Search results for: ceramic waste aggregate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3482

Search results for: ceramic waste aggregate

2522 The Use of the Phytase in Aquaculture, Its Zootechnical Interests and the Possibilities of Incorporation in the Aquafeed

Authors: Niang Mamadou Sileye

Abstract:

The study turns on the use of the phytase in aquaculture, its zootechnical interests and the possibilities of incorporation in the feed. The goal is to reduce the waste in phosphorus linked to the feeding of fishes, without any loss of zootechnical performances and with a decrease of feed costs. We have studied the literature in order to evaluate the raw materials (total phosphorus, phytate and available phosphorus) used by a company to manufacture feed for rainbow trout; to determine the phosphorus requirements for aquaculture species; to determine the requirements of phosphorus for aquaculture species, to determine the sings of lack of phosphorus for fishes; to study the antagonism between the phosphorus and the calcium and to study also the different forms of waste for the rainbow trout. The results found in the bibliography enable us test several Hypothesis of feed formulation for rainbow trout with different raw materials. This simulation and the calculation for wastes allowed to validate two formulation of feed: a control feed (0.5% of monocalcique phosphate) and a trial feed (supplementation with 0.002% of phytase Ronozyme PL and without inorganic phosphate). The feeds have been produced and sent to a experimental structure (agricultural college of Brehoulou).The result of the formulation give a decrease of the phosphorus waste of 28% for the trial feed compared to the feed. The supplementation enables a gain of 2.3 euro per ton. The partial results of the current test show no significant difference yet for the zootechnical parameters (growth rate, mortality, weight gain and obvious conversion rate) between control feed and the trial one. The waste measures do not show either significant difference between the control feed and the trial one, but however, the average difference would to decrease the wastes of 35.6% thanks to the use of phytase.

Keywords: phosphorus, phytic acid, phytase, need, digestibility, formulation, food, waste, rainbow trout

Procedia PDF Downloads 90
2521 Development of Heating Elements Based on Fe₂O₃ Reduction Products by Waste Active Sludge

Authors: Abigail Parra Parra, Jorge L. Morelos Hernandez, Pedro A. Marquez Agilar, Marina Vlasova, Jesus Colin De La Cruz

Abstract:

Carbothermal reduction of metal oxides is widely used both in metallurgical processes and in the production of oxygen-free refractory ceramics. As a rule, crushed coke and graphite are used as a reducing agent. The products of carbonization of organic compounds are among the innovative reducing agents. The aim of this work was to study the process of reduction of iron oxide (hematite) down to iron by waste active sludge (WAS) carbonization products. WAS was chosen due to the accumulation of a large amount of this type of waste, soil pollution, and the relevance of the development of technologies for its disposal. The studies have shown that the temperature treatment of mixtures WAS-Fe₂O₃ in the temperature range 900-1000 ºC for 1-5 hours under oxygen deficiency is described by the following scheme: WAS + Fe₂O₃→ C,CO + Fe₂O₃→ C + FexO → Fe (amorphous and crystalline). During the heat treatment of the mixtures, strong samples are formed. The study of the electrical conductive properties of such samples showed that, depending on the ratio of the components in the initial mixtures, it is possible to change the values of electrical resistivity from 5.6 Ω‧m to 151.6 Ω‧m When a current is passed through the samples, they are heated from 240 to 378ºC. Thus, based on WAS-Fe₂O₃ mixtures, heating elements can be created that can be used to heat ceramics and concrete.

Keywords: Fe₂O₃, reduction, waste activate sludge, electroconductivity

Procedia PDF Downloads 132
2520 Prediction of Compressive Strength of Concrete from Early Age Test Result Using Design of Experiments (Rsm)

Authors: Salem Alsanusi, Loubna Bentaher

Abstract:

Response Surface Methods (RSM) provide statistically validated predictive models that can then be manipulated for finding optimal process configurations. Variation transmitted to responses from poorly controlled process factors can be accounted for by the mathematical technique of propagation of error (POE), which facilitates ‘finding the flats’ on the surfaces generated by RSM. The dual response approach to RSM captures the standard deviation of the output as well as the average. It accounts for unknown sources of variation. Dual response plus propagation of error (POE) provides a more useful model of overall response variation. In our case, we implemented this technique in predicting compressive strength of concrete of 28 days in age. Since 28 days is quite time consuming, while it is important to ensure the quality control process. This paper investigates the potential of using design of experiments (DOE-RSM) to predict the compressive strength of concrete at 28th day. Data used for this study was carried out from experiment schemes at university of Benghazi, civil engineering department. A total of 114 sets of data were implemented. ACI mix design method was utilized for the mix design. No admixtures were used, only the main concrete mix constituents such as cement, coarse-aggregate, fine aggregate and water were utilized in all mixes. Different mix proportions of the ingredients and different water cement ratio were used. The proposed mathematical models are capable of predicting the required concrete compressive strength of concrete from early ages.

Keywords: mix proportioning, response surface methodology, compressive strength, optimal design

Procedia PDF Downloads 264
2519 Strength Properties of Ca-Based Alkali Activated Fly Ash System

Authors: Jung-Il Suh, Hong-Gun Park, Jae-Eun Oh

Abstract:

Recently, the use of long-span precast concrete (PC) construction has increased in modular construction such as storage buildings and parking facilities. When applying long span PC member, reducing weight of long span PC member should be conducted considering lifting capacity of crane and self-weight of PC member and use of structural lightweight concrete made by lightweight aggregate (LWA) can be considered. In the process of lightweight concrete production, segregation and bleeding could occur due to difference of specific gravity between cement (3.3) and lightweight aggregate (1.2~1.8) and reducing weight of binder is needed to prevent the segregation between binder and aggregate. Also, lightweight precast concrete made by cementitious materials such as fly ash and ground granulated blast furnace (GGBFS) which is lower than specific gravity of cement as a substitute for cement has been studied. When only using fly ash for cementless binder alkali-activation of fly ash is most important chemical process in which the original fly ash is dissolved by a strong alkaline medium in steam curing with high-temperature condition. Because curing condition is similar with environment of precast member production, additional process is not needed. Na-based chloride generally used as a strong alkali activator has a practical problem such as high pH toxicity and high manufacturing cost. Instead of Na-based alkali activator calcium hydroxide [Ca(OH)2] and sodium hydroxide [Na2CO3] might be used because it has a lower pH and less expensive than Na-based alkali activator. This study explored the influences on Ca(OH)2-Na2CO3-activated fly ash system in its microstructural aspects and strength and permeability using powder X-ray analysis (XRD), thermogravimetry (TGA), mercury intrusion porosimetry (MIP). On the basis of microstructural analysis, the conclusions are made as follows. Increase of Ca(OH)2/FA wt.% did not affect improvement of compressive strength. Also, Ca(OH)2/FA wt.% and Na2CO3/FA wt.% had little effect on specific gravity of saturated surface dry (SSD) and absolute dry (AD) condition to calculate water absorption. Especially, the binder is appropriate for structural lightweight concrete because specific gravity of the hardened paste has no difference with that of lightweight aggregate. The XRD and TGA/DTG results did not present considerable difference for the types and quantities of hydration products depending on w/b ratio, Ca(OH)2 wt.%, and Na2CO3 wt.%. In the case of higher molar quantity of Ca(OH)2 to Na2CO3, XRD peak indicated unreacted Ca(OH)2 while DTG peak was not presented because of small quantity. Thus, presence of unreacted Ca(OH)2 is too small quantity to effect on mechanical performance. As a result of MIP, the porosity volume related to capillary pore depends on the w/b ratio. In the same condition of w/b ratio, quantities of Ca(OH)2 and Na2CO3 have more influence on pore size distribution rather than total porosity. While average pore size decreased as Na2CO3/FA w.t% increased, the average pore size increased over 20 nm as Ca(OH)2/FA wt.% increased which has inverse proportional relationship between pore size and mechanical properties such as compressive strength and water permeability.

Keywords: Ca(OH)2, compressive strength, microstructure, fly ash, Na2CO3, water absorption

Procedia PDF Downloads 221
2518 The Preparation of Titanate Nano-Materials Removing Efficiently Cs-137 from Waste Water in Nuclear Power Plants

Authors: Liu De-jun, Fu Jing, Zhang Rong, Luo Tian, Ma Ning

Abstract:

Cs-137, the radioactive fission products of uranium, can be easily dissolved in water during the accident of nuclear power plant, such as Chernobyl, Three Mile Island, Fukushima accidents. The concentration of Cs in the groundwater around the nuclear power plant exceeded the standard value almost 10,000 times after the Fukushima accident. The adsorption capacity of Titanate nano-materials for radioactive cation (Cs+) is very strong. Moreover, the radioactive ion can be tightly contained in the nanotubes or nanofibers without reversible adsorption, and it can safely be fixed. In addition, the nano-material has good chemical stability, thermal stability and mechanical stability to minimize the environmental impact of nuclear waste and waste volume. The preparation of titanate nanotubes or nanofibers was studied by hydrothermal methods, and chemical kinetics of removal of Cs by nano-materials was obtained. The adsorption time with maximum adsorption capacity and the effects of pH, coexisting ion concentration and the optimum adsorption conditions on the removal of Cs by titanate nano-materials were also obtained. The adsorption boundary curves, adsorption isotherm and the maximum adsorption capacity of Cs-137 as tracer on the nano-materials were studied in the research. The experimental results showed that the removal rate of Cs-137 in 0.01 tons of waste water with only 1 gram nano-materials could reach above 98%, according to the optimum adsorption conditions.

Keywords: preparation, titanate, cs-137, removal, nuclear

Procedia PDF Downloads 265
2517 Crab Shell Waste Chitosan-Based Thin Film for Acoustic Sensor Applications

Authors: Maydariana Ayuningtyas, Bambang Riyanto, Akhiruddin Maddu

Abstract:

Industrial waste of crustacean shells, such as shrimp and crab, has been considered as one of the major issues contributing to environmental pollution. The waste processing mechanisms to form new, practical substances with added value have been developed. Chitosan, a derived matter from chitin, which is obtained from crab and shrimp shells, performs prodigiously in broad range applications. A chitosan composite-based diaphragm is a new inspiration in fiber optic acoustic sensor advancement. Elastic modulus, dynamic response, and sensitivity to acoustic wave of chitosan-based composite film contribute great potentials of organic-based sound-detecting material. The objective of this research was to develop chitosan diaphragm application in fiber optic microphone system. The formulation was conducted by blending 5% polyvinyl alcohol (PVA) solution with dissolved chitosan at 0%, 1% and 2% in 1:1 ratio, respectively. Composite diaphragms were characterized for the morphological and mechanical properties to predict the desired acoustic sensor sensitivity. The composite with 2% chitosan indicated optimum performance with 242.55 µm thickness, 67.9% relative humidity, and 29-76% light transmittance. The Young’s modulus of 2%-chitosan composite material was 4.89×104 N/m2, which generated the voltage amplitude of 0.013V and performed sensitivity of 3.28 mV/Pa at 1 kHz. Based on the results above, chitosan from crustacean shell waste can be considered as a viable alternative material for fiber optic acoustic sensor sensing pad development. Further, the research in chitosan utilisation is proposed as novel optical microphone development in anthropogenic noise controlling effort for environmental and biodiversity conservation.

Keywords: acoustic sensor, chitosan, composite, crab shell, diaphragm, waste utilisation

Procedia PDF Downloads 253
2516 Biohydrogen Production from Starch Residues

Authors: Francielo Vendruscolo

Abstract:

This review summarizes the potential of starch agroindustrial residues as substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio-processing conditions for biohydrogen production will be discussed. Biohydrogen is a clean energy source with great potential to be an alternative fuel, because it releases energy explosively in heat engines or generates electricity in fuel cells producing water as only by-product. Anaerobic hydrogen fermentation or dark fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate-rich nitrogen-deficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen is possibly the most efficient way to use these agroindustrial residues.

