Search results for: absorptive capabilities
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1205

Search results for: absorptive capabilities

245 Investigating Effects of Vehicle Speed and Road PSDs on Response of a 35-Ton Heavy Commercial Vehicle (HCV) Using Mathematical Modelling

Authors: Amal G. Kurian

Abstract:

The use of mathematical modeling has seen a considerable boost in recent times with the development of many advanced algorithms and mathematical modeling capabilities. The advantages this method has over other methods are that they are much closer to standard physics theories and thus represent a better theoretical model. They take lesser solving time and have the ability to change various parameters for optimization, which is a big advantage, especially in automotive industry. This thesis work focuses on a thorough investigation of the effects of vehicle speed and road roughness on a heavy commercial vehicle ride and structural dynamic responses. Since commercial vehicles are kept in operation continuously for longer periods of time, it is important to study effects of various physical conditions on the vehicle and its user. For this purpose, various experimental as well as simulation methodologies, are adopted ranging from experimental transfer path analysis to various road scenario simulations. To effectively investigate and eliminate several causes of unwanted responses, an efficient and robust technique is needed. Carrying forward this motivation, the present work focuses on the development of a mathematical model of a 4-axle configuration heavy commercial vehicle (HCV) capable of calculating responses of the vehicle on different road PSD inputs and vehicle speeds. Outputs from the model will include response transfer functions and PSDs and wheel forces experienced. A MATLAB code will be developed to implement the objectives in a robust and flexible manner which can be exploited further in a study of responses due to various suspension parameters, loading conditions as well as vehicle dimensions. The thesis work resulted in quantifying the effect of various physical conditions on ride comfort of the vehicle. An increase in discomfort is seen with velocity increase; also the effect of road profiles has a considerable effect on comfort of the driver. Details of dominant modes at each frequency are analysed and mentioned in work. The reduction in ride height or deflection of tire and suspension with loading along with load on each axle is analysed and it is seen that the front axle supports a greater portion of vehicle weight while more of payload weight comes on fourth and third axles. The deflection of the vehicle is seen to be well inside acceptable limits.

Keywords: mathematical modeling, HCV, suspension, ride analysis

Procedia PDF Downloads 257
244 Characterization, Replication and Testing of Designed Micro-Textures, Inspired by the Brill Fish, Scophthalmus rhombus, for the Development of Bioinspired Antifouling Materials

Authors: Chloe Richards, Adrian Delgado Ollero, Yan Delaure, Fiona Regan

Abstract:

Growing concern about the natural environment has accelerated the search for non-toxic, but at the same time, economically reasonable, antifouling materials. Bioinspired surfaces, due to their nano and micro topographical antifouling capabilities, provide a hopeful approach to the design of novel antifouling surfaces. Biological organisms are known to have highly evolved and complex topographies, demonstrating antifouling potential, i.e. shark skin. Previous studies have examined the antifouling ability of topographic patterns, textures and roughness scales found on natural organisms. One of the mechanisms used to explain the adhesion of cells to a substrate is called attachment point theory. Here, the fouling organism experiences increased attachment where there are multiple attachment points and reduced attachment, where the number of attachment points are decreased. In this study, an attempt to characterize the microtopography of the common brill fish, Scophthalmus rhombus, was undertaken. Scophthalmus rhombus is a small flatfish of the family Scophthalmidae, inhabiting regions from Norway to the Mediterranean and the Black Sea. They reside in shallow sandy and muddy coastal areas at depths of around 70 – 80 meters. Six engineered surfaces (inspired by the Brill fish scale) produced by a 2-photon polymerization (2PP) process were evaluated for their potential as an antifouling solution for incorporation onto tidal energy blades. The micro-textures were analyzed for their AF potential under both static and dynamic laboratory conditions using two laboratory grown diatom species, Amphora coffeaeformis and Nitzschia ovalis. The incorporation of a surface topography was observed to cause a disruption in the growth of A. coffeaeformis and N. ovalis cells on the surface in comparison to control surfaces. This work has demonstrated the importance of understanding cell-surface interaction, in particular, topography for the design of novel antifouling technology. The study concluded that biofouling can be controlled by physical modification, and has contributed significant knowledge to the use of a successful novel bioinspired AF technology, based on Brill, for the first time.

