Search results for: chemical and mineral composition and amorphousness
6007 Characterization of High Carbon Ash from Pulp and Paper mill for Potential Utilization
Authors: Ruma Rano, Firoza Sultana, Bishal Bhuyan, Nurul Alam Mazumder
Abstract:
Fly ash collected from Cachar Paper Mill, Assam, India has been thoroughly characterized in respect of its physico-chemical, morphological and mineralogical features were concerned by using density, LOI, FTIR, XRD, SEM-EDS etc. The results reveal that there is a striking difference in the features and properties of the coarser and finer fractions .The high carbon ash consists of large unburnt carbon (chars), irregular carbonaceous particles in the coarser fraction, which appear to be porous and may be used as domestic fuel. The percentage of char albeit the carbon content decreases with decrease in size of particles. The various fractions essentially contain quartz and mullite as the main mineral phases. For suggesting the potential utilization channels, number of experiments were performed correlating the total characteristic features. Water holding capacities of different size classified fractions were determined, the coarser fractions have unexpectedly higher water holding capacities than the finer ones. An attempt has been made to correlate the results obtained with potential use in agriculture. Another potential application of coarser particles is used as adsorbent for effluents containing waste organic materials. Thus thorough characterization leads to not only a definite direction about the uses of the value added components but also gives useful information regarding the prevailing combustion process.Keywords: chars, porous, water holding capacity, combustion process
Procedia PDF Downloads 3636006 Adapting the Chemical Reaction Optimization Algorithm to the Printed Circuit Board Drilling Problem
Authors: Taisir Eldos, Aws Kanan, Waleed Nazih, Ahmad Khatatbih
Abstract:
Chemical Reaction Optimization (CRO) is an optimization metaheuristic inspired by the nature of chemical reactions as a natural process of transforming the substances from unstable to stable states. Starting with some unstable molecules with excessive energy, a sequence of interactions takes the set to a state of minimum energy. Researchers reported successful application of the algorithm in solving some engineering problems, like the quadratic assignment problem, with superior performance when compared with other optimization algorithms. We adapted this optimization algorithm to the Printed Circuit Board Drilling Problem (PCBDP) towards reducing the drilling time and hence improving the PCB manufacturing throughput. Although the PCBDP can be viewed as instance of the popular Traveling Salesman Problem (TSP), it has some characteristics that would require special attention to the transactions that explore the solution landscape. Experimental test results using the standard CROToolBox are not promising for practically sized problems, while it could find optimal solutions for artificial problems and small benchmarks as a proof of concept.Keywords: evolutionary algorithms, chemical reaction optimization, traveling salesman, board drilling
Procedia PDF Downloads 5196005 Effect of Preparation Temperature on Producing Graphene Oxide by Chemical Oxidation Approach
Authors: Rashad Al-Gaashani, Muataz A. Atieh
Abstract:
In this study, the effect of preparation temperature, namely room temperature (RT), 40, 60, and 85°C, on producing of high-quality graphene oxide (GO) has been investigated. GO samples have been prepared by chemical oxidation of graphite via a safe improved chemical technique using a blend of two deferent acids: sulphuric acid (H₂SO₄) and phosphoric acid (H₃PO₄) with volume ratio 4:1, respectively. potassium permanganate (KMnO₄) and hydrogen peroxide (H₂O₂) were applied as oxidizing agents. In this work, sodium nitrate (NaNO₃) was excluded, so the emission of hazardous explosive gases such as NO₂ and N₂O₂ was shunned. Ice and oil baths were used to carefully control the temperature. Several characterization instruments including X-Ray diffraction, transmission electron microscopy, scanning electron microscopy, electron dispersive spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV-vis spectroscopy were used to study and compare the synthesized samples. The results indicated that GO can be prepared at RT with graphite oxide, and the purity of GO increased with rising of the solvent temperature. Optical properties of GO samples were studied using UV-vis absorption spectra.Keywords: chemical method, graphite, graphene oxide, optical properties
Procedia PDF Downloads 1636004 Organic Matter Removal in Urban and Agroindustry Wastewater by Chemical Precipitation Process
Authors: Karina Santos Silvério, Fátima Carvalho, Maria Adelaide Almeida
Abstract:
The impacts caused by anthropogenic actions on the water environment have been one of the main challenges of modern society. Population growth, added to water scarcity and climate change, points to a need to increase the resilience of production systems to increase efficiency regarding the management of wastewater generated in the different processes. Based on this context, the study developed under the NETA project (New Strategies in Wastewater Treatment) aimed to evaluate the efficiency of the Chemical Precipitation Process (CPP), using the hydrated lime (Ca(OH )₂) as a reagent in wastewater from the agroindustry sector, namely swine wastewater, slaughterhouse and urban wastewater, in order to make the productive means 100% circular, causing a direct positive impact on the environment. The purpose of CPP is to innovate in the field of effluent treatment technologies, as it allows rapid application and is economically profitable. In summary, the study was divided into four main stages: 1) Application of the reagent in a single step, raising the pH to 12.5 2) Obtaining sludge and treated effluent. 3) Natural neutralization of the effluent through Carbonation using atmospheric CO₂. 4) Characterization and evaluation of the feasibility of the chemical precipitation technique in the treatment of different wastewaters through the technique of determining the chemical oxygen demand (COD) and other supporting physical-chemical parameters. The results showed an approximate average removal efficiency above 80% for all effluents, highlighting the swine effluent with 90% removal, followed by urban effluent with 88% and slaughterhouse with 81% on average. Significant improvement was also obtained with regard to color and odor removal after Carbonation to pH 8.00.Keywords: agroindustry wastewater, urban wastewater, natural carbonatation, chemical precipitation technique
