Search results for: multi-drug resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3283

Search results for: multi-drug resistance

2323 In-Process Integration of Resistance-Based, Fiber Sensors during the Braiding Process for Strain Monitoring of Carbon Fiber Reinforced Composite Materials

Authors: Oscar Bareiro, Johannes Sackmann, Thomas Gries

Abstract:

Carbon fiber reinforced polymer composites (CFRP) are used in a wide variety of applications due to its advantageous properties and design versatility. The braiding process enables the manufacture of components with good toughness and fatigue strength. However, failure mechanisms of CFRPs are complex and still present challenges associated with their maintenance and repair. Within the broad scope of structural health monitoring (SHM), strain monitoring can be applied to composite materials to improve reliability, reduce maintenance costs and safely exhaust service life. Traditional SHM systems employ e.g. fiber optics, piezoelectrics as sensors, which are often expensive, time consuming and complicated to implement. A cost-efficient alternative can be the exploitation of the conductive properties of fiber-based sensors such as carbon, copper, or constantan - a copper-nickel alloy – that can be utilized as sensors within composite structures to achieve strain monitoring. This allows the structure to provide feedback via electrical signals to a user which are essential for evaluating the structural condition of the structure. This work presents a strategy for the in-process integration of resistance-based sensors (Elektrisola Feindraht AG, CuNi23Mn, Ø = 0.05 mm) into textile preforms during its manufacture via the braiding process (Herzog RF-64/120) to achieve strain monitoring of braided composites. For this, flat samples of instrumented composite laminates of carbon fibers (Toho Tenax HTS40 F13 24K, 1600 tex) and epoxy resin (Epikote RIMR 426) were manufactured via vacuum-assisted resin infusion. These flat samples were later cut out into test specimens and the integrated sensors were wired to the measurement equipment (National Instruments, VB-8012) for data acquisition during the execution of mechanical tests. Quasi-static tests were performed (tensile, 3-point bending tests) following standard protocols (DIN EN ISO 527-1 & 4, DIN EN ISO 14132); additionally, dynamic tensile tests were executed. These tests were executed to assess the sensor response under different loading conditions and to evaluate the influence of the sensor presence on the mechanical properties of the material. Several orientations of the sensor with regards to the applied loading and sensor placements inside the laminate were tested. Strain measurements from the integrated sensors were made by programming a data acquisition code (LabView) written for the measurement equipment. Strain measurements from the integrated sensors were then correlated to the strain/stress state for the tested samples. From the assessment of the sensor integration approach it can be concluded that it allows for a seamless sensor integration into the textile preform. No damage to the sensor or negative effect on its electrical properties was detected during inspection after integration. From the assessment of the mechanical tests of instrumented samples it can be concluded that the presence of the sensors does not alter significantly the mechanical properties of the material. It was found that there is a good correlation between resistance measurements from the integrated sensors and the applied strain. It can be concluded that the correlation is of sufficient accuracy to determinate the strain state of a composite laminate based solely on the resistance measurements from the integrated sensors.

Keywords: braiding process, in-process sensor integration, instrumented composite material, resistance-based sensor, strain monitoring

Procedia PDF Downloads 106
2322 The Optimization of an Industrial Recycling Line: Improving the Durability of Recycled Polyethyene Blends

Authors: Alae Lamtai, Said Elkoun, Hniya Kharmoudi, Mathieu Robert, Carl Diez

Abstract:

This study applies Taguchi's design of experiment methodology and grey relational analysis (GRA) for multi objective optimization of an industrial recycling line. This last is composed mainly of a mono and twin-screw extruder and a filtration system. Experiments were performed according to L₁₆ standard orthogonal array based on five process parameters, namely: mono screw design, screw speed of the mono and twin-screw extruder, melt pump pressure, and filter mesh size. The objective of this optimization is to improve the durability of the Polyethylene (PE) blend by decreasing the loss of Stress Crack resistance (SCR) using Notched Crack Ligament Stress (NCLS) test and Unnotched Crack Ligament Stress (UCLS) in parallel with increasing the gain of Izod impact strength of the Polyethylene (PE) blend before and after recycling. Based on Grey Relational Analysis (GRA), the optimal setting of process parameters was identified, and the results indicated that the mono-screw design and screw speed of both mono and twin-screw extruder impact significantly the mechanical properties of recycled Polyethylene (PE) blend.

Keywords: Taguchi, recycling line, polyethylene, stress crack resistance, Izod impact strength, grey relational analysis

Procedia PDF Downloads 83
2321 Effect of Mineral Admixtures on Transport Properties of SCCs Composites: Influence of Mechanical Damage

Authors: Davood Niknezhad, Siham Kamali-Bernard

Abstract:

Concrete durability is one of the most important considerations in the design of new structures in aggressive environments. It is now common knowledge that the transport properties of a concrete, i.e; permeability and chloride diffusion coefficient are important indicators of its durability. The development of microcracking in concrete structures leads to significant permeability and to durability problems as a result. The main objective of the study presented in this paper is to investigate the influence of mineral admixtures and impact of compressive cracks by mechanical uniaxial compression up to 80% of the ultimate strength on transport properties of self-compacting concrete (SCC) manufactured with the eco-materials (metakaolin, fly ash, slag HF). The chloride resistance and binding capacity of the different SCCs produced with the different admixtures in damaged and undamaged state are measured using a chloride migration test accelerated by an external applied electrical field. Intrinsic permeability is measured using the helium gas and one permeameter at constant load. Klinkenberg approach is used for the determination of the intrinsic permeability. Based on the findings of this study, the use of mineral admixtures increases the resistance of SCC to chloride ingress and reduces their permeability. From the impact of mechanical damage, we show that the Gas permeability is more sensitive of concrete damaged than chloride diffusion. A correlation is obtained between the intrinsic permeability and chloride migration coefficient according to the damage variable for the four studied mixtures.

Keywords: SCC, concrete durability, transport properties, gas permeability, chloride diffusion, mechanical damage, mineral admixtures

Procedia PDF Downloads 230
2320 Bacteriological Culture Methods and its Uses in Clinical Pathology

Authors: Prachi Choudhary, Jai Gopal Sharma

Abstract:

Microbial cultures determine the type of organism, its abundance in the tested sample, or both. It is one of the primary diagnostic methods of microbiology. It is used to determine the cause of infectious disease by letting the agent multiply in a predetermined medium. Different bacteria produce colonies that may be very distinct from the bacterial species that produced them. To culture any pathogen or microorganism, we should first know about the types of media used in microbiology for culturing. Sometimes sub culturing is also done in various microorganisms if some mixed growth is seen in culture. Nearly 3 types of culture media based on consistency – solid, semi-solid, and liquid (broth) media; are further explained in the report. Then, The Five I's approach is a method for locating, growing, observing, and characterizing microorganisms, including inoculation and incubation. Isolation, inspection, and identification. For identification of bacteria, we have to culture the sample like urine, sputum, blood, etc., on suitable media; there are different methods of culturing the bacteria or microbe like pour plate method, streak plate method, swabbing by needle, pipetting, inoculation by loop, spreading by spreader, etc. After this, we see the bacterial growth after incubation of 24 hours, then according to the growth of bacteria antibiotics susceptibility test is conducted; this is done for sensitive antibiotics or resistance to that bacteria, and also for knowing the name of bacteria. Various methods like the dilution method, disk diffusion method, E test, etc., do antibiotics susceptibility tests. After that, various medicines are provided to the patients according to antibiotic sensitivity and resistance.