Keywords: attachment point theory, biofouling, Scophthalmus rhombus, topography

Procedia PDF Downloads 107
243 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus

Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo

Abstract:

The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.

Keywords: anomaly detection, digital twin, generalised additive model, GAM, power consumption, supervised learning

Procedia PDF Downloads 154
242 Flora of Seaweeds and the Preliminary Screening of the Fungal Endophytes

Authors: Nur Farah Ain Zainee, Ahmad Ismail, Nazlina Ibrahim, Asmida Ismail

Abstract:

Seaweeds are economically important as they have the potential of being utilized, the capabilities and opportunities for further expansion as well as the availability of other species for future development. Hence, research on the diversity and distribution of seaweeds have to be expanded whilst the seaweeds are one of the Malaysian marine valuable heritage. The study on the distribution of seaweeds at Pengerang, Johor was carried out between February and November 2015 at Kampung Jawa Darat and Kampung Sungai Buntu. The study sites are located at the south-southeast of Peninsular Malaysia where the Petronas Refinery and Petrochemicals Integrated Project Development (RAPID) are in progress. In future, the richness of seaweeds in Pengerang will vanish soon due to the loss of habitat prior to RAPID project. The research was completed to study the diversity of seaweed and to determine the present of fungal endophyte isolated from the seaweed. The sample was calculated by using quadrat with 25-meter line transect by 3 replication for each site. The specimen were preserved, identified, processed in the laboratory and kept as herbarium specimen in Algae Herbarium, Universiti Kebangsaan Malaysia. The complete thallus specimens for fungal endophyte screening were chosen meticulously, transferred into sterile zip-lock plastic bag and kept in the freezer for further process. A total of 29 species has been identified including 12 species of Chlorophyta, 2 species of Phaeophyta and 14 species of Rhodophyta. From February to November 2015, the number of species highly varied and there was a significant change in community structure of seaweeds. Kampung Sungai Buntu shows the highest diversity throughout the study compared to Kampung Jawa Darat. This evidence can be related to the high habitat preference such as types of shores which is rocky, sandy and having lagoon and bay. These can enhance the existence of the seaweeds community due to variations of the habitat. Eighteen seaweed species were selected and screened for the capability presence of fungal endophyte; Sargassum polycystum marked having the highest number of fungal endophyte compared to the other species. These evidence has proved the seaweed have capable of accommodating a lot of species of fungal endophytes. Thus, these evidence leads to positive consequences where further research should be employed.

Keywords: diversity, fungal endophyte, macroalgae, screening, seaweed

Procedia PDF Downloads 229
241 Accurate Mass Segmentation Using U-Net Deep Learning Architecture for Improved Cancer Detection

Authors: Ali Hamza

Abstract:

Accurate segmentation of breast ultrasound images is of paramount importance in enhancing the diagnostic capabilities of breast cancer detection. This study presents an approach utilizing the U-Net architecture for segmenting breast ultrasound images aimed at improving the accuracy and reliability of mass identification within the breast tissue. The proposed method encompasses a multi-stage process. Initially, preprocessing techniques are employed to refine image quality and diminish noise interference. Subsequently, the U-Net architecture, a deep learning convolutional neural network (CNN), is employed for pixel-wise segmentation of regions of interest corresponding to potential breast masses. The U-Net's distinctive architecture, characterized by a contracting and expansive pathway, enables accurate boundary delineation and detailed feature extraction. To evaluate the effectiveness of the proposed approach, an extensive dataset of breast ultrasound images is employed, encompassing diverse cases. Quantitative performance metrics such as the Dice coefficient, Jaccard index, sensitivity, specificity, and Hausdorff distance are employed to comprehensively assess the segmentation accuracy. Comparative analyses against traditional segmentation methods showcase the superiority of the U-Net architecture in capturing intricate details and accurately segmenting breast masses. The outcomes of this study emphasize the potential of the U-Net-based segmentation approach in bolstering breast ultrasound image analysis. The method's ability to reliably pinpoint mass boundaries holds promise for aiding radiologists in precise diagnosis and treatment planning. However, further validation and integration within clinical workflows are necessary to ascertain their practical clinical utility and facilitate seamless adoption by healthcare professionals. In conclusion, leveraging the U-Net architecture for breast ultrasound image segmentation showcases a robust framework that can significantly enhance diagnostic accuracy and advance the field of breast cancer detection. This approach represents a pivotal step towards empowering medical professionals with a more potent tool for early and accurate breast cancer diagnosis.

