg/ml AgNPs. Besides, compared with untreated cells, the cell viability significantly decreased to 60% and 40% which were exposed to 10 µg/ml and 20 µg/ml AgNPs respectively. The result was consistent with previously reported findings that AgNPs induced cytotoxicity was concentration dependent. However, the morphology and cell viability of cells appeared similar to the control group when exposed to 20 µg/ml of silica coated AgNPs. We further utilized the dark-field hyperspectral imaging system to analysis the optical properties of the intracellular nanoparticles. The image displayed that the red shift of the surface plasmonic resonances band of the enclosed AgNPs further confirms the agglomerate of the AgNPs rather than their distribution in cytoplasm. In conclusion, the study demonstrated the silica coated of AgNPs showed well biocompatibility and significant lower cytotoxicity compared with bare AgNPs.

Keywords: silver nanoparticles, silica, cell viability, morphology

Procedia PDF Downloads 391
4720 Optimal Tracking Control of a Hydroelectric Power Plant Incorporating Neural Forecasting for Uncertain Input Disturbances

Authors: Marlene Perez Villalpando, Kelly Joel Gurubel Tun

Abstract:

In this paper, we propose an optimal control strategy for a hydroelectric power plant subject to input disturbances like meteorological phenomena. The engineering characteristics of the system are described by a nonlinear model. The random availability of renewable sources is predicted by a high-order neural network trained with an extended Kalman filter, whereas the power generation is regulated by the optimal control law. The main advantage of the system is the stabilization of the amount of power generated in the plant. A control supervisor maintains stability and availability in hydropower reservoirs water levels for power generation. The proposed approach demonstrated a good performance to stabilize the reservoir level and the power generation along their desired trajectories in the presence of disturbances.

Keywords: hydropower, high order neural network, Kalman filter, optimal control

Procedia PDF Downloads 295
4719 Developing Artificial Neural Networks (ANN) for Falls Detection

Authors: Nantakrit Yodpijit, Teppakorn Sittiwanchai

Abstract:

The number of older adults is rising rapidly. The world’s population becomes aging. Falls is one of common and major health problems in the elderly. Falls may lead to acute and chronic injuries and deaths. The fall-prone individuals are at greater risk for decreased quality of life, lowered productivity and poverty, social problems, and additional health problems. A number of studies on falls prevention using fall detection system have been conducted. Many available technologies for fall detection system are laboratory-based and can incur substantial costs for falls prevention. The utilization of alternative technologies can potentially reduce costs. This paper presents the new design and development of a wearable-based fall detection system using an Accelerometer and Gyroscope as motion sensors for the detection of body orientation and movement. Algorithms are developed to differentiate between Activities of Daily Living (ADL) and falls by comparing Threshold-based values with Artificial Neural Networks (ANN). Results indicate the possibility of using the new threshold-based method with neural network algorithm to reduce the number of false positive (false alarm) and improve the accuracy of fall detection system.

Keywords: aging, algorithm, artificial neural networks (ANN), fall detection system, motion sensorsthreshold

Procedia PDF Downloads 496
4718 Matching Law in Autoshaped Choice in Neural Networks

Authors: Giselle Maggie Fer Castañeda, Diego Iván González

Abstract:

The objective of this work was to study the autoshaped choice behavior in the Donahoe, Burgos and Palmer (DBP) neural network model and analyze it under the matching law. Autoshaped choice can be viewed as a form of economic behavior defined as the preference between alternatives according to their relative outcomes. The Donahoe, Burgos and Palmer (DBP) model is a connectionist proposal that unifies operant and Pavlovian conditioning. This model has been used for more than three decades as a neurobehavioral explanation of conditioning phenomena, as well as a generator of predictions suitable for experimental testing with non-human animals and humans. The study consisted of different simulations in which, in each one, a ratio of reinforcement was established for two alternatives, and the responses (i.e., activations) in each of them were measured. Choice studies with animals have demonstrated that the data generally conform closely to the generalized matching law equation, which states that the response ratio equals proportionally to the reinforcement ratio; therefore, it was expected to find similar results with the neural networks of the Donahoe, Burgos and Palmer (DBP) model since these networks have simulated and predicted various conditioning phenomena. The results were analyzed by the generalized matching law equation, and it was observed that under some contingencies, the data from the networks adjusted approximately to what was established by the equation. Implications and limitations are discussed.