Keywords: inoculation, incubation, isolation, antibiotics suspectibility test, characterizing

Procedia PDF Downloads 82
2319 Three-Dimensional Fluid-Structure-Thermal Coupling Dynamics Simulation Model of a Gas-Filled Fluid-Resistance Damper and Experimental Verification

Authors: Wenxue Xu

Abstract:

Fluid resistance damper is an important damping element to attenuate vehicle vibration. It converts vibration energy into thermal energy dissipation through oil throttling. It is a typical fluid-solid-heat coupling problem. A complete three-dimensional flow-structure-thermal coupling dynamics simulation model of a gas-filled fluid-resistance damper was established. The flow-condition-based interpolation (FCBI) method and direct coupling calculation method, the unit's FCBI-C fluid numerical analysis method and iterative coupling calculation method are used to achieve the damper dynamic response of the piston rod under sinusoidal excitation; the air chamber inflation pressure, spring compression characteristics, constant flow passage cross-sectional area and oil parameters, etc. The system parameters, excitation frequency, and amplitude and other excitation parameters are analyzed and compared in detail for the effects of differential pressure characteristics, velocity characteristics, flow characteristics and dynamic response of valve opening, floating piston response and piston rod output force characteristics. Experiments were carried out on some simulation analysis conditions. The results show that the node-based FCBI (flow-condition-based interpolation) fluid numerical analysis method and direct coupling calculation method can better guarantee the conservation of flow field calculation, and the calculation step is larger, but the memory is also larger; if the chamber inflation pressure is too low, the damper will become cavitation. The inflation pressure will cause the speed characteristic hysteresis to increase, and the sealing requirements are too strict. The spring compression characteristics have a great influence on the damping characteristics of the damper, and reasonable damping characteristic needs to properly design the spring compression characteristics; the larger the cross-sectional area of the constant flow channel, the smaller the maximum output force, but the more stable when the valve plate is opening.

Keywords: damper, fluid-structure-thermal coupling, heat generation, heat transfer

Procedia PDF Downloads 144
2318 Study of Mechanical Properties of Leno Woven Bags in Lower Weight Capacities

Authors: Golda Honey Madhu, Priyanka Gupta, Anil Kumar Yadav

Abstract:

The study is aimed at analyzing and understanding the design and performance properties of leno woven sacks specifically meant for holding lower weight goods under the category of lower weight capacities. The sacks are a huge part of the agro-based packaging industries which helps in keeping the perishable produce, especially fruits, fresh during transit and storage. Nowadays, Leno bags are primarily made from polypropylene, mainly due its cost-effectiveness, reusability and high strength with low weight property making it an ideal packaging solution for transportation. The design parameters are noted, and major properties like tensile strength, abrasion resistance, bursting strength, impact resistance, stiffness and bagging behaviour has been analyzed for lower weight capacities. An examination of these particular weight categories will provide valuable information on how to scale performance. Currently there are standards available for only 25 kg and 50 kg Leno sacks, and this study will further enhance the already existing testing standards and also provide tested structure-property analysis for lower weight Leno sacks. Hence the results of this research can provide significant insights for researchers, manufacturers and industry-experts with the goal of improving the quality and longevity of Leno woven sacks, thereby developing the packaging technology.

Keywords: leno bags, structure-property analysis, agro-based packaging, lower weight sacks

Procedia PDF Downloads 21
2317 Prevalence of ESBL E. coli Susceptibility to Oral Antibiotics in Outpatient Urine Culture: Multicentric, Analysis of Three Years Data (2019-2021)

Authors: Mazoun Nasser Rashid Al Kharusi, Nada Al Siyabi

Abstract:

Objectives: The main aim of this study is to Find the rate of susceptibility of ESBL E. coli causing UTI to oral antibiotics. Secondary objectives: Prevalence of ESBL E. coli from community urine samples, identify the best empirical oral antibiotics with the least resistance rate for UTI and identify alternative oral antibiotics for testing and utilization. Methods: This study is a retrospective descriptive study of the last three years in five major hospitals in Oman (Khowla Hospital, AN’Nahdha Hospital, Rustaq Hospital, Nizwa Hospital, and Ibri Hospital) equipped with a microbiologist. Inclusion criteria include all eligible outpatient urine culture isolates, excluding isolates from admitted patients with hospital-acquired urinary tract infections. Data was collected through the MOH database. The MOH hospitals are using different types of testing, automated methods like Vitek2 and manual methods. Vitek2 machine uses the principle of the fluorogenic method for organism identification and a turbidimetric method for susceptibility testing. The manual method is done by double disc diffusion for identifying ESBL and the disc diffusion method is for antibiotic susceptibility. All laboratories follow the clinical laboratory science institute (CLSI) guidelines. Analysis was done by SPSS statistical package. Results: Total urine cultures were (23048). E. coli grew in (11637) 49.6% of the urine, whereas (2199) 18.8% of those were confirmed as ESBL. As expected, the resistance rate to amoxicillin and cefuroxime is 100%. Moreover, the susceptibility of those ESBL-producing E. coli to nitrofurantoin, trimethoprim+sulfamethoxazole, ciprofloxacin and amoxicillin-clavulanate is progressing over the years; however, still low. ESBL E. coli was predominating in the female gender and those aged 66-74 years old throughout all the years. Other oral antibiotic options need to be explored and tested so that we add to the pool of oral antibiotics for ESBL E. coli causing UTI in the community. Conclusion: High rate of ESBL E. coli in urine from the community. The high resistance rates to oral antibiotics highlight the need for alternative treatment options for UTIs caused by these bacteria. Further research is needed to identify new and effective treatments for UTIs caused by ESBL-E. Coli.

Keywords: UTI, ESBL, oral antibiotics, E. coli, susceptibility

Procedia PDF Downloads 93
2316 Corrosion Resistance Evaluation of Reinforcing Bars: A Comparative Study of Fusion Bonded Epoxy Coated, Cement Polymer Composite Coated and Dual Zinc Epoxy Coated Rebar for Application in Reinforced Concrete Structures

Authors: Harshit Agrawal, Salman Muhammad

Abstract:

Degradation to reinforced concrete (RC), primarily due to corrosion of embedded reinforcement, has been a major cause of concern worldwide. Among several ways to control corrosion, the use of coated reinforcement has gained significant interest in field applications. However, the choice of proper coating material and the effect of damage over coating are yet to be addressed for effective application of coated reinforcements. The present study aims to investigate and compare the performance of three different types of coated reinforcements —Fusion-Bonded Epoxy Coating (FBEC), Cement Polymer Composite Coating (CPCC), and Dual Zinc-Epoxy Coating (DZEC) —in concrete structures. The aim is to assess their corrosion resistance, durability, and overall effectiveness as coated reinforcement materials both in undamaged and simulated damaged conditions. Through accelerated corrosion tests, electrochemical analysis, and exposure to aggressive marine environments, the study evaluates the long-term performance of each coating system. This research serves as a crucial guide for engineers and construction professionals in selecting the most suitable corrosion protection for reinforced concrete, thereby enhancing the durability and sustainability of infrastructure.