Procedia PDF Downloads 826003 Reduction Shrinkage of Concrete without Use Reinforcement
Authors: Martin Tazky, Rudolf Hela, Lucia Osuska, Petr Novosad
Abstract:
Concrete’s volumetric changes are natural process caused by silicate minerals’ hydration. These changes can lead to cracking and subsequent destruction of cementitious material’s matrix. In most cases, cracks can be assessed as a negative effect of hydration, and in all cases, they lead to an acceleration of degradation processes. Preventing the formation of these cracks is, therefore, the main effort. Once of the possibility how to eliminate this natural concrete shrinkage process is by using different types of dispersed reinforcement. For this application of concrete shrinking, steel and polymer reinforcement are preferably used. Despite ordinarily used reinforcement in concrete to eliminate shrinkage it is possible to look at this specific problematic from the beginning by itself concrete mix composition. There are many secondary raw materials, which are helpful in reduction of hydration heat and also with shrinkage of concrete during curing. The new science shows the possibilities of shrinkage reduction also by the controlled formation of hydration products, which could act by itself morphology as a traditionally used dispersed reinforcement. This contribution deals with the possibility of controlled formation of mono- and tri-sulfate which are considered like degradation minerals. Mono- and tri- sulfate's controlled formation in a cementitious composite can be classified as a self-healing ability. Its crystal’s growth acts directly against the shrinking tension – this reduces the risk of cracks development. Controlled formation means that these crystals start to grow in the fresh state of the material (e.g. concrete) but stop right before it could cause any damage to the hardened material. Waste materials with the suitable chemical composition are very attractive precursors because of their added value in the form of landscape pollution’s reduction and, of course, low cost. In this experiment, the possibilities of using the fly ash from fluidized bed combustion as a mono- and tri-sulphate formation additive were investigated. The experiment itself was conducted on cement paste and concrete and specimens were subjected to a thorough analysis of physicomechanical properties as well as microstructure from the moment of mixing up to 180 days. In cement composites, were monitored the process of hydration and shrinkage. In a mixture with the used admixture of fluidized bed combustion fly ash, possible failures were specified by electronic microscopy and dynamic modulus of elasticity. The results of experiments show the possibility of shrinkage concrete reduction without using traditionally dispersed reinforcement.Keywords: shrinkage, monosulphates, trisulphates, self-healing, fluidized fly ash
Procedia PDF Downloads 1866002 Development of Ferrous-Aluminum Alloys from Recyclable Material by High Energy Milling
Authors: Arnold S. Freitas Neto, Rodrigo E. Coelho, Erick S. Mendonça
Abstract:
This study aimed to obtain an alloy of Iron and Aluminum in the proportion of 50% of atomicity for each constituent. Alloys were obtained by processing recycled aluminum and chips of 1200 series carbon steel in a high-energy mill. For the experiment, raw materials were processed thorough high energy milling before mixing the substances. Subsequently, the mixture of 1200 series carbon steel and Aluminum powder was carried out a milling process. Thereafter, hot compression was performed in a closed die in order to obtain the samples. The pieces underwent heat treatments, sintering and aging. Lastly, the composition and the mechanical properties of their hardness were analyzed. In this paper, results are compared with previous studies, which used iron powder of high purity instead of Carbon steel in the composition.Keywords: Fe-Al alloys, high energy milling, metallography characterization, powder metallurgy
Procedia PDF Downloads 3096001 Olive Oils from Algeria: Phenolic Compounds Composition and Antibacterial Activity
Authors: Firdaousse Laincer, Rahima Laribi, Abderazak Tamendjari, Rovellini Venturini
Abstract:
Phenolic compounds present in olive oil have received much attention in recent years due to their beneficial functional and nutritional effects. Phenolic composition, antibacterial activity of phenolic extracts of olive oil varieties from Algeria were investigated. The analysis of polyphenols was performed by Folin-Ciocalteu and HPLC. As a result, many phenolic compounds were identified and quantified by using HPLC; derivatives of oleuropein and ligstroside, hydroxytyrosol, tyrosol, flavonoids, and lignans reporting unique and characteristic phenolic profile. These phenolic fractions also differentiate the total antibacterial activity. Among the bacteria tested, S. aureus and, to a lesser extent, B. subtilis showed the highest sensitivity; the MIC varied from 0.6 to 1.6 mg•mL-1 and 1.2 to 1.8 mg•mL-1, respectively. The results obtained denote that Algerian olive oils may constitute a good source of healthy compounds, phenolics compounds, in the diet, suggesting that their consumption could be useful in the prevention of diseases.Keywords: antibacterial activity, olive oil, phenols, HPLC
Procedia PDF Downloads 4526000 Calculation of Lattice Constants and Band Gaps for Generalized Quasicrystals of InGaN Alloy: A First Principle Study
Authors: Rohin Sharma, Sumantu Chaulagain
Abstract:
This paper presents calculations of total energy of InGaN alloy carried out in a disordered quasirandom structure for a triclinic super cell. This structure replicates the disorder and composition effect in the alloy. First principle calculations within the density functional theory with the local density approximation approach is employed to accurately determine total energy of the system. Lattice constants and band gaps associated with the ground states are then estimated for different concentration ratios of the alloy. We provide precise results of quasirandom structures of the alloy and their lattice constants with the total energy and band gap energy of the system for the range of seven different composition ratios and their respective lattice parameters.Keywords: DFT, ground state, LDA, quasicrystal, triclinic super cell
Procedia PDF Downloads 1885999 Identification and Characterisation of Oil Sludge Degrading Bacteria Isolated from Compost
Authors: O. Ubani, H. I. Atagana, M. S. Thantsha, R. Adeleke
Abstract:
The oil sludge components (polycyclic aromatic hydrocarbons, PAHs) have been found to be cytotoxic, mutagenic and potentially carcinogenic and microorganisms such as bacteria and fungi can degrade the oil sludge to less toxic compounds such as carbon dioxide, water and salts. In the present study, we isolated different bacteria with PAH-degrading potentials from the co-composting of oil sludge and different animal manure. These bacteria were isolated on the mineral base medium and mineral salt agar plates as a growth control. A total of 31 morphologically distinct isolates were carefully selected from 5 different compost treatments for identification using polymerase chain reaction (PCR) of the 16S rDNA gene with specific primers (16S-P1 PCR and 16S-P2 PCR). The amplicons were sequenced and sequences were compared with the known nucleotides from the gene bank database. The phylogenetical analyses of the isolates showed that they belong to 3 different clades namely Firmicutes, Proteobacteria and Actinobacteria. These bacteria identified were closely related to genera Bacillus, Arthrobacter, Staphylococcus, Brevibacterium, Variovorax, Paenibacillus, Ralstonia and Geobacillus species. The results showed that Bacillus species were more dominant in all treated compost piles. Based on their characteristics these bacterial isolates have high potential to utilise PAHs of different molecular weights as carbon and energy sources. These identified bacteria are of special significance in their capacity to emulsify the PAHs and their ability to utilize them. Thus, they could be potentially useful for bioremediation of oil sludge and composting processes.Keywords: bioaugmentation, biodegradation, bioremediation, composting, oil sludge, PAHs, animal manures
Procedia PDF Downloads 2535998 Species Composition of Alticinae Newman, 1834 (Coleoptera, Chrysomelidae): Distribution and Host Plants in Eastern Upper Plains (Setif, Algeria)
Authors: M. Bounechada, M. Fenni, S. Bouharati, S. E. Doumandji
Abstract:
The study was taken in Setif region (36° 11' 29 N and 5° 24' 34 E) located at the north-eastern of Algeria. This paper recorded and discusses zoogeography and host plant relationships of Setifian species Alticinae subfamily. A total of 50 species belonging to Alticinae subfamily of Chrysomelidae which is the economically important familty, were recorded from differentes localities of Setif region. They are included in 10 genera. Genera Longitarsus Berthold, 1827 is less species-rich than the other Alticinae genera captured. It represens about 38% of the all species collected. Cruciferae and Compositae were the mostly prefered host plant families representing Alticinae species. For each species we mentioned the collecting sites, geographical distribution and the host plants.Keywords: Algeria, Alticinae, Chrysomelidae, Coleoptera, distribution, host plants, species composition, Setif
Procedia PDF Downloads 2345997 Co-Composting of Poultry Manure with Different Organic Amendments
Authors: M. E. Silva, I. Brás
Abstract:
To study the influence of different organic amendments on the quality of poultry manure compost, three pilot composting trials were carried out with different mixes: poultry manure/carcasse meal/ashes/grape pomace (Pile 1), poultry manure/ cellulosic sludge (Pile 2) and poultry manure (Pile 3). For all piles, wood chips were applied as bulking agent. The process was monitored, over time, by evaluating standard physical and chemical parameters, such as, pH, electric conductivity, moisture, organic matter and ash content, total carbon and total nitrogen content, carbon/nitrogen ratio (C/N) and content in mineral elements. Piles 1 and 2 reached a thermophilic phase, however having different trends. Pile 1 reached this phase earlier than Pile 2. For both, the pH showed a slight alkaline character and the electric conductivity was lower than 2 mS/cm. Also, the initial C/N value was 22 and reached values lower than 15 at the end of composting process. The total N content of the Pile 1 increased slightly during composting, in contrast with the others piles. At the end of composting process, the phosphorus content ranged between 54 and 236 mg/kg dry matter, for Pile 2 and 3, respectively. Generally, the Piles 1 and 3 exhibited similar heavy metals content. This study showed that organic amendments can be used as carbon source, given that the final composts presented parameters within the range of those recommended in the 2nd Draft of EU regulation proposal (DG Env.A.2 2001) for compost quality.Keywords: co-composting, compost quality, organic ammendment, poultry manure
Procedia PDF Downloads 3055996 Thermal Transformation and Structural on Se90Te7Cu3 Chalcogenide Glass
Authors: Farid M. Abdel-Rahim
Abstract:
In this study, Se90Te7Cu3 chalcogenide glass was prepared using the melt quenching technique. The amorphous nature of the as prepared samples was confirmed by scanning electron microscope (SEM). Result of differential scanning calorimetric (DSC) under nonisothermal condition on composition bulk materials are reported and discussed. It shows that these glasses exhibit a single-stage glass transition and a single-stage crystallization on heating rates. The glass transition temperature (Tg), the onset crystallization (Tc), the crystallization temperature (Tp), were found by dependent on the composition and heating rates. Activation energy for glass transition (Et), activation energy of the amorphous –crystalline transformation (Ec), crystallization reaction rate constant (Kp), (n) and (m) are constants related to crystallization mechanism of the bulk samples have been determined by different formulations.Keywords: chalcogenides, heat treatment, DSC, SEM, glass transition, thermal analysis