Keywords: biofuel, dark fermentation, starch residues, food waste

Procedia PDF Downloads 393
2515 Management of Soil Borne Plant Diseases Using Agricultural Waste Residues as Green Waste and Organic Amendment

Authors: Temitayo Tosin Alawiye

Abstract:

Plant disease control is important in maintaining plant vigour, grain quantity, abundance of food, feed, and fibre produced by farmers all over the world. Farmers make use of different methods in controlling these diseases but one of the commonly used method is the use of chemicals. However, the continuous and excessive usages of these agrochemicals pose a danger to the environment, man and wildlife. The more the population growth the more the food security challenge which leads to more pressure on agronomic growth. Agricultural waste also known as green waste are the residues from the growing and processing of raw agricultural products such as fruits, vegetables, rice husk, corn cob, mushroom growth medium waste, coconut husk. They are widely used in land bioremediation, crop production and protection which include disease control. These agricultural wastes help the crop by improving the soil fertility, increase soil organic matter and reduce in many cases incidence and severity of disease. The objective was to review the agricultural waste that has worked effectively against certain soil-borne diseases such as Fusarium oxysporum, Pythiumspp, Rhizoctonia spp so as to help minimize the use of chemicals. Climate change is a major problem of agriculture and vice versa. Climate change and agriculture are interrelated. Change in climatic conditions is already affecting agriculture with effects unevenly distributed across the world. It will increase the risk of food insecurity for some vulnerable groups such as the poor in Sub Saharan Africa. The food security challenge will become more difficult as the world will need to produce more food estimated to feed billions of people in the near future with Africa likely to be the biggest hit. In order to surmount this hurdle, smallholder farmers in Africa must embrace climate-smart agricultural techniques and innovations which includes the use of green waste in agriculture, conservative agriculture, pasture and manure management, mulching, intercropping, etc. Training and retraining of smallholder farmers on the use of green energy to mitigate the effect of climate change should be encouraged. Policy makers, academia, researchers, donors, and farmers should pay more attention to the use of green energy as a way of reducing incidence and severity of soilborne plant diseases to solve looming food security challenges.

Keywords: agricultural waste, climate change, green energy, soil borne plant disease

Procedia PDF Downloads 266
2514 Possibility of Creating Polygon Layers from Raster Layers Obtained by using Classic Image Processing Software: Case of Geological Map of Rwanda

Authors: Louis Nahimana

Abstract:

Most maps are in a raster or pdf format and it is not easy to get vector layers of published maps. Faced to the production of geological simplified map of the northern Lake Tanganyika countries without geological information in vector format, I tried a method of obtaining vector layers from raster layers created from geological maps of Rwanda and DR Congo in pdf and jpg format. The procedure was as follows: The original raster maps were georeferenced using ArcGIS10.2. Under Adobe Photoshop, map areas with the same color corresponding to a lithostratigraphic unit were selected all over the map and saved in a specific raster layer. Using the same image processing software Adobe Photoshop, each RGB raster layer was converted in grayscale type and improved before importation in ArcGIS10. After georeferencing, each lithostratigraphic raster layer was transformed into a multitude of polygons with the tool "Raster to Polygon (Conversion)". Thereafter, tool "Aggregate Polygons (Cartography)" allowed obtaining a single polygon layer. Repeating the same steps for each color corresponding to a homogeneous rock unit, it was possible to reconstruct the simplified geological constitution of Rwanda and the Democratic Republic of Congo in vector format. By using the tool «Append (Management)», vector layers obtained were combined with those from Burundi to achieve vector layers of the geology of the « Northern Lake Tanganyika countries ».

Keywords: creating raster layer under image processing software, raster to polygon, aggregate polygons, adobe photoshop

Procedia PDF Downloads 439
2513 Green Technologies Developed by JSC “NIUIF”

Authors: Andrey Norov

Abstract:

In the recent years, Samoilov Research Institute for Mineral Fertilizers JSC “NIUIF”, the oldest (established in September 1919) industry-oriented institute in Russia, has developed a range of sustainable, environment-friendly, zero-waste technologies that ensure minimal consumption of materials and energy resources and fully consistent with the principles of Green Chemistry that include: - Ecofriendly energy and resource saving technology of sulfuric acid from sulfur according to DC-DA scheme (double conversion - double absorption); - Improved zero-waste technology of wet phosphoric acid (WPA) by dihydrate-hemihydrate process applicable to various types of phosphate raw materials; - Flexible, efficient, zero-waste, universal technology of NP / NPS / NPK / NPKS fertilizers with maximum heat recovery from chemical processes; - Novel, zero-waste, no-analogue technology of granular PK / PKS / NPKS fertilizers with controlled dissolution rate and nutrient supply into the soil, which allows to process a number of wastes and by-products; - Innovative resource-saving joint processing of wastes from the production of phosphogypsum and fluorosilicic acid (FSA) into ammonium sulfate with simultaneous neutralization of fluoride compounds with no lime used. - New fertilizer technology of increased environmental and agrochemical efficiency (currently under development). All listed green technologies are patented with Russian and Eurasian patents. The development of ecofriendly, safe, green technologies is ongoing in JSC “NIUIF”.