Keywords: corrosion, reinforced concrete, coated reinforcement, seawater exposure, electrochemical analysis, service life, corrosion prevention

Procedia PDF Downloads 82
2315 Investigation of Minor Actinide-Contained Thorium Fuel Impacts on CANDU-Type Reactor Neutronics Using Computational Method

Authors: S. A. H. Feghhi, Z. Gholamzadeh, Z. Alipoor, C. Tenreiro

Abstract:

Currently, thorium fuel has been especially noticed because of its proliferation resistance than long half-life alpha emitter minor actinides, breeding capability in fast and thermal neutron flux and mono-isotopic naturally abundant. In recent years, efficiency of minor actinide burning up in PWRs has been investigated. Hence, a minor actinide-contained thorium based fuel matrix can confront both proliferation resistance and nuclear waste depletion aims. In the present work, minor actinide depletion rate in a CANDU-type nuclear core modeled using MCNP code has been investigated. The obtained effects of minor actinide load as mixture of thorium fuel matrix on the core neutronics has been studiedwith comparingpresence and non-presence of minor actinide component in the fuel matrix.Depletion rate of minor actinides in the MA-contained fuel has been calculated using different power loads.According to the obtained computational data, minor actinide loading in the modeled core results in more negative reactivity coefficients. The MA-contained fuel achieves less radial peaking factor in the modeled core. The obtained computational results showed 140 kg of 464 kg initial load of minor actinide has been depleted in during a 6-year burn up in 10 MW power.

Keywords: minor actinide burning, CANDU-type reactor, MCNPX code, neutronic parameters

Procedia PDF Downloads 457
2314 Studies of the Corrosion Kinetics of Metal Alloys in Stagnant Simulated Seawater Environment

Authors: G. Kabir, A. M. Mohammed, M. A. Bawa

Abstract:

The paper presents corrosion behaviors of Naval Brass, aluminum alloy and carbon steel in simulated seawater under stagnant conditions. The behaviors were characterized on the variation of chloride ions concentration in the range of 3.0wt% and 3.5wt% and exposure time. The weight loss coupon-method immersion technique was employed. The weight loss for the various alloys was measured. Based on the obtained results, the corrosion rate was determined. It was found that the corrosion rates of the various alloys are related to the chloride ions concentrations, exposure time and kinetics of passive film formation of the various alloys. Carbon steel, suffers corrosion many folds more than Naval Brass. This indicated that the alloy exhibited relatively strong resistance to corrosion in the exposure environment of the seawater. Whereas, the aluminum alloy exhibited an excellent and beneficial resistance to corrosion more than the Naval Brass studied. Despite the prohibitive cost, Naval Brass and aluminum alloy, indicated to have beneficial corrosion behavior that can offer wide range of application in seashore operations. The corrosion kinetics parameters indicated that the corrosion reaction is limited by diffusion mass transfer of the corrosion reaction elements and not by reaction controlled.

Keywords: alloys, chloride ions concentration, corrosion kinetics, corrosion rate, diffusion mass transfer, exposure time, seawater, weight loss

Procedia PDF Downloads 302
2313 Spatial Variation of Groundwater Potential at Erusu-Arigidi in Ondo State

Authors: Onifade Yemi Sikiru, Vwoke Eruya

Abstract:

An investigation has been made of the groundwater potentials of Erusu-Arigidi, Ondo State, Nigeria and using an electrical resistivity survey. This study was motivated to determine the electrical resistivity parameters of the area. This work aims to use the electrical resistivity method to explore the groundwater potentials of the study area. A total of ten vertical electrical soundings (VES) were conducted with a maximum electrode spacing of 150 m. The data was acquired using ABEM SAS 1000 Terrameter and processed using WINRESIST. The interpreted and analyzed results reveal four to six geoelectric layers. The VES curves obtained were QH, H, AAA, HKH, and HA. Findings from the study revealed that the geoelectric layer ranges from 3 to 5 layers. From the result, the Dar Zarrouk parameters longitudinal conductance (S) and transverse resistance (Tr), average longitudinal resistance (), transverse resistivity (), coefficient of anisotropy (λ), and reflection coefficient ranges from 0.22 to 1.45mhos, 67.12 to 4262.91 Ω/m², 8.81 to 76.12 Ω-m, 12.0 to 243.5 Ωm², 1.01 to 1.78, and 0.72 to 0.99 respectively. Deduction from S suggested that groundwater tends to be slightly vulnerable to surface contamination. Further findings from Dar Zarrouk parameters revealed that southwest parts of the study area tend to have high groundwater potential when compared to other parts of the study area. While hydraulic conductivity and transmissivity range from 0.003 to 0.051m/day, and 11.16 to 158.30m²/day, results obtained from H and T revealed northwest parts of the study area are considered to be aquiferous when compared to other parts of the research area.

Keywords: variation, isoresistivity, hydraulic conductivity, groundwater

Procedia PDF Downloads 77
2312 Monolithic Integrated GaN Resonant Tunneling Diode Pair with Picosecond Switching Time for High-speed Multiple-valued Logic System

Authors: Fang Liu, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun, JunShuai Xue

Abstract:

The explosive increasing needs of data processing and information storage strongly drive the advancement of the binary logic system to multiple-valued logic system. Inherent negative differential resistance characteristic, ultra-high-speed switching time, and robust anti-irradiation capability make III-nitride resonant tunneling diode one of the most promising candidates for multi-valued logic devices. Here we report the monolithic integration of GaN resonant tunneling diodes in series to realize multiple negative differential resistance regions, obtaining at least three stable operating states. A multiply-by-three circuit is achieved by this combination, increasing the frequency of the input triangular wave from f0 to 3f0. The resonant tunneling diodes are grown by plasma-assistedmolecular beam epitaxy on free-standing c-plane GaN substrates, comprising double barriers and a single quantum well both at the atomic level. Device with a peak current density of 183kA/cm² in conjunction with a peak-to-valley current ratio (PVCR) of 2.07 is observed, which is the best result reported in nitride-based resonant tunneling diodes. Microwave oscillation event at room temperature was discovered with a fundamental frequency of 0.31GHz and an output power of 5.37μW, verifying the high repeatability and robustness of our device. The switching behavior measurement was successfully carried out, featuring rise and fall times in the order of picoseconds, which can be used in high-speed digital circuits. Limited by the measuring equipment and the layer structure, the switching time can be further improved. In general, this article presents a novel nitride device with multiple negative differential regions driven by the resonant tunneling mechanism, which can be used in high-speed multiple value logic field with reduced circuit complexity, demonstrating a new solution of nitride devices to break through the limitations of binary logic.