Keywords: matching law, neural networks, computational models, behavioral sciences

Procedia PDF Downloads 73
4717 Formulation and Characterization of NaCS-PDMDAAC Capsules with Immobilized Chlorella vulgaris for Phycoremediation of Palm Oil Mill Effluent

Authors: Quin Emparan, Razif Harun, Dayang R. A. Biak, Rozita Omar, Michael K. Danquah

Abstract:

Cultivation of immobilized microalgae cells is on the rise for biotechnological applications. In this study, cultivation of Chlorella vulgaris was carried out in the form of suspended free-cell and immobilized cells system. NaCS-PDMDAAC capsules were used to immobilize C. vulgaris. Initially, the synthesized NaCS with C. vulgaris culture were prepared at various concentration of 5- 20% (w/v) using a 6% hardening solution (PDMDAAC) to investigate the capsules' gel stability and suitability for microalgae cells growth. Then, the capsules produced from 15% NaCS with C. vulgaris culture were furthered investigated using 5%, 10%, and 15% (w/v) of PDMDAAC solution. The capsules' gel stability was evaluated through dissolution time and loss of uniform spherical shape of capsules, while suitability for microalgae cells growth was evaluated through the optical density of microalgae. In this study, the 15% NaCS-10% PDMDAAC capsules were found to be the most suitable to sustain the capsules' gel stability and microalgae cells growth in MLA. For that reason, the C. vulgaris immobilized in the 15% NaCS-10% PDMDAAC capsules were further characterized using physicochemical analysis in terms of morphological, carbon (C), hydrogen (H) and nitrogen (N), Fourier transform-infrared (FT-IR), scanning electron microscopy-energy dispersive X-ray (SEM-EDX), zeta potential and Brunauer-Emmet-Teller (BET) analyses. The results revealed that the presence of sulfonates in the synthesized NaCS and NaCS-PDMDAAC capsules without and with C. vulgaris proves that cellulose alcohol group was successfully bonded by sulfo group. Besides that, immobilized microalgae cells have a smaller cell size of 6.29 ± 1.09 µm and zeta potential of -11.93 ± 0.91 mV than suspended free-cells microalgae culture. It can be summarized that immobilization of C. vulgaris in the 15% NaCS-10% PDMDAAC capsules are relevant as a bioremediator for wastewater treatment purposes due to its suitable size of pore and capsules as well as structural and compositional properties.

Keywords: biological capsules, immobilized cultivation, microalgae, physico-chemical analysis

Procedia PDF Downloads 169
4716 Recognition of Noisy Words Using the Time Delay Neural Networks Approach

Authors: Khenfer-Koummich Fatima, Mesbahi Larbi, Hendel Fatiha

Abstract:

This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.

Keywords: TDNN, neural networks, noise, speech recognition

Procedia PDF Downloads 288
4715 Identification of Nonlinear Systems Using Radial Basis Function Neural Network

Authors: C. Pislaru, A. Shebani

Abstract:

This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the K-Means clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.

