Search results for: data integrity challenges
28328 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors
Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin
Abstract:
IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)
Procedia PDF Downloads 13928327 The Reflection of Greek Reality Concerning Taxation from the Perspective of Both Tax Payers and Taxmen
Authors: Evagelia Makri, Maria Tsourela, Dimitris Paschaloudis, Dafni M. Nerantzaki
Abstract:
One of the biggest financial and social problems, which at the same time constitute one of the greater challenges that Greek society faces today, is the illegal avoidance of tax payments. Tax evasion may negate financial data and community budgets, as well as breed financial chaos. This research seeks to reflect Greek reality concerning tax measures. Also, there will be an effort to record the factors surrounding tax evasion. Greek tax system’s data will be rendered in financial terms. Questionnaires will be handed out to tax payers, and interviews will be conducted to taxmen. The quantitative analysis of the questionnaire answers will define the tax payers’ opinion towards the existence of tax evasion. The qualitative analysis of the interviews will reveal the main reason that boosts tax evasion. At the end, there will be some realistic proposals about how to better collect taxes, through the creation of a strong regulatory mechanism.Keywords: tax evasion, tax collection measures, insurance recovery measures, Greek tax system
Procedia PDF Downloads 36328326 Streamlining Cybersecurity Risk Assessment for Industrial Control and Automation Systems: Leveraging the National Institute of Standard and Technology’s Risk Management Framework (RMF) Using Model-Based System Engineering (MBSE)
Authors: Gampel Alexander, Mazzuchi Thomas, Sarkani Shahram
Abstract:
The cybersecurity landscape is constantly evolving, and organizations must adapt to the changing threat environment to protect their assets. The implementation of the NIST Risk Management Framework (RMF) has become critical in ensuring the security and safety of industrial control and automation systems. However, cybersecurity professionals are facing challenges in implementing RMF, leading to systems operating without authorization and being non-compliant with regulations. The current approach to RMF implementation based on business practices is limited and insufficient, leaving organizations vulnerable to cyberattacks resulting in the loss of personal consumer data and critical infrastructure details. To address these challenges, this research proposes a Model-Based Systems Engineering (MBSE) approach to implementing cybersecurity controls and assessing risk through the RMF process. The study emphasizes the need to shift to a modeling approach, which can streamline the RMF process and eliminate bloated structures that make it difficult to receive an Authorization-To-Operate (ATO). The study focuses on the practical application of MBSE in industrial control and automation systems to improve the security and safety of operations. It is concluded that MBSE can be used to solve the implementation challenges of the NIST RMF process and improve the security of industrial control and automation systems. The research suggests that MBSE provides a more effective and efficient method for implementing cybersecurity controls and assessing risk through the RMF process. The future work for this research involves exploring the broader applicability of MBSE in different industries and domains. The study suggests that the MBSE approach can be applied to other domains beyond industrial control and automation systems.Keywords: authorization-to-operate (ATO), industrial control systems (ICS), model-based system’s engineering (MBSE), risk management framework (RMF)
Procedia PDF Downloads 9528325 Cloud Monitoring and Performance Optimization Ensuring High Availability
Authors: Inayat Ur Rehman, Georgia Sakellari
Abstract:
Cloud computing has evolved into a vital technology for businesses, offering scalability, flexibility, and cost-effectiveness. However, maintaining high availability and optimal performance in the cloud is crucial for reliable services. This paper explores the significance of cloud monitoring and performance optimization in sustaining the high availability of cloud-based systems. It discusses diverse monitoring tools, techniques, and best practices for continually assessing the health and performance of cloud resources. The paper also delves into performance optimization strategies, including resource allocation, load balancing, and auto-scaling, to ensure efficient resource utilization and responsiveness. Addressing potential challenges in cloud monitoring and optimization, the paper offers insights into data security and privacy considerations. Through this thorough analysis, the paper aims to underscore the importance of cloud monitoring and performance optimization for ensuring a seamless and highly available cloud computing environment.Keywords: cloud computing, cloud monitoring, performance optimization, high availability, scalability, resource allocation, load balancing, auto-scaling, data security, data privacy
Procedia PDF Downloads 6028324 Migration-Related Challenges during the Covid-19 Pandemic in South Africa. A Case of Alexandra Township
Authors: Edwin Mwasakidzeni Mutyenyoka
Abstract:
Without ignoring migration-related challenges in transit zones and places of origin, this inquiry focuses on arrived international immigrants’ exacerbated vulnerability during crises. The aim is to underline longstanding inequalities and demonstrate that crises merely amplify and exacerbate challenges that low-income migrants already face during ‘non-crises’ periods. Social protection, as an agenda for reducing vulnerability, poverty, and risk for low-income households, with regard to basic consumption and services, has been foregrounded in the post-apartheid development discourse in South Africa. Evidently, however, the state, through the South African Social Security Agency (SASSA), systemically excludes the majority of non-citizens from state-sponsored social assistance programs - often leaving them heavily dependent on sporadic non-state options and erosive coping mechanisms. In this paper, migration itself should not only be understood as a social protection strategy against poverty and risk but also as a source of vulnerability that often requires social protection. For quasi-ethnographic, it use one migrant destination, Alex Park Township, as a “contact zone” and space of negotiation during the pandemic.Keywords: south-south migration, crises, social protection, Covid-19 pandemic