Keywords: NPKS fertilizers, FSA, sulfuric acid, WPA

Procedia PDF Downloads 92
2512 Assessment of Physical and Mechanical Properties of Perlite Mortars with Recycled Cement

Authors: Saca Nastasia, Radu Lidia, Dobre Daniela, Calotă Razvan

Abstract:

In order to achieve the European Union's sustainable and circular economy goals, strategies for reducing raw material consumption, reusing waste, and lowering CO₂ emissions have been developed. In this study, expanded perlite mortars with recycled cement (RC) were obtained and characterized. The recycled cement was obtained from demolition concrete waste. The concrete waste was crushed in a jaw and grinded in a horizontal ball mill to reduce the material's average grain size. Finally, the fine particles were sieved through a 125 µm sieve. The recycled cement was prepared by heating demolition concrete waste at 550°C for 3 hours. At this temperature, the decarbonization does not occur. The utilization of recycled cement can minimize the negative environmental effects of demolished concrete landfills as well as the demand for natural resources used in cement manufacturing. Commercial cement CEM II/A-LL 42.5R was substituted by 10%, 20%, and 30% recycled cement. By substituting reference cement (CEM II/A-LL 42.5R) by RC, a decrease in cement aqueous suspension pH, electrical conductivity, and Ca²⁺ concentration was observed for all measurements (2 hours, 6 hours, 24 hours, 4 days, and 7 days). After 2 hours, pH value was 12.42 for reference and conductivity of 2220 µS/cm and decreased to 12.27, respectively 1570 µS/cm for 30% RC. The concentration of Ca²⁺ estimated by complexometric titration was 20% lower in suspension with 30% RC in comparison to reference for 2 hours. The difference significantly diminishes over time. The mortars have cement: expanded perlite volume ratio of 1:3 and consistency between 140 mm and 200 mm. The density of fresh mortar was about 1400 kg/m3. The density, flexural and compressive strengths, water absorption, and thermal conductivity of hardened mortars were tested. Due to its properties, expanded perlite mortar is a good thermal insulation material.

Keywords: concrete waste, expanded perlite, mortar, recycled cement, thermal conductivity, mechanical strength

Procedia PDF Downloads 83
2511 Influence of Alkali Aggregate Reaction Induced Expansion Level on Confinement Efficiency of Carbon Fiber Reinforcement Polymer Wrapping Applied to Damaged Concrete Columns

Authors: Thamer Kubat, Riadh Al-Mahaidi, Ahmad Shayan

Abstract:

The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fibre-reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.

Keywords: carbon fiber reinforced polymer (CFRP), finite element (FE), ATENA, confinement efficiency

Procedia PDF Downloads 72
2510 Biosorption of Ni (II) Using Alkaline-Treated Rice Husk

Authors: Khanom Simarani

Abstract:

Rice husk has been widely reported as a good sorbent for heavy metals. Pre treatment of rice husk minimizes cellulose crystallinity and increases the surface area thus ensuring better adsorption capacity. Commercial base and natural base-treated rice husk were used to investigate the potential of Ni(II) adsorption from synthetic solutions and waste water in batch systems. Effects of process variables such as pH, contact time, adsorbent dose, initial Ni (II) concentration were studied. Optimum Ni (II) adsorption was observed at pH 6 within 60 min of contact time. Experimental data showed increased amount of adsorbed Ni(II) with increasing adsorbent dose and decreased percent of adsorption with increasing initial Ni(II) concentration. Kinetic isotherms (Langmuir, Freundlich) were also applied. Biosorption mechanism of rice husk was analyzed using SEM/EDS, FT-IR, and XRD. The results revealed that natural base produced from agroindustrial waste could be used as efficient as commercial bases during pre treatment rice husk in removing Ni(II) from waste waters within 15 min.

Keywords: Nickel removal, adsorbent, heavy metal, biomass

Procedia PDF Downloads 289
2509 Pre-Analysis of Printed Circuit Boards Based on Multispectral Imaging for Vision Based Recognition of Electronics Waste

Authors: Florian Kleber, Martin Kampel

Abstract:

The increasing demand of gallium, indium and rare-earth elements for the production of electronics, e.g. solid state-lighting, photovoltaics, integrated circuits, and liquid crystal displays, will exceed the world-wide supply according to current forecasts. Recycling systems to reclaim these materials are not yet in place, which challenges the sustainability of these technologies. This paper proposes a multispectral imaging system as a basis for a vision based recognition system for valuable components of electronics waste. Multispectral images intend to enhance the contrast of images of printed circuit boards (single components, as well as labels) for further analysis, such as optical character recognition and entire printed circuit board recognition. The results show that a higher contrast is achieved in the near infrared compared to ultraviolet and visible light.

Keywords: electronics waste, multispectral imaging, printed circuit boards, rare-earth elements

Procedia PDF Downloads 412
2508 Study of the Suitability for the Use of Gravel in the Regions around Araz River in Karabakh as a Concrete Aggregate

Authors: S. B. Shahmarova, F. N. Iskandarli, J. T. Zeynalov, F. N. Mammadov, M. M. Mirzayev, F. Y. Bayramov

Abstract:

The physical, mechanical, and chemical properties of aggregates play an important role in the production of ready-mixed concrete. Furthermore, the alkali-silicate reaction of aggregates is one of the essential factors in construction projects for the durability and longer service life of buildings and construction structures to be built. It is necessary to use the aggregates from the liberated regions of Karabakh and East Zangazur in the preparation of concretes to be produced for reconstruction and renovation projects in those regions. In this regard, the study of the physical and mechanical properties of aggregates in the regions around the Araz River (Fuzuli, Jabrayil, and Zangilan) became a significant issue. So, gravel samples were taken from seven different sources located in the regions around Araz River, where the quarries are planned to be built. The chemical oxide composition of the samples was determined, water absorption and specific gravity tests, chloride, alkali-silicate reaction tests, aggregate crushing strength test, Los Angeles, and frost resistance (into the solution of MgSO₄ and Na₂SO₄) tests were performed, and the results were evaluated in accordance with the relevant standards. As a result, it was determined that the aggregates in the regions around the Araz River (Fuzuli, Jabrayil, and Zangilan) conform to the relative standards and can be used effectively in the production of various concretes to be used for the projects in Karabakh.