Keywords: system identification, nonlinear systems, neural networks, radial basis function, K-means clustering algorithm

Procedia PDF Downloads 469
4714 Artificial Neural Networks Based Calibration Approach for Six-Port Receiver

Authors: Nadia Chagtmi, Nejla Rejab, Noureddine Boulejfen

Abstract:

This paper presents a calibration approach based on artificial neural networks (ANN) to determine the envelop signal (I+jQ) of a six-port based receiver (SPR). The memory effects called also dynamic behavior and the nonlinearity brought by diode based power detector have been taken into consideration by the ANN. Experimental set-up has been performed to validate the efficiency of this method. The efficiency of this approach has been confirmed by the obtained results in terms of waveforms. Moreover, the obtained error vector magnitude (EVM) and the mean absolute error (MAE) have been calculated in order to confirm and to test the ANN’s performance to achieve I/Q recovery using the output voltage detected by the power based detector. The baseband signal has been recovered using ANN with EVMs no higher than 1 % and an MAE no higher than 17, 26 for the SPR excited different type of signals such QAM (quadrature amplitude modulation) and LTE (Long Term Evolution).

Keywords: six-port based receiver; calibration, nonlinearity, memory effect, artificial neural network

Procedia PDF Downloads 75
4713 A Novel Photocrosslinkable and Cytocompatible Chitosan Coating for TI6AL4V Surfaces

Authors: D. Zujur, J. Moret, D. Rodriguez, L. Cruz, J. Lira, L. Gil, E. Dominguez, J. F. Alvarez-Barreto

Abstract:

In this work, chitosan (CH) has been used to produce a novel coating for Ti6Al4V, the most widely used alloy in orthopedic implants, so as to improve the biological tissue response at the metallic surface. The Ti6Al4V surface was sandblasted with alumina particles and observed by SEM. Chitosan was chemically modified, via crodiimide chemistry, with lactobionic and 4-azidebenzoic acid to make it soluble at physiological pH and photo-crosslinkable, respectively. The reaction was verified by FTIR, NMR, and UV/vis spectroscopy. Ti6Al4V surfaces were coated with solutions of the modified CH and exposed to UV light, causing the polymer crosslinking, and formation of a hydrogel on the surface. The crosslinking reaction was monitored by FTIR at different exposure times. Coating morphology was observed by SEM. The coating´s cytocompatibility was determined in vitro through the culture of rat bone marrow´s mesenchymal stem cells, using an MTT assay. The results show that the developed coating is cytocompatible, easy to apply and could be used for further studies in the encapsulation of bioactive molecules to improve osteogenic potential at the tissue-implant interface.

Keywords: chitosan, photo-crosslinking, Ti6Al4V, bioactive coating, hydrogel

Procedia PDF Downloads 321
4712 A Survey of Field Programmable Gate Array-Based Convolutional Neural Network Accelerators

Authors: Wei Zhang

Abstract:

With the rapid development of deep learning, neural network and deep learning algorithms play a significant role in various practical applications. Due to the high accuracy and good performance, Convolutional Neural Networks (CNNs) especially have become a research hot spot in the past few years. However, the size of the networks becomes increasingly large scale due to the demands of the practical applications, which poses a significant challenge to construct a high-performance implementation of deep learning neural networks. Meanwhile, many of these application scenarios also have strict requirements on the performance and low-power consumption of hardware devices. Therefore, it is particularly critical to choose a moderate computing platform for hardware acceleration of CNNs. This article aimed to survey the recent advance in Field Programmable Gate Array (FPGA)-based acceleration of CNNs. Various designs and implementations of the accelerator based on FPGA under different devices and network models are overviewed, and the versions of Graphic Processing Units (GPUs), Application Specific Integrated Circuits (ASICs) and Digital Signal Processors (DSPs) are compared to present our own critical analysis and comments. Finally, we give a discussion on different perspectives of these acceleration and optimization methods on FPGA platforms to further explore the opportunities and challenges for future research. More helpfully, we give a prospect for future development of the FPGA-based accelerator.