Procedia PDF Downloads 9128323 Detection of Intravenous Infiltration Using Impedance Parameters in Patients in a Long-Term Care Hospital
Authors: Ihn Sook Jeong, Eun Joo Lee, Jae Hyung Kim, Gun Ho Kim, Young Jun Hwang
Abstract:
This study investigated intravenous (IV) infiltration using bioelectrical impedance for 27 hospitalized patients in a long-term care hospital. Impedance parameters showed significant differences before and after infiltration as follows. First, the resistance (R) after infiltration significantly decreased compared to the initial resistance. This indicates that the IV solution flowing from the vein due to infiltration accumulates in the extracellular fluid (ECF). Second, the relative resistance at 50 kHz was 0.94 ± 0.07 in 9 subjects without infiltration and was 0.75 ± 0.12 in 18 subjects with infiltration. Third, the magnitude of the reactance (Xc) decreased after infiltration. This is because IV solution and blood components released from the vein tend to aggregate in the cell membrane (and acts analogously to the linear/parallel circuit), thereby increasing the capacitance (Cm) of the cell membrane and reducing the magnitude of reactance. Finally, the data points plotted in the R-Xc graph were distributed on the upper right before infiltration but on the lower left after infiltration. This indicates that the infiltration caused accumulation of fluid or blood components in the epidermal and subcutaneous tissues, resulting in reduced resistance and reactance, thereby lowering integrity of the cell membrane. Our findings suggest that bioelectrical impedance is an effective method for detection of infiltration in a noninvasive and quantitative manner.Keywords: intravenous infiltration, impedance, parameters, resistance, reactance
Procedia PDF Downloads 18228322 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series
Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold
Abstract:
To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network
Procedia PDF Downloads 13928321 Interdisciplinary Collaborative Innovation Mechanism for Sustainability Challenges
Authors: C. Park, H. Lee, Y-J. Lee
Abstract:
Aim: This study presents Interdisciplinary Collaborative Innovation Mechanism as a medium to enable the effective generation of innovations for sustainability challenges facing humanities. Background: Interdisciplinary approach of fusing disparate knowledge and perspectives from diverse expertise and subject areas is one of the key requirements to address the intricate nature of sustainability issues. There is a lack of rigorous empirical study of the systematic structure of interdisciplinary collaborative innovation for sustainability to date. Method: To address this research gap, the action research approach is adopted to develop the Interdisciplinary Collaborative Innovation Mechanism (ICIM) framework based on an empirical study of a total of 28 open innovation competitions in the format of MAKEathons between 2016 to 2023. First, the conceptual framework was formulated based on the literature findings, and the framework was subsequently tested and iterated. Outcomes: The findings provide the ICIM framework composed of five elements: Discipline Diversity Quadruple; Systematic Structure; Inspirational Stimuli; Supportive Collaboration Environment; and Hardware and Intellectual Support. The framework offers a discussion of the key elements when attempting to facilitate interdisciplinary collaboration for sustainability innovation. Contributions: This study contributes to two burgeoning areas of sustainable development and open innovation studies by articulating the concrete structure to bridge the gap. In practice, the framework helps facilitate effective innovation processes and positive social and environmental impact created for real-world sustainability challenges.Keywords: action research, interdisciplinary collaboration, open innovation, problem-solving, sustainable development, sustainability challenges
Procedia PDF Downloads 24728320 Unlocking Health Insights: Studying Data for Better Care
Authors: Valentina Marutyan
Abstract:
Healthcare data mining is a rapidly developing field at the intersection of technology and medicine that has the potential to change our understanding and approach to providing healthcare. Healthcare and data mining is the process of examining huge amounts of data to extract useful information that can be applied in order to improve patient care, treatment effectiveness, and overall healthcare delivery. This field looks for patterns, trends, and correlations in a variety of healthcare datasets, such as electronic health records (EHRs), medical imaging, patient demographics, and treatment histories. To accomplish this, it uses advanced analytical approaches. Predictive analysis using historical patient data is a major area of interest in healthcare data mining. This enables doctors to get involved early to prevent problems or improve results for patients. It also assists in early disease detection and customized treatment planning for every person. Doctors can customize a patient's care by looking at their medical history, genetic profile, current and previous therapies. In this way, treatments can be more effective and have fewer negative consequences. Moreover, helping patients, it improves the efficiency of hospitals. It helps them determine the number of beds or doctors they require in regard to the number of patients they expect. In this project are used models like logistic regression, random forests, and neural networks for predicting diseases and analyzing medical images. Patients were helped by algorithms such as k-means, and connections between treatments and patient responses were identified by association rule mining. Time series techniques helped in resource management by predicting patient admissions. These methods improved healthcare decision-making and personalized treatment. Also, healthcare data mining must deal with difficulties such as bad data quality, privacy challenges, managing large and complicated datasets, ensuring the reliability of models, managing biases, limited data sharing, and regulatory compliance. Finally, secret code of data mining in healthcare helps medical professionals and hospitals make better decisions, treat patients more efficiently, and work more efficiently. It ultimately comes down to using data to improve treatment, make better choices, and simplify hospital operations for all patients.Keywords: data mining, healthcare, big data, large amounts of data