Keywords: aggregates of the regions around Araz River (Fuzuli, Jabrayil, and Zangilan), physical and mechanical properties, alkali-silicate reaction, Karabakh, Azerbaijan

Procedia PDF Downloads 88
2507 Metal Contamination in an E-Waste Recycling Community in Northeastern Thailand

Authors: Aubrey Langeland, Richard Neitzel, Kowit Nambunmee

Abstract:

Electronic waste, ‘e-waste’, refers generally to discarded electronics and electrical equipment, including products from cell phones and laptops to wires, batteries and appliances. While e-waste represents a transformative source of income in low- and middle-income countries, informal e-waste workers use rudimentary methods to recover materials, simultaneously releasing harmful chemicals into the environment and creating a health hazard for themselves and surrounding communities. Valuable materials such as precious metals, copper, aluminum, ferrous metals, plastic and components are recycled from e-waste. However, persistent organic pollutants such as polychlorinated biphenyls (PCBs) and some polybrominated diphenyl ethers (PBDEs), and heavy metals are toxicants contained within e-waste and are of great concern to human and environmental health. The current study seeks to evaluate the environmental contamination resulting from informal e-waste recycling in a predominantly agricultural community in northeastern Thailand. To accomplish this objective, five types of environmental samples were collected and analyzed for concentrations of eight metals commonly associated with e-waste recycling during the period of July 2016 through July 2017. Rice samples from the community were collected after harvest and analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and gas furnace atomic spectroscopy (GF-AS). Soil samples were collected and analyzed using methods similar to those used in analyzing the rice samples. Surface water samples were collected and analyzed using absorption colorimetry for three heavy metals. Environmental air samples were collected using a sampling pump and matched-weight PVC filters, then analyzed using Inductively Coupled Argon Plasma-Atomic Emission Spectroscopy (ICAP-AES). Finally, surface wipe samples were collected from surfaces in homes where e-waste recycling activities occur and were analyzed using ICAP-AES. Preliminary1 results indicate that some rice samples have concentrations of lead and cadmium significantly higher than limits set by the United States Department of Agriculture (USDA) and the World Health Organization (WHO). Similarly, some soil samples show levels of copper, lead and cadmium more than twice the maximum permissible level set by the USDA and WHO, and significantly higher than other areas of Thailand. Surface water samples indicate that areas near e-waste recycling activities, particularly the burning of e-waste products, result in increased levels of cadmium, lead and copper in surface waters. This is of particular concern given that many of the surface waters tested are used in irrigation of crops. Surface wipe samples measured concentrations of metals commonly associated with e-waste, suggesting a danger of ingestion of metals during cooking and other activities. Of particular concern is the relevance of surface contamination of metals to child health. Finally, air sampling showed that the burning of e-waste presents a serious health hazard to workers and the environment through inhalation and deposition2. Our research suggests a need for improved methods of e-waste recycling that allows workers to continue this valuable revenue stream in a sustainable fashion that protects both human and environmental health. 1Statistical analysis to be finished in October 2017 due to follow-up field studies occurring in July and August 2017. 2Still awaiting complete analytic results.

Keywords: e-waste, environmental contamination, informal recycling, metals

Procedia PDF Downloads 359
2506 Waste Water Treatment and Emerging Waste Water Contaminants in Developing Countries

Authors: Opata Obinna Johnpaul

Abstract:

Wastewater is one of the day-to–day concerns of humans and the environment, in general, due to its importance to the environment. This is because of the presence of various contaminants that are involved in waste water. Wastewater treatment can be defined as the proportion of wastewater that is treated, in order to reduce pollutants before being discharged to the environment, by the level of treatment. This work discusses wastewater treatment, its contaminants, as well as the technologies, involved.The major focus is to analyze Okomu Oil Palm Company Plc, their effluent treatment facility. Okomu Oil Palm Company is based in Nigeria, which is one of the developing countries of the world. Okomu Oil Palm Company uses aquatic treatment technology for their effluent treatment and applies the physio-chemical level of advanced chemical treatment of wastewater treatment process. This work will discuss the outcome of the laboratory sample taken on the 30th January, 2015 and analyzed between 30th January- 4th February 2015.

Keywords: wastewater treatment, contaminants, physio-chemical process, Okomu oil palm

Procedia PDF Downloads 354
2505 Effects of Particle Size Distribution on Mechanical Strength and Physical Properties in Engineered Quartz Stone

Authors: Esra Arici, Duygu Olmez, Murat Ozkan, Nurcan Topcu, Furkan Capraz, Gokhan Deniz, Arman Altinyay

Abstract:

Engineered quartz stone is a composite material comprising approximately 90 wt.% fine quartz aggregate with a variety of particle size ranges and `10 wt.% unsaturated polyester resin (UPR). In this study, the objective is to investigate the influence of particle size distribution on mechanical strength and physical properties of the engineered stone slabs. For this purpose, granular quartz with two particle size ranges of 63-200 µm and 100-300 µm were used individually and mixed with a difference in ratios of mixing. The void volume of each granular packing was measured in order to define the amount of filler; quartz powder with the size of less than 38 µm, and UPR required filling inter-particle spaces. Test slabs were prepared using vibration-compression under vacuum. The study reports that both impact strength and flexural strength of samples increased as the mix ratio of the particle size range of 63-200 µm increased. On the other hand, the values of water absorption rate, apparent density and abrasion resistance were not affected by the particle size distribution owing to vacuum compaction. It is found that increasing the mix ratio of the particle size range of 63-200 µm caused the higher porosity. This led to increasing in the amount of the binder paste needed. It is also observed that homogeneity in the slabs was improved with the particle size range of 63-200 µm.

Keywords: engineered quartz stone, fine quartz aggregate, granular packing, mechanical strength, particle size distribution, physical properties.