Keywords: deep learning, field programmable gate array, FPGA, hardware accelerator, convolutional neural networks, CNN

Procedia PDF Downloads 127
4711 Antiviral Activity of Interleukin-11 in Response to Porcine Epidemic Diarrhea Virus Infection

Authors: Li Yuchen, Wu Qingxin, Jin Yuxing, Yang Qian

Abstract:

Interleukin-11 (IL-11), a well-known anti-inflammatory factor, helps to protect against intestinal epithelium damage caused by physical or chemical factors. However, little is known about the role of IL-11 during viral infection. Herein, high mRNA and protein levels of IL-11 were found in epithelial cells and jejunum of piglets during porcine epidemic diarrhea virus (PEDV) infection, and IL-11 expression was positively correlated with the level of viral infection. Pretreatment with recombinant porcine IL-11 (pIL-11) suppressed PEDV replication in Vero E6 cells, while IL-11 knockdown promoted viral infection. Furthermore, pIL-11 inhibited viral infection by preventing PEDV-mediated apoptosis of cells through activating the IL-11/STAT3 signal pathway. Conversely, application of a STAT3 phosphorylation inhibitor significantly antagonized the anti-apoptosis function of pIL-11 and counteracted its inhibition of PEDV. Our data suggested that that IL-11 is a novel PEDV-inducible cytokine, and its production enhances the anti-apoptosis ability of epithelial cells against PEDV infection. The potential uses of IL-11 as a novel therapeutic against devastating viral diarrhea in piglets deserves more attention and study.

Keywords: Interleukin-11, Porcine epidemic diarrhea virus, STAT3, anti-apoptosis

Procedia PDF Downloads 133
4710 Modeling of Global Solar Radiation on a Horizontal Surface Using Artificial Neural Network: A Case Study

Authors: Laidi Maamar, Hanini Salah

Abstract:

The present work investigates the potential of artificial neural network (ANN) model to predict the horizontal global solar radiation (HGSR). The ANN is developed and optimized using three years meteorological database from 2011 to 2013 available at the meteorological station of Blida (Blida 1 university, Algeria, Latitude 36.5°, Longitude 2.81° and 163 m above mean sea level). Optimal configuration of the ANN model has been determined by minimizing the Root Means Square Error (RMSE) and maximizing the correlation coefficient (R2) between observed and predicted data with the ANN model. To select the best ANN architecture, we have conducted several tests by using different combinations of parameters. A two-layer ANN model with six hidden neurons has been found as an optimal topology with (RMSE=4.036 W/m²) and (R²=0.999). A graphical user interface (GUI), was designed based on the best network structure and training algorithm, to enhance the users’ friendliness application of the model.

Keywords: artificial neural network, global solar radiation, solar energy, prediction, Algeria

Procedia PDF Downloads 498
4709 Artificial Neural Networks Controller for Power System Voltage Improvement

Authors: Sabir Messalti, Bilal Boudjellal, Azouz Said

Abstract:

In this paper, power system Voltage improvement using wind turbine is presented. Two controllers are used: a PI controller and Artificial Neural Networks (ANN) controllers are studied to control of the power flow exchanged between the wind turbine and the power system in order to improve the bus voltage. The wind turbine is based on a doubly-fed induction generator (DFIG) controlled by field-oriented control. Indirect control is used to control of the reactive power flow exchanged between the DFIG and the power system. The proposed controllers are tested on power system for large voltage disturbances.

Keywords: artificial neural networks controller, DFIG, field-oriented control, PI controller, power system voltage improvement

Procedia PDF Downloads 460
4708 DUSP16 Inhibition Rescues Neurogenic and Cognitive Deficits in Alzheimer's Disease Mice Models

Authors: Huimin Zhao, Xiaoquan Liu, Haochen Liu

Abstract:

The major challenge facing Alzheimer's Disease (AD) drug development is how to effectively improve cognitive function in clinical practice. Growing evidence indicates that stimulating hippocampal neurogenesis is a strategy for restoring cognition in animal models of AD. The mitogen-activated protein kinase (MAPK) pathway is a crucial factor in neurogenesis, which is negatively regulated by Dual-specificity phosphatase 16 (DUSP16). Transcriptome analysis of post-mortem brain tissue revealed up-regulation of DUSP16 expression in AD patients. Additionally, DUSP16 was involved in regulating the proliferation and neural differentiation of neural progenitor cells (NPCs). Nevertheless, whether the effect of DUSP16 on ameliorating cognitive disorders by influencing NPCs differentiation in AD mice remains unclear. Our study demonstrates an association between DUSP16 SNPs and clinical progression in individuals with mild cognitive impairment (MCI). Besides, we found that increased DUSP16 expression in both 3×Tg and SAMP8 models of AD led to NPC differentiation impairments. By silencing DUSP16, cognitive benefits, the induction of AHN and synaptic plasticity, were observed in AD mice. Furthermore, we found that DUSP16 is involved in the process of NPC differentiation by regulating c-Jun N-terminal kinase (JNK) phosphorylation. Moreover, the increased DUSP16 may be regulated by the ETS transcription factor (ELK1), which binds to the promoter region of DUSP16. Loss of ELK1 resulted in decreased DUSP16 mRNA and protein levels. Our data uncover a potential regulatory role for DUSP16 in adult hippocampal neurogenesis and provide a possibility to find the target of AD intervention.

Keywords: alzheimer's disease, cognitive function, DUSP16, hippocampal neurogenesis

Procedia PDF Downloads 71
4707 Development and Characterization of Site Specific Peptide Conjugated Polymeric Nanoparticles for Efficient Delivery of Paclitaxel

Authors: Madhu Gupta, Vikas Sharma, Suresh P. Vyas

Abstract:

CD13 receptors are abundantly overexpressed in tumor cells as well as in neovasculature. The CD13 receptors were selected as a targeted site and polymeric nanoparticles (NPs) as a targeted delivery system. By combining these, a cyclic NGR (cNGR) peptide ligand was coupled on the terminal end of polyethylene glycol-b-poly(lactic-co-glycolic acid) (PEG-b-PLGA) and prepared the dual targeted-NPs (cNGR-PEG-PTX-NPs) to enhance the intracellular delivery of anticancer drug to tumor cells and tumor endothelial cells via ligand-receptor interaction. In-vitro cytotoxicity studies confirmed that the presence of cNGR enhanced the cytotoxic efficiency by 2.8 folds in Human Umbilical Vein Endothelial (HUVEC) cells, while cytotoxicity was improved by 2.6 folds in human fibrosarcoma (HT-1080) cells as compared to non-specific stealth NPs. Compared with other tested NPs, cNGR-PEG-PTX-NPs revealed more cytotoxicity by inducing more apoptosis and higher intracellular uptake. The tumor volume inhibition rate was 59.7% in case of cNGR-PEG-PTX-NPs that was comparatively more with other formulations, indicating that cNGR-PEG-PTX-NPs could more effectively inhibit tumor growth. As a consequence, the cNGR-PEG-PTX-NPs play a key role in enhancing tumor therapeutic efficiency for treatment of CD13 receptor specific solid tumor.

Keywords: cyclic NGR, CD13 receptor, targeted polymeric NPs, solid tumor, intracellular delivery

Procedia PDF Downloads 435
4706 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment

Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang

Abstract:

2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn  features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.

Keywords: artificial intelligence, machine learning, deep learning, convolutional neural networks

Procedia PDF Downloads 210
4705 Highly Concentrated Photo Voltaic using Multi-Junction Concentrator Cell

Authors: Oriahi Love Ndidi

Abstract:

High concentration photovoltaic promises a more efficient, higher power output than traditional photovoltaic modules. One of the driving forces of this high system efficiency has been the continuous improvement of III-V multi-junction solar cell efficiencies. Multi-junction solar cells built from III-V semiconductors are being evaluated globally in concentrated photovoltaic systems designed to supplement electricity generation for utility companies. The high efficiency of this III-V multi-junction concentrator cells, with demonstrated efficiency over 40 percent since 2006, strongly reduces the cost of concentrated photovoltaic systems, and makes III-V multi-junction cells the technology of choice for most concentrator systems today.