Procedia PDF Downloads 7628319 An Analysis on Clustering Based Gene Selection and Classification for Gene Expression Data
Authors: K. Sathishkumar, V. Thiagarasu
Abstract:
Due to recent advances in DNA microarray technology, it is now feasible to obtain gene expression profiles of tissue samples at relatively low costs. Many scientists around the world use the advantage of this gene profiling to characterize complex biological circumstances and diseases. Microarray techniques that are used in genome-wide gene expression and genome mutation analysis help scientists and physicians in understanding of the pathophysiological mechanisms, in diagnoses and prognoses, and choosing treatment plans. DNA microarray technology has now made it possible to simultaneously monitor the expression levels of thousands of genes during important biological processes and across collections of related samples. Elucidating the patterns hidden in gene expression data offers a tremendous opportunity for an enhanced understanding of functional genomics. However, the large number of genes and the complexity of biological networks greatly increase the challenges of comprehending and interpreting the resulting mass of data, which often consists of millions of measurements. A first step toward addressing this challenge is the use of clustering techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. This work presents an analysis of several clustering algorithms proposed to deals with the gene expression data effectively. The existing clustering algorithms like Support Vector Machine (SVM), K-means algorithm and evolutionary algorithm etc. are analyzed thoroughly to identify the advantages and limitations. The performance evaluation of the existing algorithms is carried out to determine the best approach. In order to improve the classification performance of the best approach in terms of Accuracy, Convergence Behavior and processing time, a hybrid clustering based optimization approach has been proposed.Keywords: microarray technology, gene expression data, clustering, gene Selection
Procedia PDF Downloads 32328318 Jungle Justice on Emotional Health Challenges among Lagosians
Authors: Aaron Akinloye
Abstract:
This research examined the influence of jungle justice as it affects the emotional health challenges among residents in Lagos metropolitan city. Descriptive survey research design was used along with the questionnaire as research instrument. Population for the study comprised residents in Yaba and Shomolu Communities of Lagos State, Nigeria. Accidental sampling technique was used to sample 300 Residents. Self-developed questionnaire was used to obtain data on the variables under investigation. Research instrument was validated following the face, content, and construct validation of the instrument. Thereafter, the reliability coefficient yielded 0.84. It is therefore concluded and recommended that; there is a significant influence of jungle justice on trauma among residents- df (298) t= 2.33, p< 0.05; there is a significant influence of jungle justice on pressure among residents- df (298) t= 2.16, p< 0.05: there is a significant influence of jungle justice on fear among residents- df (298) t= 2.20, p< 0.05; there is a significant influence of jungle justice on depression among residents- df (298) t= 2.14, p< 0.05. Recommendations were made that; there should be deliberate effort to implement comprehensive awareness campaigns to educate the residents on the detrimental effects of jungle justice on individuals and the community members as a whole; there should be an improvement in the effectiveness and efficiency of the existing law enforcement agencies in Lagos metropolitan city; development and implementation of support systems for victims of jungle justice, which include trauma, counselling, mental health services, and rehabilitation programmes; there should be proper review and revision of the legal framework to address the issue of jungle justice effectively.Keywords: jungle justice, emotional health, depression, fear
Procedia PDF Downloads 9828317 Social Technology and Youth Justice: An Exploration of Ethical and Practical Challenges
Authors: Ravinder Barn, Balbir Barn
Abstract:
This paper outlines ethical and practical challenges in the building of social technology for use with socially excluded and marginalised groups. The primary aim of this study was to design, deploy and evaluate social technology that may help to promote better engagement between case workers and young people to help prevent recidivism, and support young people’s transition towards social inclusion in society. A total of 107 practitioners/managers (n=64), and young people (n=43) contributed to the data collection via surveys, focus groups and 1-1 interviews. Through a process of co-design where end-users are involved as key contributors to social technological design, this paper seeks to make an important contribution to the area of participatory methodologies by arguing that whilst giving ‘voice’ to key stakeholders in the research process is crucial, there is a risk that competing voices may lead to tensions and unintended outcomes. The paper is contextualized within a Foucauldian perspective to examine significant concepts including power, authority and surveillance. Implications for youth justice policy and practice are considered. The authors conclude that marginalized youth and over-stretched practitioners are better served when such social technology is perceived and adopted as a tool of empowerment within a framework of child welfare and child rights.Keywords: youth justice, social technology, marginalization, participatory research, power
Procedia PDF Downloads 44828316 Strategies to Improve Coastal and Marine Tourism Sustainability in Gqeberha, South Africa