Procedia PDF Downloads 139
2504 Green Amphiphilic Nanostructures from CNSL

Authors: Ermelinda Bloise, Giuseppe Mele

Abstract:

In recent years, Cashew Nut Shell Liquid (CNSL) has received great attention from researchers because it is an abundant waste material from the agri-food industry that fits perfectly into the idea of reusing waste from renewable resources for the production of new functional materials. The different components of this waste showed a certain chemical versatility and, above all, various biological activities. Take advantage of their surface-active capacity in particular conditions, various amphiphilic nanostructures have been prepared through sustainable chemical processes using cardanol (CA) and anacardic acid (AA) as two main components of the CNSL. In-batch solvent-free method has been developed to obtain new versatile green nanovesicles capable of effectively incorporating and stabilizing both hydrophobic and hydrophilic bioactive molecules. Furthermore, these nanosystems have shown antioxidant and cytotoxic properties and, in vitroinvestigations, established that they efficiently taken-up some human cells. With the idea of meeting the principles of green chemistry, even more, some improvements of the synthetic procedure have been implemented in terms of milder temperature and pH conditions, producing one-component nanovesicles, in which the AA and CA-derivatives are the sole building block of the green nanosystems. Finally, a new experimental approach has been carried out by a microfluidic route, with the advantage to operate at continuous flows, with a reduced amount of reagents, waste, and at lower temperatures, ensuring the achievement of size-monodisperse amphiphilic nanostructures that do not need further purification steps.

Keywords: bioactive nanosystems, bio-based renewables, cashew oil, green nanoformulations

Procedia PDF Downloads 84
2503 Flow Performance of Hybrid Cement Based Mortars

Authors: Z. Abdollahnejad, M. Kheradmand, F. Pacheco Torgal

Abstract:

The workability of hybrid alkaline cements is a field of knowledge that still needs further research efforts. This paper reports experimental results of 32 hybrid cement mixes regarding the joint effect of sodium hydroxide concentration, the use of a commercial superplasticizer and a biopolymer on the flow and compressive strength performance. The results show that the use of commercial admixtures led to a slightly increase in the flow of mortars with lower sodium hydroxide concentration.

Keywords: waste reuse, fly ash, waste glass, hybrid cement, biopolymer, polycarboxylate, flow

Procedia PDF Downloads 303
2502 The Integrated Safety Promotion Program on Safety Work Behaviors Among Waste Collectors

Authors: Natnicha Wareesamarn, Waruntorn Jongrungrotsakul, Anon Wisutthananon

Abstract:

Occupational illnesses and injuries are the partial results of unsafe work behaviors. Safety training, an occupational health and safety standard, could either reduce or prevent such illnesses and injuries. This quasi-experimental research aimed to examine the effect of integrated safety training on safety work behaviors among 54 waste collectors working in the Su-ngai Kolok and Muang districts in Narathiwat Province. The workers were equally divided into an experimental or a control group (27 in each). The study was implemented from September to November 2021. The research instruments consisted of 1) an integrated safety promotion program on safety work behaviors which was developed based on the literature review, and 2) a questionnaire on safe working behaviors among waste collectors modified from a safety work behaviors questionnaire by Sitthichai Jaikhan et al. (2019). The content validity of the questionnaire was confirmed by experts with a content validity index of 0.97, while reliability was at an acceptable level (0.86 - 0.90). Data were analyzed using descriptive statistics and a t-test. The findings showed that after receiving the integrated safety promotion program on safety work behaviors, the mean scores for safety work behaviors among the experimental group (x ̅ = 73.89, S.D.=1.12) were significantly higher than those of the control group (x ̅ = 47.93, S.D.= 2.45) (p<.001). Furthermore, it was found that the mean score for safety work behaviors among the experimental group after receiving the integrated safety promotion program (x ̅=73.89, S.D.= 2.45) was significantly higher than that before receiving the program (x ̅=47.85, S.D.= 2.16) (p<.001). These findings indicate that occupational health nurses and related staff should place great concern on the application of integrated safety promotion programs into their own work. This is anticipated to enhance safe work behaviors, thereby reducing occupational illnesses and injuries, as well as enhancing the quality of working life among waste collectors.

Keywords: integrated safety promotion program, safety work behaviors, waste collectors, safety training

Procedia PDF Downloads 114
2501 Ways Management of Foods Not Served to Consumers in Food Service Sector

Authors: Marzena Tomaszewska, Beata Bilska, Danuta Kolozyn-Krajewska

Abstract:

Food loss and food waste are a global problem of the modern economy. The research undertaken aimed to analyze how food is handled in catering establishments when it comes to food waste and to demonstrate main ways of management with foods/dishes not served to consumers. A survey study was conducted from January to June 2019. The selection of catering establishments participating in the study was deliberate. The study included establishments located only in Mazowieckie Voivodeship (Poland). 42 completed questionnaires were collected. In some questions, answers were based on a 5-point scale of 1 to 5 (from 'always'/'every day' to 'never'). The survey also included closed questions with a suggested cafeteria of answers. The respondents stated that in their workplaces, dishes served cold and hot ready meals are discarded every day or almost every day (23.7% and 20.5% of answers respectively). A procedure most frequently used for dealing with dishes not served to consumers on a given day is their storage at a cool temperature until the following day. In the research, 1/5 of respondents admitted that consumers 'always' or 'usually' leave uneaten meals on their plates, and over 41% 'sometimes' do so. It was found additionally that food not used in food service sector is most often thrown into a public container for rubbish. Most often thrown into the public container (with communal trash) were: expired products (80.0%), plate waste (80.0%), and inedible products (fruit and vegetable peels, egg shells) (77.5%). Most frequently into the container dedicated only for food waste were thrown out used deep-frying oil (62.5%). 10% of respondents indicated that inedible products in their workplaces is allocate for animal feeds. Food waste in the food service sector still remains an insufficiently studied issue, as owners of these objects are often unwilling to disclose data pertaining to the subject. Incorrect ways of management with foods not served to consumers were observed. There is the need to develop the educational activities for employees and management in the context of food waste management in the food service sector. This publication has been developed under the contract with the National Center for Research and Development No Gospostrateg1/385753/1/NCBR/2018 for carrying out and funding of a project implemented as part of the 'The social and economic development of Poland in the conditions of globalizing markets - GOSPOSTRATEG' program entitled 'Developing a system for monitoring wasted food and an effective program to rationalize losses and reduce food wastage' (acronym PROM).