Keywords: GaN resonant tunneling diode, negative differential resistance, multiple-valued logic system, switching time, peak-to-valley current ratio

Procedia PDF Downloads 100
2311 Damages of Highway Bridges in Thailand during the 2014-Chiang Rai Earthquake

Authors: Rajwanlop Kumpoopong, Sukit Yindeesuk, Pornchai Silarom

Abstract:

On May 5, 2014, an earthquake of magnitude 6.3 Richter hit the Northern part of Thailand. The epicenter was in Phan District, Chiang Rai Province. This earthquake or the so-called 2014-Chiang Rai Earthquake is the strongest ground shaking that Thailand has ever been experienced in her modern history. The 2014-Chiang Rai Earthquake confirms the geological evidence, which has previously been ignored by most engineers, that earthquakes of considerable magnitudes 6 to 7 Richter can occurr within the country. This promptly stimulates authorized agencies to pay more attention at the safety of their assets and promotes the comprehensive review of seismic resistance design of their building structures. The focus of this paper is to summarize the damages of highway bridges as a result of the 2014-Chiang Rai ground shaking, the remedy actions, and the research needs. The 2014-Chiang Rai Earthquake caused considerable damages to nearby structures such as houses, schools, and temples. The ground shaking, however, caused damage to only one highway bridge, Mae Laos Bridge, located several kilometers away from the epicenter. The damage of Mae Laos Bridge was in the form of concrete spalling caused by pounding of cap beam on the deck structure. The damage occurred only at the end or abutment span. The damage caused by pounding is not a surprise, but the pounding by only one bridge requires further investigation and discussion. Mae Laos Bridge is a river crossing bridge with relatively large approach structure. In as much, the approach structure is confined by strong retaining walls. This results in a rigid-like approach structure which vibrates at the acceleration approximately equal to the ground acceleration during the earthquake and exerts a huge force to the abutment causing the pounding of cap beam on the deck structure. Other bridges nearby have relatively small approach structures, and therefore have no capability to generate pounding. The effect of mass of the approach structure on pounding of cap beam on the deck structure is also evident by the damage of one pedestrian bridge in front of Thanthong Wittaya School located 50 meters from Mae Laos Bridge. The width of the approach stair of this bridge is wider than the typical one to accommodate the stream of students during pre- and post-school times. This results in a relatively large mass of the approach stair which in turn exerts a huge force to the pier causing pounding of cap beam on the deck structure during ground shaking. No sign of pounding was observed for a typical pedestrian bridge located at another end of Mae Laos Bridge. Although pounding of cap beam on the deck structure of the above mentioned bridges does not cause serious damage to bridge structure, this incident promotes the comprehensive review of seismic resistance design of highway bridges in Thailand. Given a proper mass and confinement of the approach structure, the pounding of cap beam on the deck structure can be easily excited even at the low to moderate ground shaking. In as much, if the ground shaking becomes stronger, the pounding is certainly more powerful. This may cause the deck structure to be unseated and fall off in the case of unrestrained bridge. For the bridge with restrainer between cap beam and the deck structure, the restrainer may prevent the deck structure from falling off. However, preventing free movement of the pier by the restrainer may damage the pier itself. Most highway bridges in Thailand have dowel bars embedded connecting cap beam and the deck structure. The purpose of the existence of dowel bars is, however, not intended for any seismic resistance. Their ability to prevent the deck structure from unseating and their effect on the potential damage of the pier should be evaluated. In response to this expected situation, Thailand Department of Highways (DOH) has set up a team to revise the standard practices for the seismic resistance design of highway bridges in Thailand. In addition, DOH has also funded the research project 'Seismic Resistance Evaluation of Pre- and Post-Design Modifications of DOH’s Bridges' with the scope of full-scale tests of single span bridges under reversed cyclic static loadings for both longitudinal and transverse directions and computer simulations to evaluate the seismic performance of the existing bridges and the design modification bridges. The research is expected to start in October, 2015.

Keywords: earthquake, highway bridge, Thailand, damage, pounding, seismic resistance

Procedia PDF Downloads 290
2310 Performance of Rapid Impact Compaction as a Middle-Deep Ground Improvement Technique

Authors: Bashar Tarawneh, Yasser Hakam

Abstract:

Rapid Impact Compaction (RIC) is a modern dynamic compaction device mainly used to compact sandy soils, where silt and clay contents are low. The device uses the piling hammer technology to increase the bearing capacity of soils through controlled impacts. The RIC device uses "controlled impact compaction" of the ground using a 9-ton hammer dropped from the height between 0.3 m to 1.2 m onto a 1.5 m diameter steel patent foot. The delivered energy is about 26,487 to 105,948 Joules per drop. To evaluate the performance of this technique, three project sites in the United Arab Emirates were improved using RIC. In those sites, a loose to very loose fine to medium sand was encountered at a depth ranging from 1.0m to 4.0m below the ground level. To evaluate the performance of the RIC, Cone Penetration Tests (CPT) were carried out before and after improvement. Also, load tests were carried out post-RIC work to assess the settlements and bearing capacity. The soil was improved to a depth of about 5.0m below the ground level depending on the CPT friction ratio (the ratio between sleeve friction and tip resistance). CPT tip resistance was significantly increased post ground improvement work. Load tests showed enhancement in the soil bearing capacity and reduction in the potential settlements. This study demonstrates the successful application of the RIC for middle-deep improvement and compaction of the ground. Foundation design criteria were achieved in all site post-RIC work.

Keywords: compaction, RIC, ground improvement, CPT

Procedia PDF Downloads 365
2309 Comparative Analysis of Residual Shear Depiction and Grain Distribution Characteristics of Slide Soil Profile Sections

Authors: Ephrem Getahun, Shengwen Qi, Songfeng Guo, Yu Zou, Melesse Alemayehu

Abstract:

Residual shear characteristics of slide soil profile sections (SSPS) were examined using ring shear tests to know the relative residual shear behaviors among the sections of slide soil. The multistage-multiphase shearing techniques were employed to perform the experiment for each soil specimen continuously towards large displacements. The grain distribution analysis of SSPS samples was characterized by coarsening upward from bottom slip to the top sections; however, the slip surface was considered as a sheared zone that endorses their low shear resistance for failure. There is an average range of 1-2.5 mm axial displacement on each stage of loadings and phases of shearing that depicts the significant effect of dilation and compression of soil specimen. The middle section has the largest consolidation percentage (10-29%), and vertical displacement compared to other sections and showed high shear strengthening behavior having maximum shear stress of 189kPa at 240kPa loading compared to basal and top sections. It is found that the middle section of SSPS has relatively high shear resistance behavior for large displacement shearing. The residual shear assessment indicates that there is a significant influence of large displacement and rate on the friction coefficient behaviors; it resulted in shear weakening effect to attain their residual condition.

