Search results for: high resolution satellite image
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23053

Search results for: high resolution satellite image

22093 Investigation of Different Machine Learning Algorithms in Large-Scale Land Cover Mapping within the Google Earth Engine

Authors: Amin Naboureh, Ainong Li, Jinhu Bian, Guangbin Lei, Hamid Ebrahimy

Abstract:

Large-scale land cover mapping has become a new challenge in land change and remote sensing field because of involving a big volume of data. Moreover, selecting the right classification method, especially when there are different types of landscapes in the study area is quite difficult. This paper is an attempt to compare the performance of different machine learning (ML) algorithms for generating a land cover map of the China-Central Asia–West Asia Corridor that is considered as one of the main parts of the Belt and Road Initiative project (BRI). The cloud-based Google Earth Engine (GEE) platform was used for generating a land cover map for the study area from Landsat-8 images (2017) by applying three frequently used ML algorithms including random forest (RF), support vector machine (SVM), and artificial neural network (ANN). The selected ML algorithms (RF, SVM, and ANN) were trained and tested using reference data obtained from MODIS yearly land cover product and very high-resolution satellite images. The finding of the study illustrated that among three frequently used ML algorithms, RF with 91% overall accuracy had the best result in producing a land cover map for the China-Central Asia–West Asia Corridor whereas ANN showed the worst result with 85% overall accuracy. The great performance of the GEE in applying different ML algorithms and handling huge volume of remotely sensed data in the present study showed that it could also help the researchers to generate reliable long-term land cover change maps. The finding of this research has great importance for decision-makers and BRI’s authorities in strategic land use planning.

Keywords: land cover, google earth engine, machine learning, remote sensing

Procedia PDF Downloads 113
22092 Spatio-Temporal Land Cover Changes Monitoring Using Remotely Sensed Techniques in Riyadh Region, KSA

Authors: Abdelrahman Elsehsah

Abstract:

Land Use and Land Cover (LULC) dynamics in Riyadh over a decade were comprehensively analyzed using the Google Earth Engine (GEE) platform. By harnessing the Landsat 8 Image collection and night-time light image collection from May to August for the years 2013 and 2023, we were able to generate insightful datasets capturing the changing landscape of the region. Our approach involved a Random Forest (RF) classification model that consistently displayed commendable precision scores above 92% for both years. A notable discovery from the study was the pronounced urban expansion, particularly around Riyadh city. Within a mere ten-year span, urbanization surged noticeably, affecting the broader ecological environment of the region. Interestingly, the northeastern part of Riyadh emerged as a focal point of this growth, signaling rapid urban growth of urban sprawl and development. A comparison between the two years indicates a 21.51% increase in built-up areas, revealing the transformative pace of urban sprawl. Contrastingly, vegetation cover patterns presented a more nuanced picture. While our initial hypothesis predicted a decline in vegetation, the actual findings depicted both vegetation reduction in certain pockets and new growth in others, resulting in an overall 25.89% increase. This intricate pattern might be attributed to shifting agricultural practices, afforestation efforts, or even satellite image timings not aligning with seasonal vegetation growth. The bare soil, predominant in the desert landscape of Riyadh, saw a marginal reduction of 0.37% over the decade, challenging our initial expectations. Urban and agricultural advancements in Saudi Arabia appear to have slightly reduced the expanse of barren terrains. This study, underpinned by a rigorous methodological framework, reveals the multifaceted land cover changes in Riyadh in response to urban development and environmental factors. The precise, data-driven insights provided by our analysis serve as invaluable tools for understanding urban growth trajectories, guiding urban planning, policy formulation, and sustainable development endeavors in the region.

Keywords: remote sensing, KSA, ArcGIS, spatio-temporal

Procedia PDF Downloads 35
22091 Local Spectrum Feature Extraction for Face Recognition

Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd ZaizuIlyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh

Abstract:

This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates.

Keywords: local features modelling, face recognition system, Gaussian mixture models, Feret

Procedia PDF Downloads 667
22090 A Simple and Efficient Method for Accurate Measurement and Control of Power Frequency Deviation

Authors: S. J. Arif

Abstract:

In the presented technique, a simple method is given for accurate measurement and control of power frequency deviation. The sinusoidal signal for which the frequency deviation measurement is required is transformed to a low voltage level and passed through a zero crossing detector to convert it into a pulse train. Another stable square wave signal of 10 KHz is obtained using a crystal oscillator and decade dividing assemblies (DDA). These signals are combined digitally and then passed through decade counters to give a unique combination of pulses or levels, which are further encoded to make them equally suitable for both control applications and display units. The developed circuit using discrete components has a resolution of 0.5 Hz and completes measurement within 20 ms. The realized circuit is simulated and synthesized using Verilog HDL and subsequently implemented on FPGA. The results of measurement on FPGA are observed on a very high resolution logic analyzer. These results accurately match the simulation results as well as the results of same circuit implemented with discrete components. The proposed system is suitable for accurate measurement and control of power frequency deviation.