Keywords: mage segmentation, U-Net, deep learning, breast cancer detection, diagnostic accuracy, mass identification, convolutional neural network

Procedia PDF Downloads 84
240 A Review of Digital Twins to Reduce Emission in the Construction Industry

Authors: Zichao Zhang, Yifan Zhao, Samuel Court

Abstract:

The carbon emission problem of the traditional construction industry has long been a pressing issue. With the growing emphasis on environmental protection and advancement of science and technology, the organic integration of digital technology and emission reduction has gradually become a mainstream solution. Among various sophisticated digital technologies, digital twins, which involve creating virtual replicas of physical systems or objects, have gained enormous attention in recent years as tools to improve productivity, optimize management and reduce carbon emissions. However, the relatively high implementation costs including finances, time, and manpower associated with digital twins have limited their widespread adoption. As a result, most of the current applications are primarily concentrated within a few industries. In addition, the creation of digital twins relies on a large amount of data and requires designers to possess exceptional skills in information collection, organization, and analysis. Unfortunately, these capabilities are often lacking in the traditional construction industry. Furthermore, as a relatively new concept, digital twins have different expressions and usage methods across different industries. This lack of standardized practices poses a challenge in creating a high-quality digital twin framework for construction. This paper firstly reviews the current academic studies and industrial practices focused on reducing greenhouse gas emissions in the construction industry using digital twins. Additionally, it identifies the challenges that may be encountered during the design and implementation of a digital twin framework specific to this industry and proposes potential directions for future research. This study shows that digital twins possess substantial potential and significance in enhancing the working environment within the traditional construction industry, particularly in their ability to support decision-making processes. It proves that digital twins can improve the work efficiency and energy utilization of related machinery while helping this industry save energy and reduce emissions. This work will help scholars in this field to better understand the relationship between digital twins and energy conservation and emission reduction, and it also serves as a conceptual reference for practitioners to implement related technologies.

Keywords: digital twins, emission reduction, construction industry, energy saving, life cycle, sustainability

Procedia PDF Downloads 100
239 The Impact of Artificial Intelligence on Agricultural Machines and Plant Nutrition

Authors: Kirolos Gerges Yakoub Gerges

Abstract:

Self-sustaining agricultural machines act in stochastic surroundings and therefore, should be capable of perceive the surroundings in real time. This notion can be done using image sensors blended with superior device learning, mainly Deep mastering. Deep convolutional neural networks excel in labeling and perceiving colour pix and since the fee of RGB-cameras is low, the hardware cost of accurate notion relies upon heavily on memory and computation power. This paper investigates the opportunity of designing lightweight convolutional neural networks for semantic segmentation (pixel clever class) with reduced hardware requirements, to allow for embedded usage in self-reliant agricultural machines. The usage of compression techniques, a lightweight convolutional neural community is designed to carry out actual-time semantic segmentation on an embedded platform. The community is skilled on two big datasets, ImageNet and Pascal Context, to apprehend as much as four hundred man or woman instructions. The 400 training are remapped into agricultural superclasses (e.g. human, animal, sky, road, area, shelterbelt and impediment) and the capacity to provide correct actual-time perception of agricultural environment is studied. The network is carried out to the case of self-sufficient grass mowing the usage of the NVIDIA Tegra X1 embedded platform. Feeding case-unique pics to the community consequences in a fully segmented map of the superclasses within the picture. As the network remains being designed and optimized, handiest a qualitative analysis of the technique is entire on the abstract submission deadline. intending this cut-off date, the finalized layout is quantitatively evaluated on 20 annotated grass mowing pictures. Light-weight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show aggressive performance on the subject of accuracy and speed. It’s miles viable to offer value-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.