Keywords: cost of multi-junction solar cell, efficiency, photovoltaic systems, reliability

Procedia PDF Downloads 722
4704 Different Cathode Buffer Layers in Organic Solar Cells

Authors: Radia Kamel

Abstract:

Considerable progress has been made in the development of bulk-heterojunction organic solar cells (OSCs) based on a blend of p-type and n-type organic semiconductors. To optimize the interfacial properties between the active layer and the electrode, a cathode buffer layer (CBL) is introduced. This layer can reduce the leakage current, increasing the open-circuit voltage and the fill factor while improving the OSC stability. In this work, the performance of PM6:Y6 OSC with 1-Chloronaphthalene as an additive is examined. To accomplish this, three CBLs PNDIT-F3N-Br, ZrAcac, and PDINO, are compared using the conventional configuration. The device with PNDIT-F3N-Br as CBL exhibits the highest power conversion efficiency of 16.04%. The results demonstrate that modifying the cathode buffer layer is crucial for achieving high-performance OSCs.

Keywords: bulk heterojunction, cathode buffer layer, efficiency, organic solar cells

Procedia PDF Downloads 164
4703 A Study on Implementation of Optimal Soldering Temperature Profile through Deformation Analysisin Infrared Lamp Soldering of Photovoltaic Cells

Authors: Taejung Lho, Jonghwan Lee

Abstract:

Most of the photovoltaic (PV) module manufacturers have recently interested in reducing the manufacturing cost. One of available solution is the use of the thin photovoltaic cell because of reducing of raw material cost. Thin PV cells, however, are damaged large deformation which causes possible microcracks inside PV cell, leading to failure problem. In this paper, deformation characteristics by heat conduction in soldering process of PV cells are analyzed through ANSYS software tool. They have been tested for different PV cell thickness and soldering temperature profile. Accordingly optimal soldering process to minimize the deformation of PV cell has been suggested.

Keywords: photovoltaic (PV) cell, infrared(IR) lamp soldering, optimal soldering temperature profile, deformation, temperature distribution, 3D scanner, ANSYS

Procedia PDF Downloads 402
4702 Corpus-Based Neural Machine Translation: Empirical Study Multilingual Corpus for Machine Translation of Opaque Idioms - Cloud AutoML Platform

Authors: Khadija Refouh

Abstract:

Culture bound-expressions have been a bottleneck for Natural Language Processing (NLP) and comprehension, especially in the case of machine translation (MT). In the last decade, the field of machine translation has greatly advanced. Neural machine translation NMT has recently achieved considerable development in the quality of translation that outperformed previous traditional translation systems in many language pairs. Neural machine translation NMT is an Artificial Intelligence AI and deep neural networks applied to language processing. Despite this development, there remain some serious challenges that face neural machine translation NMT when translating culture bounded-expressions, especially for low resources language pairs such as Arabic-English and Arabic-French, which is not the case with well-established language pairs such as English-French. Machine translation of opaque idioms from English into French are likely to be more accurate than translating them from English into Arabic. For example, Google Translate Application translated the sentence “What a bad weather! It runs cats and dogs.” to “يا له من طقس سيء! تمطر القطط والكلاب” into the target language Arabic which is an inaccurate literal translation. The translation of the same sentence into the target language French was “Quel mauvais temps! Il pleut des cordes.” where Google Translate Application used the accurate French corresponding idioms. This paper aims to perform NMT experiments towards better translation of opaque idioms using high quality clean multilingual corpus. This Corpus will be collected analytically from human generated idiom translation. AutoML translation, a Google Neural Machine Translation Platform, is used as a custom translation model to improve the translation of opaque idioms. The automatic evaluation of the custom model will be compared to the Google NMT using Bilingual Evaluation Understudy Score BLEU. BLEU is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Human evaluation is integrated to test the reliability of the Blue Score. The researcher will examine syntactical, lexical, and semantic features using Halliday's functional theory.