Keywords: digital encoder for frequency measurement, frequency deviation measurement, measurement and control systems, power systems

Procedia PDF Downloads 376
22089 Nation Branding: Guidelines for Identity Development and Image Perception of Thailand Brand in Health and Wellness Tourism

Authors: Jiraporn Prommaha

Abstract:

The purpose of this research is to study the development of Thailand Brand Identity and the perception of its image in order to find any guidelines for the identity development and the image perception of Thailand Brand in Health and Wellness Tourism. The paper is conducted through mixed methods research, both the qualitative and quantitative researches. The qualitative focuses on the in-depth interview of executive administrations from public and private sectors involved scholars and experts in identity and image issue, main 11 people. The quantitative research was done by the questionnaires to collect data from foreign tourists 800; Chinese tourists 400 and UK tourists 400. The technique used for this was the Exploratory Factor Analysis (EFA), this was to determine the relation between the structures of the variables by categorizing the variables into group by applying the Varimax rotation technique. This technique showed recognition the Thailand brand image related to the 2 countries, China and UK. The results found that guidelines for brand identity development and image perception of health and wellness tourism in Thailand; as following (1) Develop communication in order to understanding of the meaning of the word 'Health and beauty tourism' throughout the country, (2) Develop human resources as a national agenda, (3) Develop awareness rising in the conservation and preservation of natural resources of the country, (4) Develop the cooperation of all stakeholders in Health and Wellness Businesses, (5) Develop digital communication throughout the country and (6) Develop safety in Tourism.

Keywords: brand identity, image perception, nation branding, health and wellness tourism, mixed methods research

Procedia PDF Downloads 200
22088 Airborne SAR Data Analysis for Impact of Doppler Centroid on Image Quality and Registration Accuracy

Authors: Chhabi Nigam, S. Ramakrishnan

Abstract:

This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data to study the impact of Doppler centroid on Image quality and geocoding accuracy from the perspective of Stripmap mode of data acquisition. Although in Stripmap mode of data acquisition radar beam points at 90 degrees broad side (side looking), shift in the Doppler centroid is invariable due to platform motion. In-accurate estimation of Doppler centroid leads to poor image quality and image miss-registration. The effect of Doppler centroid is analyzed in this paper using multiple sets of data collected from airborne platform. Occurrences of ghost (ambiguous) targets and their power levels have been analyzed that impacts appropriate choice of PRF. Effect of aircraft attitudes (roll, pitch and yaw) on the Doppler centroid is also analyzed with the collected data sets. Various stages of the RDA (Range Doppler Algorithm) algorithm used for image formation in Stripmap mode, range compression, Doppler centroid estimation, azimuth compression, range cell migration correction are analyzed to find the performance limits and the dependence of the imaging geometry on the final image. The ability of Doppler centroid estimation to enhance the imaging accuracy for registration are also illustrated in this paper. The paper also tries to bring out the processing of low squint SAR data, the challenges and the performance limits imposed by the imaging geometry and the platform dynamics on the final image quality metrics. Finally, the effect on various terrain types, including land, water and bright scatters is also presented.

Keywords: ambiguous target, Doppler Centroid, image registration, Airborne SAR

Procedia PDF Downloads 218
22087 The Findings EEG-LORETA about Epilepsy

Authors: Leila Maleki, Ahmad Esmali Kooraneh, Hossein Taghi Derakhshi

Abstract:

Neural activity in the human brain starts from the early stages of prenatal development. This activity or signals generated by the brain are electrical in nature and represent not only the brain function but also the status of the whole body. At the present moment, three methods can record functional and physiological changes within the brain with high temporal resolution of neuronal interactions at the network level: the electroencephalogram (EEG), the magnet oencephalogram (MEG), and functional magnetic resonance imaging (fMRI); each of these has advantages and shortcomings. EEG recording with a large number of electrodes is now feasible in clinical practice. Multichannel EEG recorded from the scalp surface provides a very valuable but indirect information about the source distribution. However, deep electrode measurements yield more reliable information about the source locations، Intracranial recordings and scalp EEG are used with the source imaging techniques to determine the locations and strengths of the epileptic activity. As a source localization method, Low Resolution Electro-Magnetic Tomography (LORETA) is solved for the realistic geometry based on both forward methods, the Boundary Element Method (BEM) and the Finite Difference Method (FDM). In this paper, we review The findings EEG- LORETA about epilepsy.