Keywords: centrifuge pump, hydraulic energy, agricultural applications, irrigationaxial flux machines, axial flux applications, coreless machines, PM machinesautonomous agricultural machines, deep learning, safety, visual perception

Procedia PDF Downloads 26
238 Maturity Level of Knowledge Management in Whole Life Costing in the UK Construction Industry: An Empirical Study

Authors: Ndibarefinia Tobin

Abstract:

The UK construction industry has been under pressure for many years to produce economical buildings which offer value for money, not only during the construction phase, but more importantly, during the full life of the building. Whole life costing is considered as an economic analysis tool that takes into account the total investment cost in and ownership, operation and subsequent disposal of a product or system to which the whole life costing method is being applied. In spite of its importance, the practice is still crippled by the lack of tangible evidence, ‘know-how’ skills and knowledge of the practice i.e. the lack of professionals with the knowledge and training on the use of the practice in construction project, this situation is compounded by the absence of available data on whole life costing from relevant projects, lack of data collection mechanisms and so on. The aforementioned problems has forced many construction organisations to adopt project enhancement initiatives to boost their performance on the use of whole life costing techniques so as to produce economical buildings which offer value for money during the construction stage also the whole life of the building/asset. The management of knowledge in whole life costing is considered as one of the many project enhancement initiative and it is becoming imperative in the performance and sustainability of an organisation. Procuring building projects using whole life costing technique is heavily reliant on the knowledge, experience, ideas and skills of workers, which comes from many sources including other individuals, electronic media and documents. Due to the diversity of knowledge, capabilities and skills of employees that vary across an organisation, it is significant that they are directed and coordinated efficiently so as to capture, retrieve and share knowledge in order to improve the performance of the organisation. The implementation of knowledge management concept has different levels in each organisation. Measuring the maturity level of knowledge management in whole life costing practice will paint a comprehensible picture of how knowledge is managed in construction organisations. Purpose: The purpose of this study is to identify knowledge management maturity in UK construction organisations adopting whole life costing in construction project. Design/methodology/approach: This study adopted a survey method and conducted by distributing questionnaires to large construction companies that implement knowledge management activities in whole life costing practice in construction project. Four level of knowledge management maturity was proposed on this study. Findings: From the results obtained in the study shows that 34 contractors at the practiced level, 26 contractors at managed level and 12 contractors at continuously improved level.

Keywords: knowledge management, whole life costing, construction industry, knowledge

Procedia PDF Downloads 244
237 Transparency Obligations under the AI Act Proposal: A Critical Legal Analysis

Authors: Michael Lognoul

Abstract:

In April 2021, the European Commission released its AI Act Proposal, which is the first policy proposal at the European Union level to target AI systems comprehensively, in a horizontal manner. This Proposal notably aims to achieve an ecosystem of trust in the European Union, based on the respect of fundamental rights, regarding AI. Among many other requirements, the AI Act Proposal aims to impose several generic transparency obligationson all AI systems to the benefit of natural persons facing those systems (e.g. information on the AI nature of systems, in case of an interaction with a human). The Proposal also provides for more stringent transparency obligations, specific to AI systems that qualify as high-risk, to the benefit of their users, notably on the characteristics, capabilities, and limitations of the AI systems they use. Against that background, this research firstly presents all such transparency requirements in turn, as well as related obligations, such asthe proposed obligations on record keeping. Secondly, it focuses on a legal analysis of their scope of application, of the content of the obligations, and on their practical implications. On the scope of transparency obligations tailored for high-risk AI systems, the research notably notes that it seems relatively narrow, given the proposed legal definition of the notion of users of AI systems. Hence, where end-users do not qualify as users, they may only receive very limited information. This element might potentially raise concern regarding the objective of the Proposal. On the content of the transparency obligations, the research highlights that the information that should benefit users of high-risk AI systems is both very broad and specific, from a technical perspective. Therefore, the information required under those obligations seems to create, prima facie, an adequate framework to ensure trust for users of high-risk AI systems. However, on the practical implications of these transparency obligations, the research notes that concern arises due to potential illiteracy of high-risk AI systems users. They might not benefit from sufficient technical expertise to fully understand the information provided to them, despite the wording of the Proposal, which requires that information should be comprehensible to its recipients (i.e. users).On this matter, the research points that there could be, more broadly, an important divergence between the level of detail of the information required by the Proposal and the level of expertise of users of high-risk AI systems. As a conclusion, the research provides policy recommendations to tackle (part of) the issues highlighted. It notably recommends to broaden the scope of transparency requirements for high-risk AI systems to encompass end-users. It also suggests that principles of explanation, as they were put forward in the Guidelines for Trustworthy AI of the High Level Expert Group, should be included in the Proposal in addition to transparency obligations.