Keywords: comparison, displacements, residual shear stress, shear behavior, slide soils

Procedia PDF Downloads 149
2308 Copper/Nickel Sulfide Catalyst Electrodeposited on Nickel Foam for Efficient Water Splitting

Authors: Hamad Almohamadi, Nabeel Alharthi, Majed Alamoudi

Abstract:

Biphasic electrodes featuring CuSx/NiSx electrodeposited on nickel foam have been investigated for their electrocatalytic activity in water splitting. The study investigates the impacts of an S-vacancy induced biphasic design on the overpotential and Tafel slope. According to the findings, the NiSx/CuSx/NF electrode with S-vacancy defects displays stronger oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activity with lower overpotential and a steeper Tafel slope than the non-defect sample. NiSx/CuSx/NF exhibits the lowest overpotential value of 212 mV vs reversible hydrogen electrode (RHE) for OER and −109 mV vs RHE for HER at 10 mA cm−2. Tafel slope of 25.4 mV dec−1 for OER and −108 mV dec−1 for OER found of that electrode. The electrochemical surface area (ECSA) and diffusion impedance of the electrode is calculated. The maximum ECSA, lowest series resistance and lowest charge transfer resistance are found in the *NiSx/CuSx/NF sample with S-vacancy defects, showing increased electrical conductivity and quick charge transfer kinetics. The *NiSx/CuSx/NF electrode was found to be stable for 80 hours in pure water splitting and 20 hours in sea-water splitting. The investigation comes to the conclusion that the enhanced water splitting activity and electrical conductivity of the electrode are caused by S-vacancy defects resulting in improved water splitting performance.

Keywords: water splitting, electrocatalyst, biphasic design, electrodeposition

Procedia PDF Downloads 74
2307 Molecular Characterization, Host Plant Resistance and Epidemiology of Bean Common Mosaic Virus Infecting Cowpea (Vigna unguiculata L. Walp)

Authors: N. Manjunatha, K. T. Rangswamy, N. Nagaraju, H. A. Prameela, P. Rudraswamy, M. Krishnareddy

Abstract:

The identification of virus in cowpea especially potyviruses is confusing. Even though there are several studies on viruses causing diseases in cowpea, difficult to distinguish based on symptoms and serological detection. The differentiation of potyviruses considering as a constraint, the present study is initiated for molecular characterization, host plant resistance and epidemiology of the BCMV infecting cowpea. The etiological agent causing cowpea mosaic was identified as Bean Common Mosaic Virus (BCMV) on the basis of RT-PCR and electron microscopy. An approximately 750bp PCR product corresponding to coat protein (CP) region of the virus and the presence of long flexuous filamentous particles measuring about 952 nm in size typical to genus potyvirus were observed under electron microscope. The characterized virus isolate genome had 10054 nucleotides, excluding the 3’ terminal poly (A) tail. Comparison of polyprotein of the virus with other potyviruses showed similar genome organization with 9 cleavage sites resulted in 10 functional proteins. The pairwise sequence comparison of individual genes, P1 showed most divergent, but CP gene was less divergent at nucleotide and amino acid level. A phylogenetic tree constructed based on multiple sequence alignments of the polyprotein nucleotide and amino acid sequences of cowpea BCMV and potyviruses showed virus is closely related to BCMV-HB. Whereas, Soybean variant of china (KJ807806) and NL1 isolate (AY112735) showed 93.8 % (5’UTR) and 94.9 % (3’UTR) homology respectively with other BCMV isolates. This virus transmitted to different leguminous plant species and produced systemic symptoms under greenhouse conditions. Out of 100 cowpea genotypes screened, three genotypes viz., IC 8966, V 5 and IC 202806 showed immune reaction in both field and greenhouse conditions. Single marker analysis (SMA) was revealed out of 4 SSR markers linked to BCMV resistance, M135 marker explains 28.2 % of phenotypic variation (R2) and Polymorphic information content (PIC) value of these markers was ranged from 0.23 to 0.37. The correlation and regression analysis showed rainfall, and minimum temperature had significant negative impact and strong relationship with aphid population, whereas weak correlation was observed with disease incidence. Path coefficient analysis revealed most of the weather parameters exerted their indirect contributions to the aphid population and disease incidence except minimum temperature. This study helps to identify specific gaps in knowledge for researchers who may wish to further analyse the science behind complex interactions between vector-virus and host in relation to the environment. The resistant genotypes identified are could be effectively used in resistance breeding programme.

Keywords: cowpea, epidemiology, genotypes, virus

Procedia PDF Downloads 236
2306 Effect of Oral Immonoglobulin (IgY) Ingestion on Post Exercise Muscle Soreness and Muscle Damage Markers in Females

Authors: Bert H. Jacobson, Taylor Monaghan, John Sellers

Abstract:

Intense resistance-type activity generally elicits delayed onset muscle soreness (DOMS) in individuals unaccustomed to such action. DOMS is a combination of contractile tissue microtrauma, osmotic pressure changes, alteration calcium regulation, and inflammation. Elevated muscle-specific enzyme creatine kinase (CK) is a marker of striated muscle damage. Avian immunoglobulin (IgY) mediates inflammation and may thereby reduce post-exercise DOMS. Purpose: The aim of this study was to compare the effect of oral IgY and placebo (Pl) on CK, serum relevels, and perceived pain following induced DOMS. Methods: Healthy college-aged females (N=16) were randomly divided into an experimental group (IgY) and a control group (PL). CK serum levels were recorded followed by 14 days of supplementation of either IgY or Pl at the following doses: days 1-2 =4.5 g, days 3-5 =9.0 g, and days 6-14 =13.5 g. Following the 14 d, lower limb DOMS was induced using two methods of resistance training. After 48 hours, subjects reported for a second blood draw. Results: One-way ANOVA resulted in the IgY group posting significantly less (p < 0.05) serum CK than the PL group. Furthermore, the IgY group experienced significantly less post-test perceived soreness than the Pl group. Conclusion: IgY supplementation lessens muscle CK levels and perceived muscle soreness following exercise, possibly due to an anti-inflammatory effect. It was suggested that IgY may serve as a buffer for DOMS thereby allowing the participant to continue vigorous exercise without discomfort.

Keywords: muscle, soreness, damage, serum

Procedia PDF Downloads 197
2305 Clinical, Bacteriological and Histopathological Aspects of First-Time Pyoderma in a Population of Iranian Domestic Dogs: A Retrospective Study (2012-2017)

Authors: Shaghayegh Rafatpanah, Mehrnaz Rad, Ahmad Reza Movassaghi, Javad Khoshnegah

Abstract:

The purpose of the present study was to investigate the prevalence of isolation, antimicrobial susceptibility and ERIC-PCR typing of staphylococci species from dogs with pyoderma. The study animals were 61 clinical cases of Iranian domestic dogs with the first-time pyoderma. The prevalence of pyoderma was significantly higher amongst adult (odds Ratio: 0.21; p=0.001) large breed (odds Ratio: 2.42; p=0.002)dogs. There was no difference in prevalence of pyoderma in male and females (odds Ratio: 1.27; p= 0.337). The 'head, face and pinna' and 'trunk' were the most affected lesion regions, each with 19 cases (26.76%). An identifiable underlying disease was present in 52 (85.24%) of the dogs. Bacterial species were recovered from 43 of the 61 (70.49%) studied animals. No isolates were recovered from 18 studied dogs. The most frequently recovered bacterial genus was Staphylococcus (32/43 isolates, 74.41%) including S. epidermidis (22/43 isolates, 51.16%), S. aureus (7/43 isolates, 16.27%) and S. pseudintermedius (3/43 isolates, 6.97%). Staphylococci species resistance was most commonly seen against amoxicillin (94.11%), penicillin (83.35%), and ampicillin (76.47%). Resistant to cephalexin and cefoxitin was 5.88% and 2.94%, respectively. A total of 27 of the staphylococci isolated (84.37 %) were resistant to at least one antimicrobial agent, and 19 isolates (59.37%) were resistant to three or more antimicrobial drugs. There were no significant differences in the prevalence of resistance between the staphylococci isolated from cases of superficial and deep pyoderma. ERIC-PCR results revealed 19 different patterns among 22 isolates of S. epidermidis and 7 isolates of S. aureus.