Procedia PDF Downloads 3985995 Effect of Low Calorie Sweeteners on Chemical, Sensory Evaluation and Antidiabetic of Pumpkin Jam Fortified with Soybean
Authors: Amnah M. A. Alsuhaibani, Amal N. Al-Kuraieef
Abstract:
Introduction: In the recent decades, production of low-calorie jams is needed for diabetics that comprise low calorie fruits and low calorie sweeteners. Object: the research aimed to prepare low calorie formulated pumpkin jams (fructose, stevia and aspartame) incorporated with soy bean and evaluate the jams through chemical analysis and sensory evaluation after storage for six month. Moreover, the possible effect of consumption of low calorie jams on diabetic rats was investigated. Methods: Five formulas of pumpkin jam with different sucrose, fructose, stevia and aspartame sweeteners and soy bean were prepared and stored at 10 oC for six month compared to ordinary pumpkin jam. Chemical composition and sensory evaluation of formulated jams were evaluated at zero time, 3 month and 6 month of storage. The best three acceptable pumpkin jams were taken for biological study on diabetic rats. Rats divided into group (1) served as negative control and streptozotocin induce diabetes four rat groups that were positive diabetic control (group2), rats fed on standard diet with 10% sucrose soybean jam, fructose soybean jam and stevia soybean jam (group 3, 4&5), respectively. Results: The content of protein, fat, ash and fiber were increased but carbohydrate was decreased in low calorie formulated pumpkin jams compared to ordinary jam. Production of aspartame soybean pumpkin jam had lower score of all sensory attributes compared to other jam then followed by stevia soybean Pumpkin jam. Using non nutritive sweeteners (stevia & aspartame) with soybean in processing jam could lower the score of the sensory attributes after storage for 3 and 6 months. The highest score was recorded for sucrose and fructose soybean jams followed by stevia soybean jam while aspartame soybean jam recorded the lowest score significantly. The biological evaluation showed a significant improvement in body weight and FER of rats after six weeks of consumption of standard diet with jams (Group 3,4&5) compared to Group1. Rats consumed 10% low calorie jam with nutrient sweetener (fructose) and non nutrient sweetener (stevia) soybean jam (group 4& 5) showed significant decrease in glucose level, liver function enzymes activity, and liver cholesterol & total lipids in addition of significant increase of insulin and glycogen compared to the levels of group 2. Conclusion: low calorie pumpkin jams can be prepared by low calorie sweeteners and soybean and also storage for 3 months at 10oC without change sensory attributes. Consumption of stevia pumpkin jam fortified with soybean had positive health effects on streptozoticin induced diabetes in rats.Keywords: pumpkin jam, HFCS, aspartame, stevia, storage
Procedia PDF Downloads 1835994 Designing of Food Products Enriched With Phytonutrients Assigned for Hypertension Suffering Consumers
Authors: Anna Gramza-Michałowska, Dominik Kmiecik, Justyna Bilon, Joanna Skręty, Joanna Kobus-Cisowska, Józef Korczak, Andrzej Sidor
Abstract:
Background: Hypertension is one of the civilization diseases with a global scope. Many research showed that every day diet influences significantly our health, helping with the prophylaxis and diseases treatment. The key factor here is the presence of plant origin natural bio active components. Aim: The following research describes snack health-oriented products for hypertension sufferers enriched with selected plant ingredients. Various analytical methods have been applied to determine product’s basic composition and their antioxidant activity. Methods: Snack products was formulated from a composition of different flours, oil, yeast, plant particles and extracts. Basic composition of a product was evaluated as content of protein, lipids, fiber, ash and caloricity. Antioxidant capacity of snacks was evaluated with use radical scavenging methods (DPPH, ABTS) and ORAC value. Proposed snacks as new product was also characterized with sensory analysis. Results and discussion: Results showed that addition of phyto nutrients allowed to improve nutritional and antioxidative value of examined products. Also the anti radical potential was significantly increased, with no loss of sensory value of a snacks. Conclusions: Designed snack is rich in polyphenolics, that express high antioxidant activity, helpful in hypertension and as low calories product obesity prophylaxis.Keywords: antioxidant, well-being, hypertension, bioactive compounds
Procedia PDF Downloads 4965993 Assessment of Water Quality Based on Physico-Chemical and Microbiological Parameters in Batllava Lake, Case Study Kosovo
Authors: Albana Kashtanjeva-Bytyçi, Idriz Vehapi, Rifat Morina, Osman Fetoshi
Abstract:
The purpose of this study is to determine the water quality in Batllava Leka through which a part of the population of the Prishtina region is supplied with drinking water. Batllava Leka is a lake built in the 70s. This lake is located in the village of Btlava in the municipality of Podujeva, with coordinates 42 ° 49′33 ″ V 21 ° 18′25 ″ L, with an area of 3.07 km2. Water supply is from the river Brvenica- Batllavë. In order to take preventive measures and improve water quality, we have conducted periodic/monthly monitoring of water quality in Lake Batllava, through microbiological and physico-chemical indicators. The monitoring was carried out during the period December 2020 - December 2021. Samples were taken at three sampling sites: at the entrance of the lake, in the middle and at the overflow, on two levels, water surface and at a depth of 30 cm. The microbiological parameters analyzed are: total coliforms, fecal coliforms, fecal streptococci, aerobic mesophilic bacteria and actinomycetes. Within the physico-chemical parameters: Dissolved Oxygen, Saturation with O2, water temperature, pH value, electrical conductivity, total soluble matter, total suspended matter, turbidity, chemical oxygen demand, biochemical oxygen demand, total organic carbon, nitrate, total hardness, hardness of calcium, calcium, magnesium, ammonium ion, chloride, sulfates, flourine, M-alkalines, bicarbonates and heavy metals, such as: Fe, Pb, Mn, Cu, Cd. The results showed that most of the physico-chemical and microbiological parameters are within the limit allowed by the WHO, except in the case of the rainiest season that exceeded some parameters.Keywords: batllava lake, monitoring of water, physico-chemical, microbiological, heavy metals