Keywords: epilepsy, EEG, EEG-LORETA

Procedia PDF Downloads 545
22086 Underwater Image Enhancement and Reconstruction Using CNN and the MultiUNet Model

Authors: Snehal G. Teli, R. J. Shelke

Abstract:

CNN and MultiUNet models are the framework for the proposed method for enhancing and reconstructing underwater images. Multiscale merging of features and regeneration are both performed by the MultiUNet. CNN collects relevant features. Extensive tests on benchmark datasets show that the proposed strategy performs better than the latest methods. As a result of this work, underwater images can be represented and interpreted in a number of underwater applications with greater clarity. This strategy will advance underwater exploration and marine research by enhancing real-time underwater image processing systems, underwater robotic vision, and underwater surveillance.

Keywords: convolutional neural network, image enhancement, machine learning, multiunet, underwater images

Procedia PDF Downloads 75
22085 Horizontal Development of Built-up Area and Its Impacts on the Agricultural Land of Peshawar City District (1991-2014)

Authors: Pukhtoon Yar

Abstract:

Peshawar City is experiencing a rapid spatial urban growth primarily as a result of high rate of urbanization along with economic development. This paper was designed to understand the impacts of urbanization on agriculture land use change by particularly focusing on land use change trajectories from the past (1991-2014). We used Landsat imageries (30 meters) for1991along with Spot images (2.5 meters) for year 2014. . The ground truthing of the satellite data was performed by collecting information from Peshawar Development Authority, revenue department, real estate agents and interviews with the officials of city administration. The temporal satellite images were processed by applying supervised maximum likelihood classification technique in ArcGIS 9.3. The procedure resulted into five main classes of land use i.e. built-up area, farmland, barren land, cultivable-wasteland and water bodies. The analysis revealed that, in Peshawar City the built-up environment has been doubled from 8.1 percent in 1991 to over 18.2 percent in 2014 by predominantly encroaching land producing food. Furthermore, the CA-Markov Model predicted that the area under impervious surfaces would continue to flourish during the next three decades. This rapid increase in built-up area is accredited to the lack of proper land use planning and management, which has caused chaotic urban sprawl with detrimental social and environmental consequences.

Keywords: Urban Expansion, Land use, GIS, Remote Sensing, Markov Model, Peshawar City

Procedia PDF Downloads 186
22084 Glucose Monitoring System Using Machine Learning Algorithms

Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe

Abstract:

The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.

Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning

Procedia PDF Downloads 203
22083 Evidence of Behavioural Thermoregulation by Dugongs (Dugong dugon) at the High Latitude Limit to Their Range in Eastern Australia

Authors: Daniel R. Zeh, Michelle R. Heupel, Mark Hamann, Rhondda Jones, Colin J. Limpus, Helene Marsh

Abstract:

Marine mammals live in an environment with water temperatures nearly always lower than the mammalian core body temperature of 35 - 38°C. Marine mammals can lose heat at high rates and have evolved a range of adaptations to minimise heat loss. Our project tracked dugongs to examine if there was a discoverable relationship between the animals’ movements and the temperature of their environment that might suggest behavioural thermoregulation. Twenty-nine dugongs were fitted with acoustic and satellite/GPS transmitters in 2012, 2013 and 2014 in Moreton Bay Queensland at the high latitude limit of the species’ winter range in eastern Australia on 30 occasions (one animal was tagged twice). All 22 animals that stayed in the area and had functional transmitters made at least one (and up to 66) return trip(s) to the warmer oceanic waters outside the bay where seagrass is unavailable. Individual dugongs went in and out of the bay in synchrony with the tides and typically spent about 6 hours in the oceanic water. There was a diel pattern in the movements: 85% of outgoing trips occurred between midnight and noon. There were significant individual differences, but the likelihood of a dugong leaving the bay was independent of body length or sex. In Quarter 2 (April – June), the odds of a dugong making a trip increased by about 40% for each 1°C increase in the temperature difference between the bay and the warmer adjacent oceanic waters. In Quarter 3, the odds of making a trip were lower when the outside –inside bay temperature differences were small or negative but increased by a factor of up to 2.12 for each 1°C difference in outside – inside temperatures. In Quarter 4, the odds of making a trip were higher when it was cooler outside the bay and decreased by a factor of nearly 0.5 for each 1°C difference in outside – inside bay temperatures. The activity spaces of the dugongs generally declined as winter progressed suggesting a change in the cost-effectiveness of moving outside the bay. Our analysis suggests that dugongs can thermoregulate their core temperature through the behaviour of moving to water having more favourable temperature.