Keywords: food waste, inedible products, plate waste, used deep-frying oil

Procedia PDF Downloads 114
2500 Assessing the Recycling Potential of Cupriavidus Necator for Space Travel: Production of Single Cell Proteins and Polyhydroxyalkanoates From Organic Waste

Authors: P. Joris, E. Lombard, X. Cameleyre, G. Navarro, A. Paillet, N. Gorret, S. E. Guillouet

Abstract:

Today, on the international space station, multiple supplies are needed per year to supply food and spare parts and to take out waste. But as it is planned to go longer and further into space these supplies will no longer be possible. The astronaut life support system must be able of continuously transform waste into valuable compounds. Two types of production were identified as critical and could be be supplemented by microorganisms. On the one hand, since microgravity causes rapid muscle loss, single cell proteins (SCPs) could be used as protein rich feed or food. On the other hand, having enough building materials to build an advanced habitat will not be possible only by transporting space goods from earth to mars for example. The bacterium Cupriavidus. necator is well known for its ability to produce a large amount of proteins or of polyhydroxyalkanoate biopolymers (PHAs) depending on its implementation. By coupling the life support system to a 3D-printer, astronauts could be supplied with an unlimited amount of building materials. Additionally, based on the design of the life support system, waste streams have been identified: urea from the crew urine and volatile fatty acids (VFAs) from a first stage of organic waste (excrement and food waste) treatment through anaerobic digestion. Thus, the objective of this, within the Spaceship.Fr project, was to demonstrate the feasibility of producing SCPs and PHAs from VFAs and urea in bioreactor. Because life support systems operate continuously as loops, continuous culture experiments were chosen and the effect of the bioreactor dilution rate on biomass composition was investigated. Total transformation of the carbon source into biomass with high SCP or PHA content was achieved in all cases. We will present the transformation performances of VFAs and urea by the bacteria in bioreactor in terms of titers, yields and productivities but also in terms of the quality of SCP and PHA produced, nucleic acid content. We will further discuss the envisioned integration of our process within life support systems.

Keywords: life support system, space travel, waste treatment, single cell proteins, polyhydroxyalkanoates, bioreactor

Procedia PDF Downloads 114
2499 Low Sulfur Diesel-Like Fuel From Quick Remediation Process of Waste Oil Sludge

Authors: Isam A. H. Al Zubaidy

Abstract:

A quick process may be needed to get the benefit the big generated quantity of waste oil sludge (WOS). The process includes the mixing process of WOS with commercial diesel fuel. Different ratios of WOS to diesel fuel were prepared ranging 1:1 to 20:1 by mass. The mixture was continuously mixing for 10 minutes using bench type overhead stirrer and followed by filtration process to separate the soil waste from filtrate oil product. The quantity and the physical properties of the oil filtrate were measured. It was found that the addition of up to 15% WOS to diesel fuel was accepted without dramatic changes to the properties of diesel fuel. The amount of waste oil sludge was decreased by about 60% by mass. This means that about 60 % of the mass of sludge was recovered as light fuel oil. The physical properties of the resulting fuel from 10% sludge mixing ratio showed that the specific gravity, ash content, carbon residue, asphaltene content, viscosity, diesel index, cetane number, and calorific value were affected slightly. The color was changed to light black color. The sulfur content was increased also. This requires other processes to reduce the sulfur content of the resulting light fuel. A new desulfurization process was achieved using adsorption techniques with activated biomaterial to reduce the sulfur content to acceptable limits. Adsorption process by ZnCl₂ activated date palm kernel powder was effective for improvement of the physical properties of diesel like fuel. The final sulfur content was increased to 0.185 wt%. This diesel like fuel can be used in all tractors, buses, tracks inside and outside the refineries. The solid remaining seems to be smooth and can be mixed with asphalt mixture for asphalting the roads or can be used with other materials as an asphalt coating material for constructed buildings. Through this process, valuable fuel has been recovered, and the amount of waste material had decreased.

Keywords: oil sludge, diesel fuel, blending process, filtration process

Procedia PDF Downloads 114
2498 Treatment of Industrial Effluents by Using Polyethersulfone/Chitosan Membrane Derived from Fishery Waste

Authors: Suneeta Kumari, Abanti Sahoo

Abstract:

Industrial effluents treatment is a major problem in the world. All wastewater treatment methods have some problems in the environment. Due to this reason, today many natural biopolymers are being used in the waste water treatment because those are safe for our environment. In this study, synthesis and characterization of polyethersulfone/chitosan membranes (Thin film composite membrane) are carried out. Fish scales are used as raw materials. Different characterization techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscope (SEM) and Thermal gravimetric analysis (TGA) are analysed for the synthesized membrane. The performance of membranes such as flux, rejection, and pore size are also checked. The synthesized membrane is used for the treatment of steel industry waste water where Biochemical oxygen demand (BOD), Chemical Oxygen Demand (COD), pH, colour, Total dissolved solids (TDS), Total suspended solids (TSS), Electrical conductivity (EC) and Turbidity aspects are analysed.

Keywords: fish scale, membrane synthesis, treatment of industrial effluents, chitosan

Procedia PDF Downloads 317
2497 Experimental Study - Inorganic Membranes for Air Separation

Authors: Adesola O. Orimoloye, Mohammed N. Kajama, Edward Gobina

Abstract:

Gas permeation of Oxygen [O2] and Nitrogen [N2] were investigated at room temperature using 15 and 6000nm pore diameter tubular commercial alumina ceramic membranes with pressure values ranging 1.00 to 2.50 bar. The flow rates of up to 2.59 and 2.77 l/min were achieved for O2 and N2 respectively. The ratio of O2/N2 flow rates were used to compute the O2/N2 selectivity. The experimental O2/N2 selectivity obtained for 15 nm was 1.05 while the 6000 nm indicated 0.95.