Keywords: dog, pyoderma, Staphylococcus, Staphylococcus epidermidis, Iran

Procedia PDF Downloads 180
2304 Changing the Biopower Hierarchy between Women’s Bodily Knowledge and the Medical Knowledge about the Body: The Case of Female Ejaculation and #Notpee

Authors: Lior B. Navon

Abstract:

The objective of this study is to investigate how technology, such as social media, can influence the biopower hierarchy between the medical knowledge about the body and women’s bodily knowledge through the case study of the hashtag 'notpee'. In January 2015, the hashtag #notpee, relating to a feminine physiological phenomenon called female ejaculation (FE) or squirting (SQ) started circulating on twitter. This hashtag, born as a reaction to a medical study claiming that SQ is essentially involuntary emission of urine during sexual activity, sparked an unusual public discourse about FE, a phenomenon that is usually not discussed or referred to in socio-legitimate public spheres. This unusual backlash got the attention of women’s magazines and blogs, as well as more mainstream large and respected outlets such as The Guardian and CNN. Both the tweets on twitter, as well as the media coverage of them, were mainly aimed at rejecting the research’s findings. While not offering an alternative and choosing to define the phenomenon by negation, women argued that the fluid extracted was not pee based on their personal experiences. Based on a critical discourse analysis of 742 tweets with the hashtag 'notpee' between January 2015 and January 2016, and of 15 articles covering the backlash, this study suggests that the #notpee backlash challenged the power balance between the medical knowledge about the feminine body and the feminine bodily knowledge through two different, yet related, forms of resistance to biopower. The first resistance is to the authority over knowledge production — who has the power to produce 'true' statements when it comes to the body? Is it the women who experience the phenomenon, or is it the medical institution? The second resistance to biopower has to do with what we regard as facts or veracity. A critical discourse analysis reveals that while both the scientific field, as well as the women arguing against its findings, use empirical information, they, nevertheless, rely on two dichotomic databases- while the scientific research relies on samples from the 'dead like body', these woman are relying on their lived subjective senses as a source for fact making. Nevertheless, while #notpee is asking to change the power relations between the feminine subjective bodily knowledge and the seemingly objective masculine medical knowledge about the body, it by no means dismisses it. These women are essentially asking the medical institution to take into consideration the subjective body as well as the objective one while acknowledging and accepting the power of the latter over knowledge production.

Keywords: biopower, female ejaculation, new media, bodily knowledge

Procedia PDF Downloads 157
2303 A Novel Cold Asphalt Concrete Mixture for Heavily Trafficked Binder Course

Authors: Anmar Dulaimi, Hassan Al Nageim, Felicite Ruddock, Linda Seton

Abstract:

Cold bituminous asphalt mixture (CBEM) provide a sustainable, cost effective and energy efficiency alternative to traditional hot mixtures. However, these mixtures have a comparatively low initial strength and as it is considered as evolutionary materials, mainly in the early life where the initial cohesion is low and builds up slowly. On the other hand, asphalt concrete is, by far, the most common mixtures in use as binder course and base in road pavement in the UK having a continuous grade offer a good aggregate interlock results in this material having very good load-spreading properties as well as a high resistance to permanent deformation. This study aims at developing a novel fast curing cold asphalt concrete binder course mixtures by using Ordinary Portland Cement (OPC) as a replacement to conventional mineral filler (0%-100%) while new by-product material (LJMU-A2) was used as a supplementary cementitious material. With this purpose, cold asphalt concrete binder course mixtures with cationic emulsions were studied by means of stiffness modulus whereas water sensitivity was approved by assessing the stiffness modulus ratio before and after sample conditioning. The results indicate that a substantial enhancement in the stiffness modulus and a considerable improvement of water sensitivity resistance by adding of LJMU-A2 to the cold asphalt mixtures as a supplementary cementitious material. Moreover, the addition of LJMU-A2 to those mixtures leads to stiffness modulus after 2- day curing comparable to those obtained with Portland cement after 7-day curing.

Keywords: cold mix asphalt, binder course, cement, stiffness modulus, water sensitivity

Procedia PDF Downloads 311
2302 Hygrothermal Performance of Sheep Wool in Cold and Humid Climates

Authors: Yuchen Chen, Dehong Li, Bin Li, Denis Rodrigue, Xiaodong (Alice) Wang

Abstract:

When selecting insulation materials, not only should their thermal efficiency be considered, but also their impact on the environment. Compared to conventional insulation materials, bio-based materials not only have comparable thermal performance, but they also have a lower embodied energy. Sheep wool has the advantages of low negative health impact, high fire resistance, eco-friendliness, and high moisture resistance. However, studies on applying sheep wool insulation in cold and humid climates are still insufficient. The purpose of this study is to simulate the hygrothermal performance of sheep wool insulation for the Quebec City climate, as well as analyze the mold growth risks. The results show that a sheep wool wall has better thermal performance than a reference wall and that both meet the minimum requirements of the Quebec Code for the thermal performance of above-ground walls. The total water content indicates that the sheep wool wall can reach dynamic equilibrium in the Quebec climate and can dry out. At the same time, a delay of almost four months in the maximum total water content indicates that the sheep wool wall has high moisture absorption compared to the reference wall. The hygrothermal profiles show that the sheathing-insulation interface of both walls is at the highest risk for condensation. When the interior surface gypsum was replaced by stucco, the mold index significantly dropped.