Keywords: multilingual corpora, natural language processing (NLP), neural machine translation (NMT), opaque idioms

Procedia PDF Downloads 148
4701 Optimized Processing of Neural Sensory Information with Unwanted Artifacts

Authors: John Lachapelle

Abstract:

Introduction: Neural stimulation is increasingly targeted toward treatment of back pain, PTSD, Parkinson’s disease, and for sensory perception. Sensory recording during stimulation is important in order to examine neural response to stimulation. Most neural amplifiers (headstages) focus on noise efficiency factor (NEF). Conversely, neural headstages need to handle artifacts from several sources including power lines, movement (EMG), and neural stimulation itself. In this work a layered approach to artifact rejection is used to reduce corruption of the neural ENG signal by 60dBv, resulting in recovery of sensory signals in rats and primates that would previously not be possible. Methods: The approach combines analog techniques to reduce and handle unwanted signal amplitudes. The methods include optimized (1) sensory electrode placement, (2) amplifier configuration, and (3) artifact blanking when necessary. The techniques together are like concentric moats protecting a castle; only the wanted neural signal can penetrate. There are two conditions in which the headstage operates: unwanted artifact < 50mV, linear operation, and artifact > 50mV, fast-settle gain reduction signal limiting (covered in more detail in a separate paper). Unwanted Signals at the headstage input: Consider: (a) EMG signals are by nature < 10mV. (b) 60 Hz power line signals may be > 50mV with poor electrode cable conditions; with careful routing much of the signal is common to both reference and active electrode and rejected in the differential amplifier with <50mV remaining. (c) An unwanted (to the neural recorder) stimulation signal is attenuated from stimulation to sensory electrode. The voltage seen at the sensory electrode can be modeled Φ_m=I_o/4πσr. For a 1 mA stimulation signal, with 1 cm spacing between electrodes, the signal is <20mV at the headstage. Headstage ASIC design: The front end ASIC design is designed to produce < 1% THD at 50mV input; 50 times higher than typical headstage ASICs, with no increase in noise floor. This requires careful balance of amplifier stages in the headstage ASIC, as well as consideration of the electrodes effect on noise. The ASIC is designed to allow extremely small signal extraction on low impedance (< 10kohm) electrodes with configuration of the headstage ASIC noise floor to < 700nV/rt-Hz. Smaller high impedance electrodes (> 100kohm) are typically located closer to neural sources and transduce higher amplitude signals (> 10uV); the ASIC low-power mode conserves power with 2uV/rt-Hz noise. Findings: The enhanced neural processing ASIC has been compared with a commercial neural recording amplifier IC. Chronically implanted primates at MGH demonstrated the presence of commercial neural amplifier saturation as a result of large environmental artifacts. The enhanced artifact suppression headstage ASIC, in the same setup, was able to recover and process the wanted neural signal separately from the suppressed unwanted artifacts. Separately, the enhanced artifact suppression headstage ASIC was able to separate sensory neural signals from unwanted artifacts in mouse-implanted peripheral intrafascicular electrodes. Conclusion: Optimizing headstage ASICs allow observation of neural signals in the presence of large artifacts that will be present in real-life implanted applications, and are targeted toward human implantation in the DARPA HAPTIX program.