Keywords: acoustic, behavioral thermoregulation, dugongs, movements, satellite, telemetry, quick fix GPS

Procedia PDF Downloads 173
22082 Modern Well Logs Technology to Improve Geological Model for Libyan Deep Sand Stone Reservoir

Authors: Tarek S. Duzan, Fisal Ben Ammer, Mohamed Sula

Abstract:

In some places within Sirt Basin-Libya, it has been noticed that seismic data below pre-upper cretaceous unconformity (PUK) is hopeless to resolve the large-scale structural features and is unable to fully determine reservoir delineation. Seismic artifacts (multiples) are observed in the reservoir zone (Nubian Formation) below PUK, which complicate the process of seismic interpretation. The nature of the unconformity and the structures below are still ambiguous and not fully understood which generates a significant gap in characterizing the geometry of the reservoir, the uncertainty accompanied with lack of reliable seismic data creates difficulties in building a robust geological model. High resolution dipmeter is highly useful in steeply dipping zones. This paper uses FMl and OBMl borehole images (dipmeter) to analyze the structures below the PUK unconformity from two wells drilled recently in the North Gialo field (a mature reservoir). In addition, borehole images introduce new evidences that the PUK unconformity is angular and the bedding planes within the Nubian formation (below PUK) are significantly titled. Structural dips extracted from high resolution borehole images are used to construct a new geological model by the utilization of latest software technology. Therefore, it is important to use the advance well logs technology such as FMI-HD for any future drilling and up-date the existing model in order to minimize the structural uncertainty.

Keywords: FMI (formation micro imager), OBMI (oil base mud imager), UBI (ultra sonic borehole imager), nub sandstone reservoir in North gialo

Procedia PDF Downloads 319
22081 Low-Cost Image Processing System for Evaluating Pavement Surface Distress

Authors: Keerti Kembhavi, M. R. Archana, V. Anjaneyappa

Abstract:

Most asphalt pavement condition evaluation use rating frameworks in which asphalt pavement distress is estimated by type, extent, and severity. Rating is carried out by the pavement condition rating (PCR), which is tedious and expensive. This paper presents the development of a low-cost technique for image pavement distress analysis that permits the identification of pothole and cracks. The paper explores the application of image processing tools for the detection of potholes and cracks. Longitudinal cracking and pothole are detected using Fuzzy-C- Means (FCM) and proceeded with the Spectral Theory algorithm. The framework comprises three phases, including image acquisition, processing, and extraction of features. A digital camera (Gopro) with the holder is used to capture pavement distress images on a moving vehicle. FCM classifier and Spectral Theory algorithms are used to compute features and classify the longitudinal cracking and pothole. The Matlab2016Ra Image preparing tool kit utilizes performance analysis to identify the viability of pavement distress on selected urban stretches of Bengaluru city, India. The outcomes of image evaluation with the utilization semi-computerized image handling framework represented the features of longitudinal crack and pothole with an accuracy of about 80%. Further, the detected images are validated with the actual dimensions, and it is seen that dimension variability is about 0.46. The linear regression model y=1.171x-0.155 is obtained using the existing and experimental / image processing area. The R2 correlation square obtained from the best fit line is 0.807, which is considered in the linear regression model to be ‘large positive linear association’.

Keywords: crack detection, pothole detection, spectral clustering, fuzzy-c-means

Procedia PDF Downloads 181
22080 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration

Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith

Abstract:

Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.

Keywords: cycle consistency, deformable multimodal image registration, deep learning, GAN

Procedia PDF Downloads 131
22079 Mapping Poverty in the Philippines: Insights from Satellite Data and Spatial Econometrics

Authors: Htet Khaing Lin

Abstract:

This study explores the relationship between a diverse set of variables, encompassing both environmental and socio-economic factors, and poverty levels in the Philippines for the years 2012, 2015, and 2018. Employing Ordinary Least Squares (OLS), Spatial Lag Models (SLM), and Spatial Error Models (SEM), this study delves into the dynamics of key indicators, including daytime and nighttime land surface temperature, cropland surface, urban land surface, rainfall, population size, normalized difference water, vegetation, and drought indices. The findings reveal consistent patterns and unexpected correlations, highlighting the need for nuanced policies that address the multifaceted challenges arising from the interplay of environmental and socio-economic factors.

Keywords: poverty analysis, OLS, spatial lag models, spatial error models, Philippines, google earth engine, satellite data, environmental dynamics, socio-economic factors

Procedia PDF Downloads 102
22078 Additive Manufacturing of Microstructured Optical Waveguides Using Two-Photon Polymerization

Authors: Leonnel Mhuka

Abstract:

Background: The field of photonics has witnessed substantial growth, with an increasing demand for miniaturized and high-performance optical components. Microstructured optical waveguides have gained significant attention due to their ability to confine and manipulate light at the subwavelength scale. Conventional fabrication methods, however, face limitations in achieving intricate and customizable waveguide structures. Two-photon polymerization (TPP) emerges as a promising additive manufacturing technique, enabling the fabrication of complex 3D microstructures with submicron resolution. Objectives: This experiment aimed to utilize two-photon polymerization to fabricate microstructured optical waveguides with precise control over geometry and dimensions. The objective was to demonstrate the feasibility of TPP as an additive manufacturing method for producing functional waveguide devices with enhanced performance. Methods: A femtosecond laser system operating at a wavelength of 800 nm was employed for two-photon polymerization. A custom-designed CAD model of the microstructured waveguide was converted into G-code, which guided the laser focus through a photosensitive polymer material. The waveguide structures were fabricated using a layer-by-layer approach, with each layer formed by localized polymerization induced by non-linear absorption of the laser light. Characterization of the fabricated waveguides included optical microscopy, scanning electron microscopy, and optical transmission measurements. The optical properties, such as mode confinement and propagation losses, were evaluated to assess the performance of the additive manufactured waveguides. Conclusion: The experiment successfully demonstrated the additive manufacturing of microstructured optical waveguides using two-photon polymerization. Optical microscopy and scanning electron microscopy revealed the intricate 3D structures with submicron resolution. The measured optical transmission indicated efficient light propagation through the fabricated waveguides. The waveguides exhibited well-defined mode confinement and relatively low propagation losses, showcasing the potential of TPP-based additive manufacturing for photonics applications. The experiment highlighted the advantages of TPP in achieving high-resolution, customized, and functional microstructured optical waveguides. Conclusion: his experiment substantiates the viability of two-photon polymerization as an innovative additive manufacturing technique for producing complex microstructured optical waveguides. The successful fabrication and characterization of these waveguides open doors to further advancements in the field of photonics, enabling the development of high-performance integrated optical devices for various applications

Keywords: Additive Manufacturing, Microstructured Optical Waveguides, Two-Photon Polymerization, Photonics Applications

Procedia PDF Downloads 100
22077 A Comparison between the Results of Hormuz Strait Wave Simulations Using WAVEWATCH-III and MIKE21-SW and Satellite Altimetry Observations

Authors: Fatemeh Sadat Sharifi

Abstract:

In the present study, the capabilities of WAVEWATCH-III and MIKE21-SW for predicting the characteristics of wind waves in Hormuz Strait are evaluated. The GFS wind data (Global Forecast System) were derived. The bathymetry of gride with 2 arc-minute resolution, also were extracted from the ETOPO1. WAVEWATCH-III findings illustrate more valid prediction of wave features comparing to the MIKE-21 SW in deep water. Apparently, in shallow area, the MIKE-21 provides more uniformities with altimetry measurements. This may be due to the merits of the unstructured grid which are used in MIKE-21, leading to better representations of the coastal area. The findings on the direction of waves generated by wind in the modeling area indicate that in some regions, despite the increase in wind speed, significant wave height stays nearly unchanged. This is fundamental because of swift changes in wind track over the Strait of Hormuz. After discussing wind-induced waves in the region, the impact of instability of the surface layer on wave growth has been considered. For this purpose, the average monthly mean air temperature has been used. The results in cold months, when the surface layer is unstable, indicates an acceptable increase in the accuracy of prediction of the indicator wave height.

Keywords: numerical modeling, WAVEWATCH-III, Strait of Hormuz, MIKE21-SW

Procedia PDF Downloads 207
22076 Heuristic Spatial-Spectral Hyperspectral Image Segmentation Using Bands Quartile Box Plot Profiles

Authors: Mohamed A. Almoghalis, Osman M. Hegazy, Ibrahim F. Imam, Ali H. Elbastawessy

Abstract:

This paper presents a new hyperspectral image segmentation scheme with respect to both spatial and spectral contexts. The scheme uses the 8-pixels spatial pattern to build a weight structure that holds the number of outlier bands for each pixel among its neighborhood windows in different directions. The number of outlier bands for a pixel is obtained using bands quartile box plots profile among spatial 8-pixels pattern windows. The quartile box plot weight structure represents the spatial-spectral context in the image. Instead of starting segmentation process by single pixels, the proposed methodology starts by pixels groups that proved to share the same spectral features with respect to their spatial context. As a result, the segmentation scheme starts with Jigsaw pieces that build a mosaic image. The following step builds a model for each Jigsaw piece in the mosaic image. Each Jigsaw piece will be merged with another Jigsaw piece using KNN applied to their bands' quartile box plots profiles. The scheme iterates till required number of segments reached. Experiments use two data sets obtained from Earth Observer 1 (EO-1) sensor for Egypt and France. Initial results qualitative analysis showed encouraging results compared with ground truth. Quantitative analysis for the results will be included in the final paper.