Keywords: sheep wool, water content, hygrothermal performance, mould growth risk

Procedia PDF Downloads 91
2301 Bond Strength of Nano Silica Concrete Subjected to Corrosive Environments

Authors: Muhammad S. El-Feky, Mohamed I. Serag, Ahmed M. Yasien, Hala Elkady

Abstract:

Reinforced concrete requires steel bars in order to provide the tensile strength that is needed in structural concrete. However, when steel bars corrode, a loss in bond between the concrete and the steel bars occurs due to the formation of rust on the bars surface. Permeability of concrete is a fundamental property in perspective of the durability of concrete as it represents the ease with which water or other fluids can move through concrete, subsequently transporting corrosive agents. Nanotechnology is a standout amongst active research zones that envelops varies disciplines including construction materials. The application of nanotechnology in the corrosion protection of metal has lately gained momentum as nano scale particles have ultimate physical, chemical and physicochemical properties, which may enhance the corrosion protection in comparison to large size materials. The presented research aims to study the bond performance of concrete containing relatively high volume nano silica (up to 4.5%) exposed to corrosive conditions. This was extensively studied through tensile, bond strengths as well as the permeability of nano silica concrete. In addition micro-structural analysis was performed in order to evaluate the effect of nano silica on the properties of concrete at both; the micro and nano levels. The results revealed that by the addition of nano silica, the permeability of concrete mixes decreased significantly to reach about 50% of the control mix by the addition of 4.5% nano silica. As for the corrosion resistance, the nano silica concrete is comparatively higher resistance than ordinary concrete. Increasing Nano Silica percentage increased significantly the critical time corresponding to a metal loss (equal to 50 ϻm) which usually corresponding to the first concrete cracking due to the corrosion of reinforcement to reach about 49 years instead of 40 years as for the normal concrete. Finally, increasing nano Silica percentage increased significantly the residual bond strength of concrete after being subjected to corrosive environment. After being subjected to corrosive environment, the pullout behavior was observed for the bars embedded in all of the mixes instead of the splitting behavior that was observed before being corroded. Adding 4.5% nano silica in concrete increased the residual bond strength to reach 79% instead of 27% only as compared to control mix (0%W) before the subjection of the corrosive environment. From the conducted study we can conclude that the Nano silica proved to be a significant pore blocker material.

Keywords: bond strength, concrete, corrosion resistance, nano silica, permeability

Procedia PDF Downloads 309
2300 Measurement of Solids Concentration in Hydrocyclone Using ERT: Validation Against CFD

Authors: Vakamalla Teja Reddy, Narasimha Mangadoddy

Abstract:

Hydrocyclones are used to separate particles into different size fractions in the mineral processing, chemical and metallurgical industries. High speed video imaging, Laser Doppler Anemometry (LDA), X-ray and Gamma ray tomography are previously used to measure the two-phase flow characteristics in the cyclone. However, investigation of solids flow characteristics inside the cyclone is often impeded by the nature of the process due to slurry opaqueness and solid metal wall vessels. In this work, a dual-plane high speed Electrical resistance tomography (ERT) is used to measure hydrocyclone internal flow dynamics in situ. Experiments are carried out in 3 inch hydrocyclone for feed solid concentrations varying in the range of 0-50%. ERT data analysis through the optimized FEM mesh size and reconstruction algorithms on air-core and solid concentration tomograms is assessed. Results are presented in terms of the air-core diameter and solids volume fraction contours using Maxwell’s equation for various hydrocyclone operational parameters. It is confirmed by ERT that the air core occupied area and wall solids conductivity levels decreases with increasing the feed solids concentration. Algebraic slip mixture based multi-phase computational fluid dynamics (CFD) model is used to predict the air-core size and the solid concentrations in the hydrocyclone. Validation of air-core size and mean solid volume fractions by ERT measurements with the CFD simulations is attempted.

Keywords: air-core, electrical resistance tomography, hydrocyclone, multi-phase CFD

Procedia PDF Downloads 379
2299 A Study to Evaluate Some Physical and Mechanical Properties, Relevant in Estimating Energy Requirements in Grinding the Palm Kernel and Coconut Shells

Authors: Saheed O. Akinwale, Olufemi A. Koya

Abstract:

Based on the need to modify palm kernel shell (PKS) and coconut shell (CNS) for some engineering applications, the study evaluated some physical characteristics and fracture resistance, relevant in estimating energy requirements in comminution of the nutshells. The shells, obtained from local processing mills, were washed, sun-dried and sorted to remove kernels, nuts and other extraneous materials. Experiments were then conducted to determine the thickness, density, moisture content, and hardness of the shells. Fracture resistances were characterised by the average compressive load, stiffness and toughness at bio-yield point of specially prepared section of the shells, under quasi-static compression loading. The densities of the dried PKS at 7.12% and the CNS at 6.47% (wb) moisture contents were 1291.20 and 1247.40 kg/m3, respectively. The corresponding Brinnel Hardness Numbers were 58.40 ± 1.91 and 56.33 ± 4.33. Close shells thickness of both PKS and CNS exhibited identical physical properties although; CNS is relatively larger in physical dimensions than PKS. The findings further showed that both shell types exhibited higher resistance with compression along the longitudinal axes than the transverse axes. With compressions along the longitudinal axes, the fracture force were 1.41 ± 0.11 and 3.62 ± 0.09 kN; bio-stiffness; 934.70 ± 67.03 kN/m and 1980.74 ± 8.92 kN/m; and toughness, 2.17 ± 0.16 and 6.51 ± 0.15 KN mm for the PKS and CNS, respectively. With the estimated toughness of CNS higher than that of PKS, the study showed the requirement of higher comminution energy for CNS.

Keywords: bio-stiffness, coconut shell, comminution, crushing strength, energy requirement, palm kernel shell, toughness

Procedia PDF Downloads 232
2298 Six Years Antimicrobial Resistance Trends among Bacterial Isolates in Amhara National Regional State, Ethiopia

Authors: Asrat Agalu Abejew

Abstract:

Background: Antimicrobial resistance (AMR) is a silent tsunami and one of the top global threats to health care and public health. It is one of the common agendas globally and in Ethiopia. Emerging AMR will be a double burden to Ethiopia, which is facing a series of problems from infectious disease morbidity and mortality. In Ethiopia, although there are attempts to document AMR in healthcare institutions, comprehensive and all-inclusive analysis is still lacking. Thus, this study is aimed to determine trends in AMR from 2016-2021. Methods: A retrospective analysis of secondary data recorded in the Amhara Public Health Institute (APHI) from 2016 to 2021 G.C was conducted. Blood, Urine, Stool, Swabs, Discharge, body effusions, and other Microbiological specimens were collected from each study participants, and Bacteria identification and Resistance tests were done using the standard microbiologic procedure. Data was extracted from excel in August 2022, Trends in AMR were analyzed, and the results were described. In addition, the chi-square (X2) test and binary logistic regression were used, and a P. value < 0.05 was used to determine a significant association. Results: During 6 years period, there were 25143 culture and susceptibility tests. Overall, 265 (46.2%) bacteria were resistant to 2-4 antibiotics, 253 (44.2%) to 5-7 antibiotics, and 56 (9.7%) to >=8 antibiotics. The gram-negative bacteria were 166 (43.9%), 155 (41.5%), and 55 (14.6%) resistant to 2-4, 5-7, and ≥8 antibiotics, respectively, whereas 99(50.8%), 96(49.2% and 1 (0.5%) of gram-positive bacteria were resistant to 2-4, 5-7 and ≥8 antibiotics respectively. K. pneumonia 3783 (15.67%) and E. coli 3199 (13.25%) were the most commonly isolated bacteria, and the overall prevalence of AMR was 2605 (59.9%), where K. pneumonia 743 (80.24%), E. cloacae 196 (74.81%), A. baumannii 213 (66.56%) being the most common resistant bacteria for antibiotics tested. Except for a slight decline during 2020 (6469 (25.4%)), the overall trend of AMR is rising from year to year, with a peak in 2019 (8480 (33.7%)) and in 2021 (7508 (29.9%). If left un-intervened, the trend in AMR will increase by 78% of variation from the study period, as explained by the differences in years (R2=0.7799). Ampicillin, Augmentin, ciprofloxacin, cotrimoxazole, tetracycline, and Tobramycin were almost resistant to common bacteria they were tested. Conclusion: AMR is linearly increasing during the last 6 years. If left as it is without appropriate intervention after 15 years (2030 E.C), AMR will increase by 338.7%. A growing number of multi-drug resistant bacteria is an alarm to awake policymakers and those who do have the concern to intervene before it is too late. This calls for a periodic, integrated, and continuous system to determine the prevalence of AMR in commonly used antibiotics.