Procedia PDF Downloads 1085992 Hafnium Doped Zno Nanostructures: An Eco-Friendly Synthesis for Optoelectronic Applications
Authors: Mohamed Achehboune, Mohammed Khenfouch, Issam Boukhoubza, Bakang Mothudi, Izeddine Zorkani, Anouar Jorio
Abstract:
Zinc Oxide (ZnO) nanostructures have been attracting growing interest in recent years; their optical and electrical properties make them useful as attractive and promising materials for optoelectronic applications. In this study, pure and Hafnium doped ZnO nanostructures were synthesized using a green processing method. The structural, optical and electrical properties of samples were investigated structural and optical spectroscopies and electrical measurements. The synthesis and chemical composition of pure and Hafnium doped ZnO were confirmed by SEM observation. The XRD studies of Hafnium doped ZnO demonstrate the formation of wurtzite structure with preferred c-axis orientation. Moreover, the optical and electrical properties of doped material have improved after the doping process. The experimental results obtained for our material show that Hf doped ZnO nanostructures could be a promising material in optoelectronic applications such as photovoltaic cell and light emitting diode devices.Keywords: green synthesis, hafnium-doped-zinc oxide, nanostructures, optoelectronic
Procedia PDF Downloads 2695991 The Role of Nano-Science in Construction of Civil Engineering and Environment
Authors: Mehrdad Abkenari, Naghmeh Pournayeb, Mohsen Ramezan Shirazi
Abstract:
Nano-science has been widely used in different engineering sciences. Generally, materials’ application can be determined through their chemical and physical properties. Nano-science has introduced as a new way in production systems that not only turns the materials into very small particles but also, gives them new and considerable properties. Like other fields of study, civil engineering has not been ignorant of benefits and characteristics of new nanotechnology and has used it in the construction industry and environmental engineering. Therefore, considering such chemical properties as elemental analysis and molecular or atomic structure, the present article is aimed at studying the effects of Nano-materials on different branches of civil engineering. Finally, by identifying new Nano-materials, this study attempts to introduce advantages of using these materials for increasing the strength of materials during construction as well as finding new approaches to prevent or reduce the entrance of chemical pollutants during or after construction to the environment.Keywords: civil, nano-science, construction, environment
Procedia PDF Downloads 4125990 Experimental Investigation of the Effect of Material Composition on Landslides
Authors: Mengqi Wu, Haiping Zhu, Chin J. Leo
Abstract:
In this study, six experimental cases with different components (dry and wet soils and rocks) were considered to elucidate the influence of material composition on landslide profiles. The results show that the accumulation zone for all cases considered has a quadrilateral shape with two different bottom angles. The asymmetry of the accumulation zone can be attributed to the fact that soils in different parts of the landslide sliding can produce different speeds and suffer different resistances. The higher soil moisture can generate stronger cohesion between soils to reduce the volume of the sliding body during the landslide. The rock content can increase the accumulation angles to improve slope stability. The interaction between the irregular shapes of rocks and soils provides more resistance than that between spherical rocks and soils, which causes the slope with irregular rocks and soils to have higher stability.Keywords: landslide, soil moisture, rock content, experimental simulation
Procedia PDF Downloads 1055989 Direct Laser Fabrication and Characterization of Cu-Al-Ni Shape Memory Alloy for Seismic Damping Applications
Authors: Gonzalo Reyes, Magdalena Walczak, Esteban Ramos-Moore, Jorge Ramos-Grez
Abstract:
Metal additive manufacture technologies have gained strong support and acceptance as a promising and alternative method to manufacture high performance complex geometry products. The main purpose of the present work is to study the microstructure and phase transformation temperatures of Cu-Al-Ni shape memory alloys fabricated from a direct laser additive process using metallic powders as precursors. The potential application is to manufacture self-centering seismic dampers for earthquake protection of buildings out of a copper based alloy by an additive process. In this process, the Cu-Al-Ni alloy is melted, inside of a high temperature and vacuum chamber with the aid of a high power fiber laser under inert atmosphere. The laser provides the energy to melt the alloy powder layer. The process allows fabricating fully dense, oxygen-free Cu-Al-Ni specimens using different laser power levels, laser powder interaction times, furnace ambient temperatures, and cooling rates as well as modifying concentration of the alloying elements. Two sets of specimens were fabricated with a nominal composition of Cu-13Al-3Ni and Cu-13Al-4Ni in wt.%, however, semi-quantitative chemical analysis using EDX examination showed that the specimens’ resulting composition was closer to Cu-12Al-5Ni and Cu-11Al-8Ni, respectively. In spite of that fact, it is expected that the specimens should still possess shape memory behavior. To confirm this hypothesis, phase transformation temperatures will be measured using DSC technique, to look for martensitic and austenitic phase transformations at 150°C. So far, metallographic analysis of the specimens showed defined martensitic microstructures. Moreover, XRD technique revealed diffraction peaks corresponding to (0 0 18) and (1 2 8) planes, which are too associated with the presence of martensitic phase. We conclude that it would be possible to obtain fully dense Cu-Al-Ni alloys having shape memory effect behavior by direct laser fabrication process, and to advance into fabrication of self centering seismic dampers by a controllable metal additive manufacturing process.Keywords: Cu-Al-Ni alloys, direct laser fabrication, shape memory alloy, self-centering seismic dampers