Keywords: ASIC, biosensors, biomedical signal processing, biomedical sensors

Procedia PDF Downloads 328
4700 Investigation of Green Dye-Sensitized Solar Cells Based on Natural Dyes

Authors: M. Hosseinnezhad, K. Gharanjig

Abstract:

Natural dyes, extracted from black carrot and bramble, were utilized as photosensitizers to prepare dye-sensitized solar cells (DSSCs). Spectrophotometric studies of the natural dyes in solution and on a titanium dioxide substrate were carried out in order to assess changes in the status of the dyes. The results show that the bathochromic shift is seen on the photo-electrode substrate. The chemical binding of the natural dyes at the surface photo-electrode were increased by the chelating effect of the Ti(IV) ions. The cyclic voltammetry results showed that all extracts are suitable to be performed in DSSCs. Finally, photochemical performance and stability of DSSCs based on natural dyes were studied. The DSSCs sensitized by black carrot extract have been reported to achieve up to Jsc=1.17 mAcm-2, Voc= 0.55 V, FF= 0.52, η=0.34%, whereas Bramble extract can obtain up to Jsc=2.24 mAcm-2, Voc= 0.54 V, FF= 0.57, η=0.71%. The power conversion efficiency was obtained from the mixed dyes in DSSCs. The power conversion efficiency of dye-sensitized solar cells using mixed Black carrot and Bramble dye is the average of the their efficiency in single DSSCs.

Keywords: anthocyanin, dye-sensitized solar cells, green energy, optical materials

Procedia PDF Downloads 244
4699 A TiO₂-Based Memristor Reliable for Neuromorphic Computing

Authors: X. S. Wu, H. Jia, P. H. Qian, Z. Zhang, H. L. Cai, F. M. Zhang

Abstract:

A bipolar resistance switching behaviour is detected for a Ti/TiO2-x/Au memristor device, which is fabricated by a masked designed magnetic sputtering. The current dependence of voltage indicates the curve changes slowly and continuously. When voltage pulses are applied to the device, the set and reset processes maintains linearity, which is used to simulate the synapses. We argue that the conduction mechanism of the device is from the oxygen vacancy channel model, and the resistance of the device change slowly due to the reaction between the titanium electrode and the intermediate layer and the existence of a large number of oxygen vacancies in the intermediate layer. Then, Hopfield neural network is constructed to simulate the behaviour of neural network in image processing, and the accuracy rate is more than 98%. This shows that titanium dioxide memristor has a broad application prospect in high performance neural network simulation.

Keywords: memristor fabrication, neuromorphic computing, bionic synaptic application, TiO₂-based

Procedia PDF Downloads 87
4698 Cell-Based and Exosome Treatments for Hair Restoration

Authors: Armin Khaghani Boroujeni, Leila Dehghani, Parham Talebi Boroujeni, Sahar Rostamian, Ali Asilian

Abstract:

Background: Hair loss is a common complaint observed in both genders. Androgenetic alopecia is known pattern for hair loss. To assess new regenerative strategies (PRP, A-SC-BT, conditioned media, exosome-based treatments) compared to conventional therapies for hair loss or hair regeneration, an updated review was undertaken. To address this issue, we carried out this systematic review to comprehensively evaluate the efficacy of cell-based therapies on hair loss. Methods: The available online databases, including ISI Web of Science, Scopus, and PubMed, were searched systematically up to February 2022. The quality assessment of included studies was done using the Cochrane Collaboration's tool. Results: As a result, a total of 90 studies involving 2345 participants were included in the present study. The enrolled studies were conducted between 2010 and 2022. The subjects’ mean age ranged from 19 to 55.11 years old. Approaches using platelet rich plasma (PRP) provide a beneficial impact on hair regrowth. However, other cell-based therapies, including stem cell transplant, stem cell-derived conditioned medium, and stem cell-derived exosomes, revealed conflicting evidence. Conclusion: However, cell-based therapies for hair loss are still in their infancy, and more robust clinical studies are needed to better evaluate their mechanisms of action, efficacy, safety, benefits, and limitations. In this review, we provide the resources to the latest clinical studies and a more detailed description of the latest clinical studies concerning cell-based therapies in hair loss.

Keywords: cell-based therapy, exosome, hair restoration, systematic review

Procedia PDF Downloads 73