Keywords: hyperspectral image segmentation, image processing, remote sensing, box plot

Procedia PDF Downloads 605
22075 Myosin-Driven Movement of Nanoparticles – An Approach to High-Speed Tracking

Authors: Sneha Kumari, Ravi Krishnan Elangovan

Abstract:

This abstract describes the development of a high-speed tracking method by modification in motor components for nanoparticle attachment. Myosin motors are nano-sized protein machines powering movement that defines life. These miniature molecular devices serve as engines utilizing chemical energy stored in ATP to produce useful mechanical energy in the form of a few nanometre displacement events leading to force generation that is required for cargo transport, cell division, cell locomotion, translated to macroscopic movements like running etc. With the advent of in vitro motility assay (IVMA), detailed functional studies of the actomyosin system could be performed. The major challenge with the currently available IVMA for tracking actin filaments is a resolution limitation of ± 50nm. To overcome this, we are trying to develop Single Molecule IVMA in which nanoparticle (GNP/QD) will be attached along or on the barbed end of actin filaments using CapZ protein and visualization by a compact TIRF module called ‘cTIRF’. The waveguide-based illumination by cTIRF offers a unique separation of excitation and collection optics, enabling imaging by scattering without emission filters. So, this technology is well equipped to perform tracking with high precision in temporal resolution of 2ms with significantly improved SNR by 100-fold as compared to conventional TIRF. Also, the nanoparticles (QD/GNP) attached to actin filament act as a point source of light coffering ease in filament tracking compared to conventional manual tracking. Moreover, the attachment of cargo (QD/GNP) to the thin filament paves the way for various nano-technological applications through their transportation to different predetermined locations on the chip

Keywords: actin, cargo, IVMA, myosin motors and single-molecule system

Procedia PDF Downloads 87
22074 A Short-Baseline Dual-Antenna BDS/MEMS-IMU Integrated Navigation System

Authors: Tijing Cai, Qimeng Xu, Daijin Zhou

Abstract:

This paper puts forward a short-baseline dual-antenna BDS/MEMS-IMU integrated navigation, constructs the carrier phase double difference model of BDS (BeiDou Navigation Satellite System), and presents a 2-position initial orientation method on BDS. The Extended Kalman-filter has been introduced for the integrated navigation system. The differences between MEMS-IMU and BDS position, velocity and carrier phase indications are used as measurements. To show the performance of the short-baseline dual-antenna BDS/MEMS-IMU integrated navigation system, the experiment results show that the position error is less than 1m, the pitch angle error and roll angle error are less than 0.1°, and the heading angle error is about 1°.

Keywords: MEMS-IMU (Micro-Electro-Mechanical System Inertial Measurement Unit), BDS (BeiDou Navigation Satellite System), dual-antenna, integrated navigation

Procedia PDF Downloads 193
22073 Dark and Bright Envelopes for Dehazing Images

Authors: Zihan Yu, Kohei Inoue, Kiichi Urahama

Abstract:

We present a method for de-hazing images. A dark envelope image is derived with the bilateral minimum filter and a bright envelope is derived with the bilateral maximum filter. The ambient light and transmission of the scene are estimated from these two envelope images. An image without haze is reconstructed from the estimated ambient light and transmission.

Keywords: image dehazing, bilateral minimum filter, bilateral maximum filter, local contrast

Procedia PDF Downloads 263
22072 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux

Authors: Hao Mi, Ming Yang, Tian-yue Yang

Abstract:

Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.

Keywords: remote monitoring, non-destructive testing, embedded Linux system, image processing

Procedia PDF Downloads 224
22071 ICanny: CNN Modulation Recognition Algorithm

Authors: Jingpeng Gao, Xinrui Mao, Zhibin Deng

Abstract:

Aiming at the low recognition rate on the composite signal modulation in low signal to noise ratio (SNR), this paper proposes a modulation recognition algorithm based on ICanny-CNN. Firstly, the radar signal is transformed into the time-frequency image by Choi-Williams Distribution (CWD). Secondly, we propose an image processing algorithm using the Guided Filter and the threshold selection method, which is combined with the hole filling and the mask operation. Finally, the shallow convolutional neural network (CNN) is combined with the idea of the depth-wise convolution (Dw Conv) and the point-wise convolution (Pw Conv). The proposed CNN is designed to complete image classification and realize modulation recognition of radar signal. The simulation results show that the proposed algorithm can reach 90.83% at 0dB and 71.52% at -8dB. Therefore, the proposed algorithm has a good classification and anti-noise performance in radar signal modulation recognition and other fields.

Keywords: modulation recognition, image processing, composite signal, improved Canny algorithm

Procedia PDF Downloads 191
22070 Classification of Digital Chest Radiographs Using Image Processing Techniques to Aid in Diagnosis of Pulmonary Tuberculosis

Authors: A. J. S. P. Nileema, S. Kulatunga , S. H. Palihawadana

Abstract:

Computer aided detection (CAD) system was developed for the diagnosis of pulmonary tuberculosis using digital chest X-rays with MATLAB image processing techniques using a statistical approach. The study comprised of 200 digital chest radiographs collected from the National Hospital for Respiratory Diseases - Welisara, Sri Lanka. Pre-processing was done to remove identification details. Lung fields were segmented and then divided into four quadrants; right upper quadrant, left upper quadrant, right lower quadrant, and left lower quadrant using the image processing techniques in MATLAB. Contrast, correlation, homogeneity, energy, entropy, and maximum probability texture features were extracted using the gray level co-occurrence matrix method. Descriptive statistics and normal distribution analysis were performed using SPSS. Depending on the radiologists’ interpretation, chest radiographs were classified manually into PTB - positive (PTBP) and PTB - negative (PTBN) classes. Features with standard normal distribution were analyzed using an independent sample T-test for PTBP and PTBN chest radiographs. Among the six features tested, contrast, correlation, energy, entropy, and maximum probability features showed a statistically significant difference between the two classes at 95% confidence interval; therefore, could be used in the classification of chest radiograph for PTB diagnosis. With the resulting value ranges of the five texture features with normal distribution, a classification algorithm was then defined to recognize and classify the quadrant images; if the texture feature values of the quadrant image being tested falls within the defined region, it will be identified as a PTBP – abnormal quadrant and will be labeled as ‘Abnormal’ in red color with its border being highlighted in red color whereas if the texture feature values of the quadrant image being tested falls outside of the defined value range, it will be identified as PTBN–normal and labeled as ‘Normal’ in blue color but there will be no changes to the image outline. The developed classification algorithm has shown a high sensitivity of 92% which makes it an efficient CAD system and with a modest specificity of 70%.

Keywords: chest radiographs, computer aided detection, image processing, pulmonary tuberculosis

Procedia PDF Downloads 126
22069 Image Analysis for Obturator Foramen Based on Marker-controlled Watershed Segmentation and Zernike Moments

Authors: Seda Sahin, Emin Akata

Abstract:

Obturator foramen is a specific structure in pelvic bone images and recognition of it is a new concept in medical image processing. Moreover, segmentation of bone structures such as obturator foramen plays an essential role for clinical research in orthopedics. In this paper, we present a novel method to analyze the similarity between the substructures of the imaged region and a hand drawn template, on hip radiographs to detect obturator foramen accurately with integrated usage of Marker-controlled Watershed segmentation and Zernike moment feature descriptor. Marker-controlled Watershed segmentation is applied to seperate obturator foramen from the background effectively. Zernike moment feature descriptor is used to provide matching between binary template image and the segmented binary image for obturator foramens for final extraction. The proposed method is tested on randomly selected 100 hip radiographs. The experimental results represent that our method is able to segment obturator foramens with % 96 accuracy.

Keywords: medical image analysis, segmentation of bone structures on hip radiographs, marker-controlled watershed segmentation, zernike moment feature descriptor

Procedia PDF Downloads 434
22068 Novel Recombinant Betasatellite Associated with Vein Thickening Symptoms on Okra Plants in Saudi Arabia

Authors: Adel M. Zakri, Mohammed A. Al-Saleh, Judith. K. Brown, Ali M. Idris

Abstract:

Betasatellites are small circular single stranded DNA molecules found associated with begomoviruses on field symptomatic plants. Their genome size is about half that of the helper begomovirus, ranging between 1.3 and 1.4 kb. The helper begomoviruses are usually members of the family Geminiviridae. Okra leaves showing vein thickening were collected from okra plants growing in Jazan, Saudi Arabia. Total DNA was extracted from leaves and used as a template to amplify circular DNA using rolling circle amplification (RCA) technology. Products were digested with PstI to linearize the helper viral genome(s), and associated DNA satellite(s), yielding a 2.8kbp and 1.4kbp fragment, respectively. The linearized fragments were cloned into the pGEM-5Zf (+) vector and subjected to DNA sequencing. The 2.8 kb fragment was identified as Cotton leaf curl Gezira virus genome, at 2780bp, an isolate closely related to strains reported previously from Saudi Arabia. A clone obtained from the 1.4 kb fragments he 1.4kb was blasted to GeneBank database found to be a betasatellite. The genome of betasatellite was 1357-bp in size. It was found to be a recombinant containing one fragment (877-bp) that shared 91% nt identity with Cotton leaf curl Gezira betasatellite [KM279620], and a smaller fragment [133--bp) that shared 86% nt identity with Tomato leaf curl Sudan virus [JX483708]. This satellite is thus a recombinant between a malvaceous-infecting satellite and a solanaceous-infecting begomovirus.

Keywords: begomovirus, betasatellites, cotton leaf curl Gezira virus, okra plants

Procedia PDF Downloads 341
22067 Analysis of Two Phase Hydrodynamics in a Column Flotation by Particle Image Velocimetry

Authors: Balraju Vadlakonda, Narasimha Mangadoddy

Abstract:

The hydrodynamic behavior in a laboratory column flotation was analyzed using particle image velocimetry. For complete characterization of column flotation, it is necessary to determine the flow velocity induced by bubbles in the liquid phase, the bubble velocity and bubble characteristics:diameter,shape and bubble size distribution. An experimental procedure for analyzing simultaneous, phase-separated velocity measurements in two-phase flows was introduced. The non-invasive PIV technique has used to quantify the instantaneous flow field, as well as the time averaged flow patterns in selected planes of the column. Using the novel particle velocimetry (PIV) technique by the combination of fluorescent tracer particles, shadowgraphy and digital phase separation with masking technique measured the bubble velocity as well as the Reynolds stresses in the column. Axial and radial mean velocities as well as fluctuating components were determined for both phases by averaging the sufficient number of double images. Bubble size distribution was cross validated with high speed video camera. Average turbulent kinetic energy of bubble were analyzed. Different air flow rates were considered in the experiments.