Procedia PDF Downloads 5165988 Surprising Behaviour of Kaolinitic Soils under Alkaline Environment
Authors: P. Hari Prasad Reddy, Shimna Paulose, V. Sai Kumar, C. H. Rama Vara Prasad
Abstract:
Soil environment gets contaminated due to rapid industrialisation, agricultural-chemical application and improper disposal of waste generated by the society. Unexpected volume changes can occur in soil in the presence of certain contaminants usually after the long duration of interaction. Alkali is one of the major soil contaminant that has a considerable effect on behaviour of soils and capable of inducing swelling potential in soil. Chemical heaving of clayey soils occurs when they are wetted by aqueous solutions of alkalis. Mineralogical composition of the soil is one of the main factors influencing soil- alkali interaction. In the present work, studies are carried out to understand the swell potential of soils due to soil-alkali interaction with different concentrations of NaOH solution. Locally available soil, namely, red earth containing kaolinite which is of non-swelling nature is selected for the study. In addition to this, two commercially available clayey soils, namely ball clay and china clay containing mainly of kaolinite are selected to understand the effect of alkali interaction in various kaolinitic soils. Non-swelling red earth shows maximum swell at lower concentrations of alkali solution (0.1N) and a slightly decreasing trend of swelling with further increase in concentration (1N, 4N, and 8N). Marginal decrease in swell potential with increase in concentration indicates that the increased concentration of alkali solution exists as free solution in case of red earth. China clay and ball clay both falling under kaolinite group of clay minerals, show swelling with alkaline solution. At lower concentrations of alkali solution both the soils shows similar swell behaviour, but at higher concentration of alkali solution ball clay shows high swell potential compared to china clay which may be due to lack of well ordered crystallinity in ball clay compared to china clay. The variations in the results obtained were corroborated by carrying XRD and SEM studies.Keywords: alkali, kaolinite, swell potential, XRD, SEM
Procedia PDF Downloads 5025987 The Influence of Environment Characteristics in the Distribution of Vegetation Communities in Rawdhat Salasil, Saudi Arabia
Authors: Suliman Mohammed Alghanem
Abstract:
Ecological and botanical surveys were conducted on Rawdhat Salasil, Al-Qassim region, Saudi Arabia. The survey also includes the study of the plant communities in the study area by sampling the associated species in each community using the List Count Quadrant method to study the density, frequency, and plant cover. The present study has shown an account of the under-mentioned five different communities: Haloxylonpersicum community is a dominant perennial shrub with an important value of 47.88%. This community is represented by 20 associated species. The chemical analysis of the soil of this habitat exhibits more alkalinity with low salinity. Tamarixnilotica communityis a perennial shrub with an important value of 60.48%. This community is represented by 14 associated species. The chemical analysis of the soil of this habitat demonstrates richness in alkalis with high salinity.Salsolaimbricata communityis a perennial herb with an important value of 60.18%. This community is represented by 17 associated species. The chemical analysis of the soil of this habitat exhibits richness in alkalis with low salinity.Panicumturgidum is a perennial herb with an important value of 65.1%. This community is represented by 11 associated species. The chemical analysis of the soil of this habitat exhibits richness in alkalis and the absence of salinity. Pulicariaundulata community is predominantly an annual shrub with an important value of 91.79%. This community is represented by 16 species. The chemical analysis of the soil of this habitat exhibits richness in alkalis, and the absence of salinity.Keywords: rangelands, plant communities, Rawdhat Salasil, edaphic factors
Procedia PDF Downloads 2945986 Land Suitability Analysis for Maize Production in Egbeda Local Government Area of Oyo State Using GIS Techniques
Authors: Abegunde Linda, Adedeji Oluwatayo, Tope-Ajayi Opeyemi
Abstract:
Maize constitutes a major agrarian production for use by the vast population but despite its economic importance, it has not been produced to meet the economic needs of the country. Achieving optimum yield in maize can meaningfully be supported by land suitability analysis in order to guarantee self-sufficiency for future production optimization. This study examines land suitability for maize production through the analysis of the physic-chemical variations in soil properties over space using a Geographic Information System (GIS) framework. Physic-chemical parameters of importance selected include slope, landuse, and physical and chemical properties of the soil. Landsat imagery was used to categorize the landuse, Shuttle Radar Topographic Mapping (SRTM) generated the slope and soil samples were analyzed for its physical and chemical components. Suitability was categorized into highly, moderately and marginally suitable based on Food and Agricultural Organisation (FAO) classification using the Analytical Hierarchy Process (AHP) technique of GIS. This result can be used by small scale farmers for efficient decision making in the allocation of land for maize production.Keywords: AHP, GIS, MCE, suitability, Zea mays
Procedia PDF Downloads 3965985 Formulation of Sun Screen Cream and Sun Protecting Factor Activity from Standardized–Partition Compound of Mahkota Dewa Leaf (Phaleria macrocarpa (Scheff.) Boerl.)