Keywords: AMR, trend, pattern, MDR

Procedia PDF Downloads 76
2297 The Effect of Linear Low-Density Polyethylene Cross-Contamination by Other Plastic Types on Bitumen Modification

Authors: Nioushasadat Haji Seyed Javadi, Ailar Hajimohammadi, Nasser Khalili

Abstract:

Currently, the recycling of plastic wastes has been the subject of much research attention, especially in pavement constructions, where virgin polymers can be replaced by recycled plastics for asphalt binder modification. Among the plastic types, recycled linear low-density polyethylene (RLLDPE) has been one of the common and largely available plastics for bitumen modification. However, it is important to note that during the recycling process, LLDPE can easily be contaminated with other plastic types, especially with low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polypropylene (PP). The cross-contamination of LLDPE with other plastics lowers its quality and, consequently, can affect the asphalt modification process. This study aims to assess the effect of LLDPE cross-contamination on bitumen modification. To do so, samples of bitumen modified with LLDPE and blends of LLDPE with LDPE, HDPE, and PP were prepared and compared through physical and rheological evaluations. The experimental tests, including softening point, penetration, viscosity at 135 °C, and dynamic shear rheometer, were conducted. The results indicated that the effect of cross-contamination on softening point and rutting resistance was negligible. On the other side, penetration and viscosity were highly impacted. The results also showed that among contamination of LLDPE with the other plastic types, PP had the highest influence in comparison with HDPE and LDPE on changing the properties of the LLDPE- modified bitumen.

Keywords: recycled polyethylene, polymer cross-contamination, waste plastic, bitumen, rutting resistance

Procedia PDF Downloads 127
2296 Development of an Auxetic Tissue Implant

Authors: Sukhwinder K. Bhullar, M. B. G. Jun

Abstract:

The developments in biomedical industry have demanded the development of biocompatible, high performance materials to meet higher engineering specifications. The general requirements of such materials are to provide a combination of high stiffness and strength with significant weight savings, resistance to corrosion, chemical resistance, low maintenance, and reduced costs. Auxetic materials which come under the category of smart materials offer huge potential through measured enhancements in mechanical properties. Unique deformation mechanism, providing cushioning on indentation, automatically adjustable with its strength and thickness in response to forces and having memory returns to its neutral state on dissipation of stresses make them good candidate in biomedical industry. As simple extension and compression of tissues is of fundamental importance in biomechanics, therefore, to study the elastic behaviour of auxetic soft tissues implant is targeted in this paper. Therefore development and characterization of auxetic soft tissue implant is studied in this paper. This represents a real life configuration where soft tissue such as meniscus in knee replacement, ligaments and tendons often are taken as transversely isotropic. Further, as composition of alternating polydisperse blocks of soft and stiff segments combined with excellent biocompatibility make polyurethanes one of the most promising synthetic biomaterials. Hence selecting auxetic polyurathylene foam functional characterization is performed and compared with conventional polyurathylene foam.

Keywords: auxetic materials, deformation mechanism, enhanced mechanical properties, soft tissues

Procedia PDF Downloads 459
2295 Optimization the Conditions of Electrophoretic Deposition Fabrication of Graphene-Based Electrode to Consider Applications in Electro-Optical Sensors

Authors: Sepehr Lajevardi Esfahani, Shohre Rouhani, Zahra Ranjbar

Abstract:

Graphene has gained much attention owing to its unique optical and electrical properties. Charge carriers in graphene sheets (GS) carry out a linear dispersion relation near the Fermi energy and behave as massless Dirac fermions resulting in unusual attributes such as the quantum Hall effect and ambipolar electric field effect. It also exhibits nondispersive transport characteristics with an extremely high electron mobility (15000 cm2/(Vs)) at room temperature. Recently, several progresses have been achieved in the fabrication of single- or multilayer GS for functional device applications in the fields of optoelectronic such as field-effect transistors ultrasensitive sensors and organic photovoltaic cells. In addition to device applications, graphene also can serve as reinforcement to enhance mechanical, thermal, or electrical properties of composite materials. Electrophoretic deposition (EPD) is an attractive method for development of various coatings and films. It readily applied to any powdered solid that forms a stable suspension. The deposition parameters were controlled in various thicknesses. In this study, the graphene electrodeposition conditions were optimized. The results were obtained from SEM, Ohm resistance measuring technique and AFM characteristic tests. The minimum sheet resistance of electrodeposited reduced graphene oxide layers is achieved at conditions of 2 V in 10 s and it is annealed at 200 °C for 1 minute.

Keywords: electrophoretic deposition (EPD), graphene oxide (GO), electrical conductivity, electro-optical devices

Procedia PDF Downloads 190
2294 Micro/Nano-Sized Emulsions Exhibit Antifungal Activity against Cucumber Downy Mildew

Authors: Kai-Fen Tu, Jenn-Wen Huang, Yao-Tung Lin

Abstract:

Cucumber is a major economic crop in the world. The global production of cucumber in 2017 was more than 71 million tonnes. Nonetheless, downy mildew, caused by Pseudoperonospora cubensis, is a devastating and common disease on cucumber in around 80 countries and causes severe economic losses. The long-term usage of fungicide also leads to the occurrence of fungicide resistance and decreases host resistance. In this study, six types of oil (neem oil, moringa oil, soybean oil, cinnamon oil, clove oil, and camellia oil) were selected to synthesize micro/nano-sized emulsions, and the disease control efficacy of micro/nano-sized emulsions were evaluated. Moreover, oil concentrations (0.125% - 1%) and droplet size of emulsion were studied. Results showed cinnamon-type emulsion had the best efficacy among these oils. The disease control efficacy of these emulsions increased as the oil concentration increased. Both disease incidence and disease severity were measured by detached leaf and pot experiment, respectively. For the droplet size effect, results showed that the 114 nm of droplet size synthesized by 0.25% cinnamon oil emulsion had the lowest disease incidence (6.67%) and lowest disease severity (33.33%). The release of zoospore was inhibited (5.33%), and the sporangia germination was damaged. These results suggest that cinnamon oil emulsion will be a valuable and environmentally friendly alternative to control cucumber downy mildew. The economic loss caused by plant disease could also be reduced.

Keywords: downy mildew, emulsion, oil droplet size, plant protectant

Procedia PDF Downloads 128