Authors: Mihlali Mbangeni, Lynn C. Jonas, Rosemary Matikiti-Manyevere
Abstract:
Coastal and marine tourism is considered among the most rapidly developing subsectors of tourism. That has enabled coastal and marine environments to gain popularity and economically contribute to coastal regions globally. However, in coastal regions of developing cities such as Gqeberha, South Africa, pollution, specifically plastics and waste from ships, are among the prominent challenges in these areas. Thus, there is a need for the management and planning of sustainability in coastal and marine tourism. As a result, the study evaluates the effectiveness of the current sustainability strategies and highlights the barriers and challenges faced by the coastal region. This study made use of the interpretivist paradigm following a qualitative research approach when collecting data. This was done by conducting semi-structured interviews with local government officials, coastal and marine tourism business top managers, as well as ocean economy-related non-profit organization operators through a purposive sampling method. The study employed content analysis to analyse the interview transcripts using a computer-aided qualitative data analysis software that is Atlas.ti. The research findings present current coastal and marine tourism strategies used, such as local government having quarterly meetings with the private sector promoting collaboration between the two entities. A further measure discovered was non-profit organisations conducting educational talks, workshops, and visiting schools to educate pupils within the coastal region about pollution and sustainability. Current challenges experienced in the implementation of sustainability practices include a lack of awareness, low visibility of the local government in promoting sustainability within the regions, and poor participation of the local community in activities such as beach clean-ups. Recommendations for strategies are to equip decision-makers with knowledge and skills to make informed decisions that are inclusive. Furthermore, local community participation should be encouraged through providing incentives. Local government may also be encouraged to allocate adequate resources to assist non-profit organisations’ efforts towards sustainability. A further recommendation would be for coastal and marine tourism businesses to encourage them to create partnerships as well as collaborate with each other instead of competing in their sustainability efforts. The sharing of information about the sustainability of coastal and marine tourism between non-profit organisations, coastal and marine tourism businesses, local government as well as academia through research publications and ensured implementation, as well as evaluation, can contribute towards the sustainability of Gqeberha’s coastal and marine tourism products.Keywords: coastal and marine tourism threats, coastal and marine tourism trends, strategies for coastal and marine tourism sustainability, sustainability
Procedia PDF Downloads 2328315 Exploring Problem-Based Learning and University-Industry Collaborations for Fostering Students’ Entrepreneurial Skills: A Qualitative Study in a German Urban Setting
Authors: Eylem Tas
Abstract:
This empirical study aims to explore the development of students' entrepreneurial skills through problem-based learning within the context of university-industry collaborations (UICs) in curriculum co-design and co-delivery (CDD). The research question guiding this study is: "How do problem-based learning and university-industry collaborations influence the development of students' entrepreneurial skills in the context of curriculum co-design and co-delivery?” To address this question, the study was conducted in a big city in Germany and involved interviews with stakeholders from various industries, including the private sector, government agencies (govt), and non-governmental organizations (NGOs). These stakeholders had established collaborative partnerships with the targeted university for projects encompassing entrepreneurial development aspects in CDD. The study sought to gain insights into the intricacies and subtleties of UIC dynamics and their impact on fostering entrepreneurial skills. Qualitative content analysis, based on Mayring's guidelines, was employed to analyze the interview transcriptions. Through an iterative process of manual coding, 442 codes were generated, resulting in two main sections: "the role of problem-based learning and UIC in fostering entrepreneurship" and "challenges and requirements of problem-based learning within UIC for systematical entrepreneurship development.” The chosen experimental approach of semi-structured interviews was justified by its capacity to provide in-depth perspectives and rich data from stakeholders with firsthand experience in UICs in CDD. By enlisting participants with diverse backgrounds, industries, and company sizes, the study ensured a comprehensive and heterogeneous sample, enhancing the credibility of the findings. The first section of the analysis delved into problem-based learning and entrepreneurial self-confidence to gain a deeper understanding of UIC dynamics from an industry standpoint. It explored factors influencing problem-based learning, alignment of students' learning styles and preferences with the experiential learning approach, specific activities and strategies, and the role of mentorship from industry professionals in fostering entrepreneurial self-confidence. The second section focused on various interactions within UICs, including communication, knowledge exchange, and collaboration. It identified key elements, patterns, and dynamics of interaction, highlighting challenges and limitations. Additionally, the section emphasized success stories and notable outcomes related to UICs' positive impact on students' entrepreneurial journeys. Overall, this research contributes valuable insights into the dynamics of UICs and their role in fostering students' entrepreneurial skills. UICs face challenges in communication and establishing a common language. Transparency, adaptability, and regular communication are vital for successful collaboration. Realistic expectation management and clearly defined frameworks are crucial. Responsible data handling requires data assurance and confidentiality agreements, emphasizing the importance of trust-based relationships when dealing with data sharing and handling issues. The identified key factors and challenges provide a foundation for universities and industrial partners to develop more effective UIC strategies for enhancing students' entrepreneurial capabilities and preparing them for success in today's digital age labor market. The study underscores the significance of collaborative learning and transparent communication in UICs for entrepreneurial development in CDD.Keywords: collaborative learning, curriculum co-design and co-delivery, entrepreneurial skills, problem-based learning, university-industry collaborations