Keywords: particle image velocimetry (PIV), bubble velocity, bubble diameter, turbulent kinetic energy

Procedia PDF Downloads 510
22066 Earth Observations and Hydrodynamic Modeling to Monitor and Simulate the Oil Pollution in the Gulf of Suez, Red Sea, Egypt

Authors: Islam Abou El-Magd, Elham Ali, Moahmed Zakzouk, Nesreen Khairy, Naglaa Zanaty

Abstract:

Maine environment and coastal zone are wealthy with natural resources that contribute to the local economy of Egypt. The Gulf of Suez and Red Sea area accommodates diverse human activities that contribute to the local economy, including oil exploration and production, touristic activities, export and import harbors, etc, however, it is always under the threat of pollution due to human interaction and activities. This research aimed at integrating in-situ measurements and remotely sensed data with hydrodynamic model to map and simulate the oil pollution. High-resolution satellite sensors including Sentinel 2 and Plantlab were functioned to trace the oil pollution. Spectral band ratio of band 4 (infrared) over band 3 (red) underpinned the mapping of the point source pollution from the oil industrial estates. This ratio is supporting the absorption windows detected in the hyperspectral profiles. ASD in-situ hyperspectral device was used to measure experimentally the oil pollution in the marine environment. The experiment used to measure water behavior in three cases a) clear water without oil, b) water covered with raw oil, and c) water after a while from throwing the raw oil. The spectral curve is clearly identified absorption windows for oil pollution, particularly at 600-700nm. MIKE 21 model was applied to simulate the dispersion of the oil contamination and create scenarios for crises management. The model requires precise data preparation of the bathymetry, tides, waves, atmospheric parameters, which partially obtained from online modeled data and other from historical in-situ stations. The simulation enabled to project the movement of the oil spill and could create a warning system for mitigation. Details of the research results will be described in the paper.

Keywords: oil pollution, remote sensing, modelling, Red Sea, Egypt

Procedia PDF Downloads 347
22065 A Comparative Study of Medical Image Segmentation Methods for Tumor Detection

Authors: Mayssa Bensalah, Atef Boujelben, Mouna Baklouti, Mohamed Abid

Abstract:

Image segmentation has a fundamental role in analysis and interpretation for many applications. The automated segmentation of organs and tissues throughout the body using computed imaging has been rapidly increasing. Indeed, it represents one of the most important parts of clinical diagnostic tools. In this paper, we discuss a thorough literature review of recent methods of tumour segmentation from medical images which are briefly explained with the recent contribution of various researchers. This study was followed by comparing these methods in order to define new directions to develop and improve the performance of the segmentation of the tumour area from medical images.

Keywords: features extraction, image segmentation, medical images, tumor detection

Procedia PDF Downloads 167
22064 Assessment of Urban Heat Island through Remote Sensing in Nagpur Urban Area Using Landsat 7 ETM+ Satellite Images

Authors: Meenal Surawar, Rajashree Kotharkar

Abstract:

Urban Heat Island (UHI) is found more pronounced as a prominent urban environmental concern in developing cities. To study the UHI effect in the Indian context, the Nagpur urban area has been explored in this paper using Landsat 7 ETM+ satellite images through Remote Sensing and GIS techniques. This paper intends to study the effect of LU/LC pattern on daytime Land Surface Temperature (LST) variation, contributing UHI formation within the Nagpur Urban area. Supervised LU/LC area classification was carried to study urban Change detection using ENVI 5. Change detection has been studied by carrying Normalized Difference Vegetation Index (NDVI) to understand the proportion of vegetative cover with respect to built-up ratio. Detection of spectral radiance from the thermal band of satellite images was processed to calibrate LST. Specific representative areas on the basis of urban built-up and vegetation classification were selected for observation of point LST. The entire Nagpur urban area shows that, as building density increases with decrease in vegetation cover, LST increases, thereby causing the UHI effect. UHI intensity has gradually increased by 0.7°C from 2000 to 2006; however, a drastic increase has been observed with difference of 1.8°C during the period 2006 to 2013. Within the Nagpur urban area, the UHI effect was formed due to increase in building density and decrease in vegetative cover.

Keywords: land use/land cover, land surface temperature, remote sensing, urban heat island

Procedia PDF Downloads 282