Keywords: gas separation, nitrogen, oxygen, selectivity

Procedia PDF Downloads 357
2496 The Influence of Incorporating Coffee Grounds on Enhancing the Engineering Properties of Expansive Soils: Experimental Approach and Optimization

Authors: Bencheikh Messaouda, Aidoud Assia, Salima Boukour, Benamara Fatima Zohra, Boukhatem Ghania, Zegueur Chaouki Salah Eddine

Abstract:

The utilization of waste materials in civil engineering has gained widespread attention in recent years due to their adverse effects on the environment. One such waste material is coffee grounds, a black residue generated daily across the country after coffee brewing. Instead of disposing of it, there is a growing interest in repurposing it for various agricultural and industrial applications. Utilizing coffee grounds in geotechnical engineering, such as in road embankments, presents an opportunity for its valorization. The study aims to contribute to the valorization of coffee grounds by enhancing the physical and mechanical properties of clayey soils through their incorporation at varying weight percentages (3%, 6%, 9%, 12%) as partial replacements in these soils. This not only addresses the issue of coffee ground waste but also makes a tangible contribution to sustainable development. The findings demonstrate that incorporating coffee grounds generally has positive effects on the physical and mechanical properties of clayey soil. However, the extent of these effects depends on factors such as the quantity of coffee grounds added, the particle size of the grounds, and the characteristics of the soil. Additionally, coffee grounds can improve the compression and tensile strength of clayey soil, resulting in increased stability and reduced susceptibility to deformation under external forces.

Keywords: clay soil, coffee grounds, optimizing, improvement, valorization, waste

Procedia PDF Downloads 39
2495 The Impact of Women on Urban Sustainability (Case Study: Three Districts of Tehran)

Authors: Reza Mokhtari Malekabadi, Leila Jalalabadi, Zahra Kiyani Ghaleh No

Abstract:

Today, systems of management and urban planning, attempt to reach more sustainable development through monitoring developments, urban development and development plans. Monitoring of changes in the urban places and sustainable urban development accounted a base for the realization of worthy goals urban sustainable development. The importance of women in environmental protection programs is high enough that in 21 agenda has been requested from all countries to allocate more shares to women in their policies. On the other hand, urban waste landfill has become one of the environmental concerns in modern cities. This research assumes that the impact of women on recycling, reduction and proper waste landfill is much more than men. For this reason, three districts; Yousef Abad, Heshmatieh and Nezam Abad are gauged through questionnaire and using the analytical research hypothesis model. This research will be categorized as functional research. The results have shown that noticing the power of women, their participation towards realization of the development objectives and programs can be used in solving their problems.

Keywords: citizens, urban, environmental, sustainability, solid waste, Tehran

Procedia PDF Downloads 363
2494 Prevalence and Risk Factors of Low Back Disorder among Waste Collection Workers: A Systematic Review

Authors: Benedicta Asante, Catherine Trask, Brenna Bath

Abstract:

Background: Waste Collection Workers’ (WCWs) activities contribute greatly to the recycling sector and are an important component of the waste management industry. As the recycling sector evolves, there is the increase in reports of injuries, particularly for common and debilitating musculoskeletal disorders such as low back disorder (LBD). WCWs are likely exposed to diverse work-related hazards that could contribute to LBD. However, there is currently no summary of the state of knowledge on the prevalence and risk factors of LBD within this workforce. Method: A comprehensive search was conducted in Ovid Medline, EMBASE, and Global Health e-publications with search term categories ‘low back disorder’ and ‘waste collection workers’. Two reviewers screened articles at title, abstract, and full-text stages. Data were extracted on study design, sampling strategy, socio-demographics, geographical region, and exposure definition, the definition of LBD, response rate, statistical techniques, LBD prevalence and risk factors. The risk of bias was assessed with a standardized tool. Results: The search of three databases generated 79 studies. Thirty-two studies met the study inclusion criteria for both title and abstract; only thirteen full-text articles met the study criteria and underwent data extraction. The majority of articles reported a 12-month prevalence of LBD between 16-74%. Although none of the included studies quantified relationships between risk factors and LBD, the suggested risk factors for LBD among WCWs included: awkward posture; lifting; pulling; pushing; repetitive motions; work duration; and physical loads. Conclusion: LBD is a major occupational health issue among WCWs. In light of these risks and future growth in this industry, further research should focus on the investigation of risk factors, with more focus on ergonomic exposure assessment, and LBD prevention efforts.

Keywords: low back pain, scavenger, waste pickers, waste collection workers

Procedia PDF Downloads 249
2493 Redefining Urban Landfills – Transformation of a Sanitary Landfill in Indian Cities

Authors: N. L. Divya Gayatri

Abstract:

In India, over 377 million urban people generate 62 million tons of municipal solid waste per annum. Forty-three million tons are collected, 11.9 million are treated and 31 million tons is dumped in landfill sites. The study aims to have an overall understanding of the working and functioning of a sanitary landfill from the siting to the closure stage and identifying various landscape design techniques that can be implemented in a landfill site and come up with a set of guidelines by analyzing the existing policies and guidelines pertaining to landfills. Constituents of municipal solid waste, methods of landfilling, issues, impacts, Mitigation strategies, Landscape design strategies, design approaches towards a landfill, infrastructure requirements, end-use opportunities have been discussed. The objective is to study the ecological and environmental degradation prevention methods, compare various techniques in remediation, study issues in landfill sites in India, analyze scope and opportunities and explore various landscape design strategies. The understanding of the function of landfills with respect to Municipal solid waste and landscaping is conveyed through this study. The study is limited to Landscape design factors in landfill design guidelines and policies mentioned with regard to the issues and impacts specific to the Indian context.

Keywords: sanitary landfill landscaping, environmental impact, municipal solid waste, guidelines, landscape design strategies, landscape design approaches

Procedia PDF Downloads 152