Authors: Abdul Karim Zulkarnain, Marchaban, Subagus Wahyono, Ratna Asmah Susidarti
Abstract:
Mahkota Dewa contains phalerin which has activity as sun screen. In this study, 13 formulations of cream oil in water (o/w) were prepared and tested for their physical characteristics. The physical characteristics were then used for determining the optimum formula. This study aimed to explore the physical stability of optimized formulation of cream, its sun protecting factor (SPF) values using in vitro and in vivo tests. The optimum formula of o/w cream were prepared based on Simplex Lattice Design (LSD) method using software Design Expert®. The formulation of o/w cream were varied based on the proportion of cetyl alcohol, mineral oil and tween 80. The difference of physical characteristic of optimum and predicted formula was tested using t-test with significant level of 95%. The optimum formula of o/w cream was the formula which consists of cetyl alcohol 9.71%, mineral oil, 29%, and tween 80 3.29. Based on t-test, there was no significant difference of physical characteristics of optimum and predicted formulation. Viscosity, spread power, adhesive power, and separation volume ratio of o/w at week 0-4 were relatively stable. The o/w creams were relatively stable at extreme temperature. The o/w creams from mahkota dewa, phalerin, and benzophenone have SPF values of 21.32, 33.12, and 42.49, respectively. The formulas did not irritate the skin based on in vivo test.Keywords: cream, stability, In vitro, In vivo
Procedia PDF Downloads 2295984 Failure Analysis of a Medium Duty Vehicle Leaf Spring
Authors: Gül Çevik
Abstract:
This paper summarizes the work conducted to assess the root cause of the failure of a medium commercial vehicle leaf spring failed in service. Macro- and micro-fractographic analyses by scanning electron microscope as well as material verification tests were conducted in order to understand the failure mechanisms and root cause of the failure. Findings from the fractographic analyses indicated that failure mechanism is fatigue. Crack initiation was identified to have occurred from a point on the top surface near to the front face and to the left side. Two other crack initiation points were also observed, however, these cracks did not propagate. The propagation mode of the fatigue crack revealed that the cyclic loads resulting in crack initiation and propagation were unidirectional bending. Fractographic analyses have also showed that the root cause of the fatigue crack initiation and propagation was loading the part above design stress. Material properties of the part were also verified by chemical composition analysis, microstructural analysis by optical microscopy and hardness tests.Keywords: leaf spring, failure analysis, fatigue, fractography
Procedia PDF Downloads 1335983 Utilization of Chrysanthemum Flowers in Textile Dyeing: Chemical and Phenolic Analysis of Dyes and Fabrics
Authors: Muhammad Ahmad
Abstract:
In this research, Chrysanthemum (morifolium) flowers are used as a natural dye to reduce synthetic dyes and take a step toward sustainability in the fashion industry. The aqueous extraction method is utilized for natural dye extraction and then applied to silk and cotton fabric samples. The color of the dye extracted from dried chrysanthemum flowers is originally a shade of rich green, but after being washed with detergent, it turns to a shade of yellow. Traditional salt and vinegar are used as a natural mordant to fix the dye color. This study also includes a phenolic and chemical analysis of the natural dye (Chrysanthemum flowers) and the textiles (cotton and silk). Compared to cotton fabric, silk fabric has far superior chemical qualities to use in natural dyeing. The results of this study show that the Chrysanthemum flower offers a variety of colors when treated with detergent, without detergent, and with mordants. Chrysanthemum flowers have long been used in other fields, such as medicine; therefore, it is time to start using them in the fashion industry as a natural dye to lessen the harm that synthetic dyes cause.Keywords: natural dyes, Chrysanthemum flower, sustainability, textile fabrics, chemical and phenolic analysis
Procedia PDF Downloads 215982 Hydrogeological Factors of the Ore Genesis in the Sedimentary Basins
Authors: O. Abramova, L. Abukova, A. Goreva, G. Isaeva
Abstract:
The present work was made for the purpose of evaluating the interstitial water’s role in the mobilization of metal elements of clay deposits and occurrences in sedimentary formation in the hydro-geological basins. The experiments were performed by using a special facility, which allows adjusting the pressure, temperature, and the frequency of the acoustic vibrations. The dates for study were samples of the oil shales (Baltic career, O2kk) and clay rocks, mainly montmorillonite composition (Borehole SG-12000, the depth of selection 1000–3600 m, the Azov-Kuban trough, N1). After interstitial water squeezing from the rock samples, decrease in the original content of the rock forming components including trace metals V, Cr, Co, Ni, Cu, Zn, Zr, Mo, Pb, W, Ti, and others was recorded. The experiments made it possible to evaluate the ore elements output and organic matters with the interstitial waters. Calculations have shown that, in standard conditions, from each ton of the oil shales, 5-6 kg of ore elements and 9-10 kg of organic matter can be escaped. A quantity of matter, migrating from clays in the process of solidification, is changed depending on the lithogenesis stage: more recent unrealized deposits lose more ore and organic materials than the clay rocks, selected from depth over 3000 m. Each ton of clays in the depth interval 1000-1500 m is able to generate 3-5 kg of the ore elements and 6-8 kg of the organic matters. The interstitial waters are a freight forwarder over transferring these matters in the reservoir beds. It was concluded that the interstitial waters which escaped from the study samples are solutions with abnormal high concentrations of the metals and organic matters. In the discharge zones of the sediment basins, such fluids can create paragenetic associations of the sedimentary-catagenetic ore and hydrocarbon mineral resources accumulations.Keywords: hydrocarbons, ore genesis, paragenesis, pore water
Procedia PDF Downloads 2585981 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning
Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi
Abstract:
Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.Keywords: agriculture, computer vision, data science, geospatial technology