Procedia PDF Downloads 6028314 Digital Structural Monitoring Tools @ADaPT for Cracks Initiation and Growth due to Mechanical Damage Mechanism
Authors: Faizul Azly Abd Dzubir, Muhammad F. Othman
Abstract:
Conventional structural health monitoring approach for mechanical equipment uses inspection data from Non-Destructive Testing (NDT) during plant shut down window and fitness for service evaluation to estimate the integrity of the equipment that is prone to crack damage. Yet, this forecast is fraught with uncertainty because it is often based on assumptions of future operational parameters, and the prediction is not continuous or online. Advanced Diagnostic and Prognostic Technology (ADaPT) uses Acoustic Emission (AE) technology and a stochastic prognostic model to provide real-time monitoring and prediction of mechanical defects or cracks. The forecast can help the plant authority handle their cracked equipment before it ruptures, causing an unscheduled shutdown of the facility. The ADaPT employs process historical data trending, finite element analysis, fitness for service, and probabilistic statistical analysis to develop a prediction model for crack initiation and growth due to mechanical damage. The prediction model is combined with live equipment operating data for real-time prediction of the remaining life span owing to fracture. ADaPT was devised at a hot combined feed exchanger (HCFE) that had suffered creep crack damage. The ADaPT tool predicts the initiation of a crack at the top weldment area by April 2019. During the shutdown window in April 2019, a crack was discovered and repaired. Furthermore, ADaPT successfully advised the plant owner to run at full capacity and improve output by up to 7% by April 2019. ADaPT was also used on a coke drum that had extensive fatigue cracking. The initial cracks are declared safe with ADaPT, with remaining crack lifetimes extended another five (5) months, just in time for another planned facility downtime to execute repair. The prediction model, when combined with plant information data, allows plant operators to continuously monitor crack propagation caused by mechanical damage for improved maintenance planning and to avoid costly shutdowns to repair immediately.Keywords: mechanical damage, cracks, continuous monitoring tool, remaining life, acoustic emission, prognostic model
Procedia PDF Downloads 7628313 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs
Authors: Agastya Pratap Singh
Abstract:
This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications
Procedia PDF Downloads 2528312 Challenges in Curriculum Development in Eastern European Countries: A Case Study of Georgia and Ukraine
Authors: Revaz Tabatadze
Abstract:
This research aims to describe and analyze the intricacies of curriculum development within the broader context of general education reforms undertaken in Eastern European Countries. Importantly, this study is the first of its kind, examining Georgian and Ukrainian National Curriculum documents locally and internationally. The significance of this research lies in its potential to guide the Ministry of Education and Science of the mentioned countries in revising existing curriculum documents to address contemporary challenges in general education. The findings will not only benefit post-Soviet countries but also offer insights for nations facing curriculum development and effectiveness issues. By examining the peculiarities of curriculum development amid globalization, this research aims to contribute to overcoming educational challenges at both local and international levels. This study defines key concepts related to curriculum, distinguishing between intended, implemented, and attained curricula. It also explores the historical context of curriculum development in Georgia and Ukraine from 1991 to 2021, highlighting changes in teacher standards and teacher certification examinations. The literature review section emphasizes the importance of curriculum development as a complex and evolving process, especially in the context of globalization. It underscores the need for a curriculum that fosters critical thinking, problem-solving, and collaboration skills in students. In summary, this research offers a comprehensive examination of curriculum development in Georgia and Ukraine, shedding light on the challenges and opportunities in the age of globalization, with potential implications for educational systems worldwide.Keywords: curriculum development, general education reforms, eastern European countries, globalization in education
Procedia PDF Downloads 6428311 Women Entrepreneurs in Haryana, India: Issues and Challenges
Authors: Neerja Ahlawat
Abstract:
In Indian society, women have always been an active part of the production process. Be it agriculture, dairy, or other home-based industries, Indian women have been competent and enterprising engaged in multiple economic activities. In recent times, women across the country have started establishing business enterprise and managing and working very hard. Despite their skills and capabilities, however, women are faced with varied problems and challenges. Women entrepreneurs in Haryana face a double challenge – a gender bias against women denies them the education and the opportunities available to their male counterparts and the lack of such learning and skills development inhibits any entrepreneurial ambitions. In many parts of the state, women venturing out of the household domain face much opposition and criticism. The present paper highlights the various problems and challenges faced by the women entrepreneurs while running the enterprises in the present competitive world in Haryana. An attempt has been made to investigate women entrepreneurs about the specific issues such as working capital, distribution channel, sales promotion, electricity, human resources and competition with other industries. The present empirical study was carried out in Rohtak city of Haryana using Interview schedule and Case study method. The study revealed the nature of problems women entrepreneurs face while dealing with issues of labour, market, and bureaucracy. The study categorically pointed out the difficulties women are confronted with while keeping a balance between domestic responsibilities and workplace challenges. The study concluded that women entrepreneurs are redefining their identities and priorities in the male dominant society.Keywords: entrepreneur, gender bias, capital, human resource
Procedia PDF Downloads 18728310 Nurse-Identified Barriers and Facilitators to Delivering End-of-Life Care in a Cardiac Intensive Care Unit: A Qualitative Study
Authors: Elena Ivany, Leanne Aitken
Abstract:
Little is known about the delivery of end-of-life care in cardiac intensive care unit (CICU) settings. The aims of this study were to highlight the nurse-identified barriers and facilitators to delivering end-of-life care in the CICU, and to identify whether any of the barriers and/or facilitators are specific to the CICU setting. This was an exploratory qualitative study utilizing semi-structured individual interviews as the data collection method and inductive thematic analysis to structure the data. Six CICU nurses took part in the study. Five key themes were identified, each theme including both barriers and facilitators. The five key themes are as follows: patient-centered care, emotional challenges, reaching concordance, nursing contribution and the surgical intensive care unit.Keywords: end-of-life, cardiovascular disease, cardiac surgery, critical care
Procedia PDF Downloads 26528309 Imputation Technique for Feature Selection in Microarray Data Set
Authors: Younies Saeed Hassan Mahmoud, Mai Mabrouk, Elsayed Sallam
Abstract:
Analysing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.Keywords: DNA microarray, feature selection, missing data, bioinformatics
Procedia PDF Downloads 57428308 PDDA: Priority-Based, Dynamic Data Aggregation Approach for Sensor-Based Big Data Framework
Authors: Lutful Karim, Mohammed S. Al-kahtani
Abstract:
Sensors are being used in various applications such as agriculture, health monitoring, air and water pollution monitoring, traffic monitoring and control and hence, play the vital role in the growth of big data. However, sensors collect redundant data. Thus, aggregating and filtering sensors data are significantly important to design an efficient big data framework. Current researches do not focus on aggregating and filtering data at multiple layers of sensor-based big data framework. Thus, this paper introduces (i) three layers data aggregation and framework for big data and (ii) a priority-based, dynamic data aggregation scheme (PDDA) for the lowest layer at sensors. Simulation results show that the PDDA outperforms existing tree and cluster-based data aggregation scheme in terms of overall network energy consumptions and end-to-end data transmission delay.Keywords: big data, clustering, tree topology, data aggregation, sensor networks
Procedia PDF Downloads 34628307 Ngala Kadidjiny: An Elder Approved Commitment to Involving Aboriginal Community throughout Research on Homelessness
Authors: Jackie Oakley, Alice V. Brown
Abstract:
Those experiencing homelessness are regularly excluded from the development of policies and services that impact their lives. This is particularly true for Aboriginal and Torres Strait Islander people experiencing homelessness in Australia, who tend to have differing needs, cultural obligations, and views of what equates to a ‘home’ and ‘homelessness’ than non-Aboriginal Australians. Aboriginal people are the traditional owners of Australia yet have had to survive within colonial housing customs, housing and homelessness policies, and markets that often conflict with their culture. Recognising this, in 2022, we commenced community-led research into the needs of Aboriginal people experiencing homelessness in Perth. Historically, research has often been done on Aboriginal people rather than with them. As such, a Participatory Action Research methodology was chosen, which recognises that those being researched are the experts of their circumstances rather than the research team, and facilitates their driving of the research, its questions, and how their community can directly benefit. A Community Ownership Group (COG) was formed to guide this process and negotiate the best ways that the Aboriginal community can be fairly and adequately involved. The COG approved a process developed by an Aboriginal Elder called Ngala Kadidjiny (Knowledge Vault), which outlines who and when various groups should be consulted throughout the research to ensure adequate involvement of the Aboriginal community at all stages. The process includes many markers of research integrity, including ensuring a Community Ownership Group is formed with diversity and recruiting its members through votes taking place within Elders groups across the metropolitan area. The process also demands that the community have the chance to review research findings before any findings are published. Additionally, the process asks that draft reports and findings are delivered to the broader community and Community Ownership Groups before being finalised, published, and shared officially with stakeholders and the government. This paper details how Ngala Kadidjiny’s process impacted the research, how it was explained and agreed upon by the Aboriginal community, the benefits and challenges of such a process, and its implications for other community-led research for and with Aboriginal people experiencing homelessness.Keywords: Aboriginal and Torres Strait Islander peoples, Aboriginal elders, homelessness, community-led research, community consultation
Procedia PDF Downloads 9028306 Macroeconomic Implications of Artificial Intelligence on Unemployment in Europe
Authors: Ahmad Haidar
Abstract:
Modern economic systems are characterized by growing complexity, and addressing their challenges requires innovative approaches. This study examines the implications of artificial intelligence (AI) on unemployment in Europe from a macroeconomic perspective, employing data modeling techniques to understand the relationship between AI integration and labor market dynamics. To understand the AI-unemployment nexus comprehensively, this research considers factors such as sector-specific AI adoption, skill requirements, workforce demographics, and geographical disparities. The study utilizes a panel data model, incorporating data from European countries over the last two decades, to explore the potential short-term and long-term effects of AI implementation on unemployment rates. In addition to investigating the direct impact of AI on unemployment, the study also delves into the potential indirect effects and spillover consequences. It considers how AI-driven productivity improvements and cost reductions might influence economic growth and, in turn, labor market outcomes. Furthermore, it assesses the potential for AI-induced changes in industrial structures to affect job displacement and creation. The research also highlights the importance of policy responses in mitigating potential negative consequences of AI adoption on unemployment. It emphasizes the need for targeted interventions such as skill development programs, labor market regulations, and social safety nets to enable a smooth transition for workers affected by AI-related job displacement. Additionally, the study explores the potential role of AI in informing and transforming policy-making to ensure more effective and agile responses to labor market challenges. In conclusion, this study provides a comprehensive analysis of the macroeconomic implications of AI on unemployment in Europe, highlighting the importance of understanding the nuanced relationships between AI adoption, economic growth, and labor market outcomes. By shedding light on these relationships, the study contributes valuable insights for policymakers, educators, and researchers, enabling them to make informed decisions in navigating the complex landscape of AI-driven economic transformation.Keywords: artificial intelligence, unemployment, macroeconomic analysis, european labor market
Procedia PDF Downloads 7728305 Inclusive Education in Nigeria Prospects and Challenges
Authors: Laraba Bala Mohammed
Abstract:
Education is a very vital tool in enhancement of the general development of individuals in the society who would participate effectively in national development processes, including people with special need, educating children with special needs is one of the greatest challenges of this millennium, this is because professionals in the field of special education are operating in an exciting and rapidly changing phenomenon. Inclusive education in Nigeria is not a new development in the teaching and learning process, but the most important aspect is the utilization and effective integration of people with special needs in the society. This paper focuses on the need of parents, government, professionals in the field of special education and stakeholders to work together for the full implementation of inclusive education in Nigeria.Keywords: inclusive education, national policy, education, special needs
Procedia PDF Downloads 50728304 Green Building Practices: Harmonizing Non-Governmental Organizations Roles and Energy Efficiency
Authors: Abimbola A. Adebayo, Kikelomo I. Adebayo
Abstract:
Green buildings provide serious challenges for governments all over the world with regard to achieving energy efficiency in buildings. Energy efficient buildings are needed to keep up with minimal impacts on the environment throughout their cycle and to enhance sustainable development. The lack of awareness and benefits of energy efficient buildings have given rise to NGO’s playing important role in filling data gaps, publicizing information, and undertaking awareness raising and policy engagement activities. However, these roles are countered by concerns about subsidies for evaluations, incentives to facilitate data-sharing, and incentives to finance independent research. On the basis of literature review on experiences with NGO’s involvement in energy efficient buildings, this article identifies governance strategies that stimulate the harmonization of NGO’s roles in green buildings with the objective to increase energy efficiency in buildings.Keywords: energy efficiency, green buildings, NGOs, sustainable development
Procedia PDF Downloads 23928303 Enhanced Analysis of Spatial Morphological Cognitive Traits in Lidukou Village through the Application of Space Syntax
Authors: Man Guo
Abstract:
This paper delves into the intricate interplay between spatial morphology and spatial cognition in Lidukou Village, utilizing a combined approach of spatial syntax and field data. Through a comparative analysis of the gathered data, it emerges that the spatial integration level of Lidukou Village exhibits a direct positive correlation with the spatial cognitive preferences of its inhabitants. Specifically, the areas within the village that exhibit a higher degree of spatial cognition are predominantly distributed along the axis primarily defined by Shuxiang Road. However, the accessibility to historical relics remains limited, lacking a coherent systemic relationship. To address the morphological challenges faced by Lidukou Village, this study proposes optimization strategies that encompass diverse perspectives, including the refinement of spatial mechanisms and the shaping of strategic spatial nodes.Keywords: traditional villages, spatial syntax, spatial integration degree, morphological problem
Procedia PDF Downloads 4328302 Semi-Supervised Learning Using Pseudo F Measure
Authors: Mahesh Balan U, Rohith Srinivaas Mohanakrishnan, Venkat Subramanian
Abstract:
Positive and unlabeled learning (PU) has gained more attention in both academic and industry research literature recently because of its relevance to existing business problems today. Yet, there still seems to be some existing challenges in terms of validating the performance of PU learning, as the actual truth of unlabeled data points is still unknown in contrast to a binary classification where we know the truth. In this study, we propose a novel PU learning technique based on the Pseudo-F measure, where we address this research gap. In this approach, we train the PU model to discriminate the probability distribution of the positive and unlabeled in the validation and spy data. The predicted probabilities of the PU model have a two-fold validation – (a) the predicted probabilities of reliable positives and predicted positives should be from the same distribution; (b) the predicted probabilities of predicted positives and predicted unlabeled should be from a different distribution. We experimented with this approach on a credit marketing case study in one of the world’s biggest fintech platforms and found evidence for benchmarking performance and backtested using historical data. This study contributes to the existing literature on semi-supervised learning.Keywords: PU learning, semi-supervised learning, pseudo f measure, classification
Procedia PDF Downloads 23528301 Exploring How Online Applications Help Students to Learn Music Virtually: A Study in an Australian Music Academy
Authors: Ali Shah
Abstract:
This paper outlines the case study experience of using a variety of online strategies in an Australian music academy context during covid times. The study aimed at exploring how online applications help students to learn music, specifically playing musical instruments, composing songs, and performing virtually. To explore this, music teachers’ perceptions and experiences regarding online learning, the teaching strategies they implemented, and the challenges they faced were examined. For the purpose of this study, a qualitative research structure was adopted through the use of three data collection tools. These methods included pre- and post-research individual interviews of teachers and students, analysis of their lesson plans, virtual classroom observations of the teachers followed by the researcher’sown reflections, post-observation discussions, and teachers’ reflective journals. The findings revealed that teachers had a theoretical understanding of virtual learning and recent musical application such as Flowkey, Skoove, and Piano marvel, which are benefits of e-learning. While teachers faced challenges in implementing strategies to teach keyboard/piano online, overall, both students and teachers felt the positive impact of online applications and strategies on their learning and felt that modern technology made it possible for anyone to take music lessons at home.Keywords: music, keyboard, piano, online learning, virtual learning
Procedia PDF Downloads 7528300 Issues and Challenges for Plantation Agriculture in Cameron Highlands: Interpretations from Socio-Anthropological Viewpoints
Authors: A. H. M. Zehadul Karim
Abstract:
Cameron Highlands (4°28’N, 101°23’E) is an attractive mountainous region with steep slopes located in the state of Pahang, Malaysia stretching between 1070 and 1830m above sea level with a total land area of 71,218ha. It is one of the few places in Malaysia that has a tropical highland climate as the mean annual temperature of it is 18 °C (64 °F) thus making the atmosphere perfect for specialized agriculture. Being ecologically suitable, Cameron Highlands has recently been identified as a very strategic farming area, producing multifarious vegetables, flowers and tea with a commercial motive of marketing them to Singapore and all over the urban areas of Malaysia to meet the domestic and international demands. The main intricacies of this plantation agriculture are fully dependent on the policies formulated by a group of emerging entrepreneurs who employ foreign labourers to make these agricultural activities a success in the agrarian sector in Malaysia. Based on the socio-anthropological perspective, the paper entirely relies on empirical field data generated by interviewing 10 farm owners and 200 foreign workers to find out the intricacies of this plantation agriculture which makes the research innovative and pragmatically significant. The paper deals with important issues relating to this productive plantation agriculture of Cameron Highlands and as such, narrates the various exceptional and holistic skills adopted for this type of farming.Keywords: Cameron Highlands Malaysia, plantation agriculture, issues and challenges, mechanisms
Procedia PDF Downloads 20528299 Friend or Foe: Decoding the Legal Challenges Posed by Artificial Intellegence in the Era of Intellectual Property
Authors: Latika Choudhary
Abstract:
“The potential benefits of Artificial Intelligence are huge, So are the dangers.” - Dave Water. Artificial intelligence is one of the facet of Information technology domain which despite several attempts does not have a clear definition or ambit. However it can be understood as technology to solve problems via automated decisions and predictions. Artificial intelligence is essentially an algorithm based technology which analyses the large amounts of data and then solves problems by detecting useful patterns. Owing to its automated feature it will not be wrong to say that humans & AI have more utility than humans alone or computers alone.1 For many decades AI experienced enthusiasm as well as setbacks, yet it has today become part and parcel of our everyday life, making it convenient or at times problematic. AI and related technology encompass Intellectual Property in multiple ways, the most important being AI technology for management of Intellectual Property, IP for protecting AI and IP as a hindrance to the transparency of AI systems. Thus the relationship between the two is of reciprocity as IP influences AI and vice versa. While AI is a recent concept, the IP laws for protection or even dealing with its challenges are relatively older, raising the need for revision to keep up with the pace of technological advancements. This paper will analyze the relationship between AI and IP to determine how beneficial or conflictual the same is, address how the old concepts of IP are being stretched to its maximum limits so as to accommodate the unwanted consequences of the Artificial Intelligence and propose ways to mitigate the situation so that AI becomes the friend it is and not turn into a potential foe it appears to be.Keywords: intellectual property rights, information technology, algorithm, artificial intelligence
Procedia PDF Downloads 87