Procedia PDF Downloads 1375980 Effects of Reclaimed Agro-Industrial Wastewater for Long-Term Irrigation of Herbaceous Crops on Soil Chemical Properties
Authors: E. Tarantino, G. Disciglio, G. Gatta, L. Frabboni, A. Libutti, A. Tarantino
Abstract:
Worldwide, about two-thirds of industrial and domestic wastewater effluent is discharged without treatment, which can cause contamination and eutrophication of the water. In particular, for Mediterranean countries, irrigation with treated wastewater would mitigate the water stress and support the agricultural sector. Changing global weather patterns will make the situation worse, due to increased susceptibility to drought, which can cause major environmental, social, and economic problems. The study was carried out in open field in an intensive agricultural area of the Apulian region in Southern Italy where freshwater resources are often scarce. As well as providing a water resource, irrigation with treated wastewater represents a significant source of nutrients for soil–plant systems. However, the use of wastewater might have further effects on soil. This study thus investigated the long-term impact of irrigation with reclaimed agro-industrial wastewater on the chemical characteristics of the soil. Two crops (processing tomato and broccoli) were cultivated in succession in Stornarella (Foggia) over four years from 2012 to 2016 using two types of irrigation water: groundwater and tertiary treated agro-industrial wastewater that had undergone an activated sludge process, sedimentation filtration, and UV radiation. Chemical analyses were performed on the irrigation waters and soil samples. The treated wastewater was characterised by high levels of several chemical parameters including TSS, EC, COD, BOD5, Na+, Ca2+, Mg2+, NH4-N, PO4-P, K+, SAR and CaCO3, as compared with the groundwater. However, despite these higher levels, the mean content of several chemical parameters in the soil did not show relevant differences between the irrigation treatments, in terms of the chemical features of the soil.Keywords: agro-industrial wastewater, broccoli, long-term re-use, tomato
Procedia PDF Downloads 3745979 The Proximate Composition and Phytochemical Screening of Momordica Balsamina (Balsam Apple) Fruit and Leaves
Authors: Viruska Jaichand, John Jason Mellem, Viresh Mohanlall
Abstract:
Malnutrition is a global issue that affects both children and adults, irrespective of their socio-economic status. It is, therefore, important to find various means to tackle malnutrition. This is especially important as undernutrition and overnutrition can be linked to a variety of non-communicable diseases (NCDs). This study aimed to gather more insight into the nutritional and phytochemical quality of Momordica balsamina leaves and fruit (fruit pericarp, fruit flesh and seeds). Results showed that Momordica balsamina had a nutritional composition that would be advantageous to the human diet. The nutritional quality is verified by the presence of a high protein percentage across all samples (19.72%-29.08%), with the leaves containing the highest protein content (29.08%±0.77). There was also a low-fat content present across all samples, which ranged from 1.03% to 2.40%. The ash content indicated the presence of total minerals to be adequate (2.93%-21.16%), where the pericarp had the highest ash quantity (21.16%±0.09). The moisture levels were low (7.11%-13.40%). Momordica balsamina seeds had the highest carbohydrate content (67.84%±0.30). Rich in the major phytoconstituents, Momordica balsamina extracts were found to contain alkaloids, saponins, cardiac glycosides, steroids and triterpenoids. Based on these findings, it can thus be said that the incorporation of Momordica balsamina into an individual’s diet could prevent diseases associated with malnutrition, as well as it could be used to supplement the human diet in managing certain NCDs. Even though there were a number of bioactive compounds detected, further studies which would correlate the phytochemical constituents detected in Momordica balsamina and its effectiveness in treating various diseases are recommended.Keywords: momordica balsamina, nutrients, proximate composition, bioactive compounds, phytoconstituents
Procedia PDF Downloads 745978 Oxidation States of Trace Elements in Synthetic Corundum
Authors: Ontima Yamchuti, Waruntorn Kanitpanyacharoen, Chakkaphan Sutthirat, Wantana Klysuban, Penphitcha Amonpattarakit
Abstract:
Natural corundum occurs in various colors due to impurities or trace elements in its structure. Sapphire and ruby are essentially the same mineral, corundum, but valued differently due to their red and blue varieties, respectively. Color is one of the critical factors used to determine the value of natural and synthetic corundum. Despite the abundance of research on impurities in natural corundum, little is known about trace elements in synthetic corundum. This project thus aims to quantify trace elements and identify their oxidation states in synthetic corundum. A total of 15 corundum samples in red, blue, and yellow, synthesized by melt growth process, were first investigated by X-ray diffraction (XRD) analysis to determine the composition. Electron probe micro-analyzer (EPMA) was used to identify the types of trace elements. Results confirm that all synthetic corundums contain crystalline Al₂O₃ and a wide variety type of trace element, particularly Cr, Fe, and Ti. In red, yellow, and blue corundums respectively. To further determine their oxidation states, synchrotron X-ray absorption near edge structure spectrometry (XANES) was used to observe absorbing energy of each element. XANES results show that red synthetic corundum has Cr³⁺ as a major trace element (62%). The pre-edge absorption energy of Cr³⁺ is at 6001 eV. In addition, Fe²⁺ and Fe³⁺ are dominant oxidation states of yellow synthetic corundum while Ti³⁺and Ti⁴⁺ are dominant oxidation states of blue synthetic corundum. the average absorption energy of Fe and Ti is 4980 eV and 7113 eV respectively. The presence of Fe²⁺, Fe³⁺, Cr³⁺, Ti³⁺, and Ti⁴⁺ in synthetic corundums in this study is governed by comparison absorption energy edge with standard transition. The results of oxidation states in this study conform with natural corundum. However yellow synthetic corundums show difference oxidation state of trace element compared with synthetic in electron spin resonance spectrometer method which found that Ni³⁺ is a dominant oxidation state.Keywords: corundum, trace element, oxidation state, XANES technique
Procedia PDF Downloads 171