Keywords: aI act proposal, explainability of aI, high-risk aI systems, transparency requirements

Procedia PDF Downloads 315
236 Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Study Case of the Beterou Catchment

Authors: Ella Sèdé Maforikan

Abstract:

Accurate land cover mapping is essential for effective environmental monitoring and natural resources management. This study focuses on assessing the classification performance of two satellite datasets and evaluating the impact of different input feature combinations on classification accuracy in the Beterou catchment, situated in the northern part of Benin. Landsat-8 and Sentinel-2 images from June 1, 2020, to March 31, 2021, were utilized. Employing the Random Forest (RF) algorithm on Google Earth Engine (GEE), a supervised classification categorized the land into five classes: forest, savannas, cropland, settlement, and water bodies. GEE was chosen due to its high-performance computing capabilities, mitigating computational burdens associated with traditional land cover classification methods. By eliminating the need for individual satellite image downloads and providing access to an extensive archive of remote sensing data, GEE facilitated efficient model training on remote sensing data. The study achieved commendable overall accuracy (OA), ranging from 84% to 85%, even without incorporating spectral indices and terrain metrics into the model. Notably, the inclusion of additional input sources, specifically terrain features like slope and elevation, enhanced classification accuracy. The highest accuracy was achieved with Sentinel-2 (OA = 91%, Kappa = 0.88), slightly surpassing Landsat-8 (OA = 90%, Kappa = 0.87). This underscores the significance of combining diverse input sources for optimal accuracy in land cover mapping. The methodology presented herein not only enables the creation of precise, expeditious land cover maps but also demonstrates the prowess of cloud computing through GEE for large-scale land cover mapping with remarkable accuracy. The study emphasizes the synergy of different input sources to achieve superior accuracy. As a future recommendation, the application of Light Detection and Ranging (LiDAR) technology is proposed to enhance vegetation type differentiation in the Beterou catchment. Additionally, a cross-comparison between Sentinel-2 and Landsat-8 for assessing long-term land cover changes is suggested.

Keywords: land cover mapping, Google Earth Engine, random forest, Beterou catchment

Procedia PDF Downloads 63
235 An Alternative Credit Scoring System in China’s Consumer Lendingmarket: A System Based on Digital Footprint Data

Authors: Minjuan Sun

Abstract:

Ever since the late 1990s, China has experienced explosive growth in consumer lending, especially in short-term consumer loans, among which, the growth rate of non-bank lending has surpassed bank lending due to the development in financial technology. On the other hand, China does not have a universal credit scoring and registration system that can guide lenders during the processes of credit evaluation and risk control, for example, an individual’s bank credit records are not available for online lenders to see and vice versa. Given this context, the purpose of this paper is three-fold. First, we explore if and how alternative digital footprint data can be utilized to assess borrower’s creditworthiness. Then, we perform a comparative analysis of machine learning methods for the canonical problem of credit default prediction. Finally, we analyze, from an institutional point of view, the necessity of establishing a viable and nationally universal credit registration and scoring system utilizing online digital footprints, so that more people in China can have better access to the consumption loan market. Two different types of digital footprint data are utilized to match with bank’s loan default records. Each separately captures distinct dimensions of a person’s characteristics, such as his shopping patterns and certain aspects of his personality or inferred demographics revealed by social media features like profile image and nickname. We find both datasets can generate either acceptable or excellent prediction results, and different types of data tend to complement each other to get better performances. Typically, the traditional types of data banks normally use like income, occupation, and credit history, update over longer cycles, hence they can’t reflect more immediate changes, like the financial status changes caused by the business crisis; whereas digital footprints can update daily, weekly, or monthly, thus capable of providing a more comprehensive profile of the borrower’s credit capabilities and risks. From the empirical and quantitative examination, we believe digital footprints can become an alternative information source for creditworthiness assessment, because of their near-universal data coverage, and because they can by and large resolve the "thin-file" issue, due to the fact that digital footprints come in much larger volume and higher frequency.

Keywords: credit score, digital footprint, Fintech, machine learning

Procedia PDF Downloads 160
234 Reconceptualizing “Best Practices” in Public Sector

Authors: Eftychia Kessopoulou, Styliani Xanthopoulou, Ypatia Theodorakioglou, George Tsiotras, Katerina Gotzamani

Abstract:

Public sector managers frequently herald that implementing best practices as a set of standards, may lead to superior organizational performance. However, recent research questions the objectification of best practices, highlighting: a) the inability of public sector organizations to develop innovative administrative practices, as well as b) the adoption of stereotypical renowned practices inculcated in the public sector by international governance bodies. The process through which organizations construe what a best practice is, still remains a black box that is yet to be investigated, given the trend of continuous changes in public sector performance, as well as the burgeoning interest of sharing popular administrative practices put forward by international bodies. This study aims to describe and understand how organizational best practices are constructed by public sector performance management teams, like benchmarkers, during the benchmarking-mediated performance improvement process and what mechanisms enable this construction. A critical realist action research methodology is employed, starting from a description of various approaches on best practice nature when a benchmarking-mediated performance improvement initiative, such as the Common Assessment Framework, is applied. Firstly, we observed the benchmarker’s management process of best practices in a public organization, so as to map their theories-in-use. As a second step we contextualized best administrative practices by reflecting the different perspectives emerged from the previous stage on the design and implementation of an interview protocol. We used this protocol to conduct 30 semi-structured interviews with “best practice” process owners, in order to examine their experiences and performance needs. Previous research on best practices has shown that needs and intentions of benchmarkers cannot be detached from the causal mechanisms of the various contexts in which they work. Such causal mechanisms can be found in: a) process owner capabilities, b) the structural context of the organization, and c) state regulations. Therefore, we developed an interview protocol theoretically informed in the first part to spot causal mechanisms suggested by previous research studies and supplemented it with questions regarding the provision of best practice support from the government. Findings of this work include: a) a causal account of the nature of best administrative practices in the Greek public sector that shed light on explaining their management, b) a description of the various contexts affecting best practice conceptualization, and c) a description of how their interplay changed the organization’s best practice management.

Keywords: benchmarking, action research, critical realism, best practices, public sector

Procedia PDF Downloads 127
233 An Investigation into the Influence of Compression on 3D Woven Preform Thickness and Architecture

Authors: Calvin Ralph, Edward Archer, Alistair McIlhagger

Abstract:

3D woven textile composites continue to emerge as an advanced material for structural applications and composite manufacture due to their bespoke nature, through thickness reinforcement and near net shape capabilities. When 3D woven preforms are produced, they are in their optimal physical state. As 3D weaving is a dry preforming technology it relies on compression of the preform to achieve the desired composite thickness, fibre volume fraction (Vf) and consolidation. This compression of the preform during manufacture results in changes to its thickness and architecture which can often lead to under-performance or changes of the 3D woven composite. Unlike traditional 2D fabrics, the bespoke nature and variability of 3D woven architectures makes it difficult to know exactly how each 3D preform will behave during processing. Therefore, the focus of this study is to investigate the effect of compression on differing 3D woven architectures in terms of structure, crimp or fibre waviness and thickness as well as analysing the accuracy of available software to predict how 3D woven preforms behave under compression. To achieve this, 3D preforms are modelled and compression simulated in Wisetex with varying architectures of binder style, pick density, thickness and tow size. These architectures have then been woven with samples dry compression tested to determine the compressibility of the preforms under various pressures. Additional preform samples were manufactured using Resin Transfer Moulding (RTM) with varying compressive force. Composite samples were cross sectioned, polished and analysed using microscopy to investigate changes in architecture and crimp. Data from dry fabric compression and composite samples were then compared alongside the Wisetex models to determine accuracy of the prediction and identify architecture parameters that can affect the preform compressibility and stability. Results indicate that binder style/pick density, tow size and thickness have a significant effect on compressibility of 3D woven preforms with lower pick density allowing for greater compression and distortion of the architecture. It was further highlighted that binder style combined with pressure had a significant effect on changes to preform architecture where orthogonal binders experienced highest level of deformation, but highest overall stability, with compression while layer to layer indicated a reduction in fibre crimp of the binder. In general, simulations showed a relative comparison to experimental results; however, deviation is evident due to assumptions present within the modelled results.

Keywords: 3D woven composites, compression, preforms, textile composites

Procedia PDF Downloads 135
232 Facial Behavior Modifications Following the Diffusion of the Use of Protective Masks Due to COVID-19

Authors: Andreas Aceranti, Simonetta Vernocchi, Marco Colorato, Daniel Zaccariello

Abstract:

Our study explores the usefulness of implementing facial expression recognition capabilities and using the Facial Action Coding System (FACS) in contexts where the other person is wearing a mask. In the communication process, the subjects use a plurality of distinct and autonomous reporting systems. Among them, the system of mimicking facial movements is worthy of attention. Basic emotion theorists have identified the existence of specific and universal patterns of facial expressions related to seven basic emotions -anger, disgust, contempt, fear, sadness, surprise, and happiness- that would distinguish one emotion from another. However, due to the COVID-19 pandemic, we have come up against the problem of having the lower half of the face covered and, therefore, not investigable due to the masks. Facial-emotional behavior is a good starting point for understanding: (1) the affective state (such as emotions), (2) cognitive activity (perplexity, concentration, boredom), (3) temperament and personality traits (hostility, sociability, shyness), (4) psychopathology (such as diagnostic information relevant to depression, mania, schizophrenia, and less severe disorders), (5) psychopathological processes that occur during social interactions patient and analyst. There are numerous methods to measure facial movements resulting from the action of muscles, see for example, the measurement of visible facial actions using coding systems (non-intrusive systems that require the presence of an observer who encodes and categorizes behaviors) and the measurement of electrical "discharges" of contracting muscles (facial electromyography; EMG). However, the measuring system invented by Ekman and Friesen (2002) - "Facial Action Coding System - FACS" is the most comprehensive, complete, and versatile. Our study, carried out on about 1,500 subjects over three years of work, allowed us to highlight how the movements of the hands and upper part of the face change depending on whether the subject wears a mask or not. We have been able to identify specific alterations to the subjects’ hand movement patterns and their upper face expressions while wearing masks compared to when not wearing them. We believe that finding correlations between how body language changes when our facial expressions are impaired can provide a better understanding of the link between the face and body non-verbal language.

Keywords: facial action coding system, COVID-19, masks, facial analysis

Procedia PDF Downloads 75
231 Switching of Series-Parallel Connected Modules in an Array for Partially Shaded Conditions in a Pollution Intensive Area Using High Powered MOSFETs

Authors: Osamede Asowata, Christo Pienaar, Johan Bekker

Abstract:

Photovoltaic (PV) modules may become a trend for future PV systems because of their greater flexibility in distributed system expansion, easier installation due to their nature, and higher system-level energy harnessing capabilities under shaded or PV manufacturing mismatch conditions. This is as compared to the single or multi-string inverters. Novel residential scale PV arrays are commonly connected to the grid by a single DC–AC inverter connected to a series, parallel or series-parallel string of PV panels, or many small DC–AC inverters which connect one or two panels directly to the AC grid. With an increasing worldwide interest in sustainable energy production and use, there is renewed focus on the power electronic converter interface for DC energy sources. Three specific examples of such DC energy sources that will have a role in distributed generation and sustainable energy systems are the photovoltaic (PV) panel, the fuel cell stack, and batteries of various chemistries. A high-efficiency inverter using Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) for all active switches is presented for a non-isolated photovoltaic and AC-module applications. The proposed configuration features a high efficiency over a wide load range, low ground leakage current and low-output AC-current distortion with no need for split capacitors. The detailed power stage operating principles, pulse width modulation scheme, multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter is described. Experimental results of a hardware prototype, show that not only are MOSFET efficient in the system, it also shows that the ground leakage current issues are alleviated in the proposed inverter and also a 98 % maximum associated driver circuit is achieved. This, in turn, provides the need for a possible photovoltaic panel switching technique. This will help to reduce the effect of cloud movements as well as improve the overall efficiency of the system.

Keywords: grid connected photovoltaic (PV), Matlab efficiency simulation, maximum power point tracking (MPPT), module integrated converters (MICs), multilevel converter, series connected converter

Procedia PDF Downloads 127
230 Mesocarbon Microbeads Modification of Stainless-Steel Current Collector to Stabilize Lithium Deposition and Improve the Electrochemical Performance of Anode Solid-State Lithium Hybrid Battery

Authors: Abebe Taye

Abstract:

The interest in enhancing the performance of all-solid-state batteries featuring lithium metal anodes as a potential alternative to traditional lithium-ion batteries has prompted exploration into new avenues. A promising strategy involves transforming lithium-ion batteries into hybrid configurations by integrating lithium-ion and lithium-metal solid-state components. This study is focused on achieving stable lithium deposition and advancing the electrochemical capabilities of solid-state lithium hybrid batteries with anodes by incorporating mesocarbon microbeads (MCMBs) blended with silver nanoparticles. To achieve this, mesocarbon microbeads (MCMBs) blended with silver nanoparticles are coated on stainless-steel current collectors. These samples undergo a battery of analyses employing diverse techniques. Surface morphology is studied through scanning electron microscopy (SEM). The electrochemical behavior of the coated samples is evaluated in both half-cell and full-cell setups utilizing an argyrodite-type sulfide electrolyte. The stability of MCMBs in the electrolyte is assessed using electrochemical impedance spectroscopy (EIS). Additional insights into the composition are gleaned through X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). At an ultra-low N/P ratio of 0.26, stability is upheld for over 100 charge/discharge cycles in half-cells. When applied in a full-cell configuration, the hybrid anode preserves 60.1% of its capacity after 80 cycles at 0.3 C under a low N/P ratio of 0.45. In sharp contrast, the capacity retention of the cell using untreated MCMBs declines to 20.2% after a mere 60 cycles. The introduction of mesocarbon microbeads (MCMBs) combined with silver nanoparticles into the hybrid anode of solid-state lithium batteries substantially elevates their stability and electrochemical performance. This approach ensures consistent lithium deposition and removal, mitigating dendrite growth and the accumulation of inactive lithium. The findings from this investigation hold significant value in elevating the reversibility and energy density of lithium-ion batteries, thereby making noteworthy contributions to the advancement of more efficient energy storage systems.

Keywords: MCMB, lithium metal, hybrid anode, silver nanoparticle, cycling stability

Procedia PDF Downloads 75
229 Ethiopian Textile and Apparel Industry: Study of the Information Technology Effects in the Sector to Improve Their Integrity Performance

Authors: Merertu Wakuma Rundassa

Abstract:

Global competition and rapidly changing customer requirements are forcing major changes in the production styles and configuration of manufacturing organizations. Increasingly, traditional centralized and sequential manufacturing planning, scheduling, and control mechanisms are being found insufficiently flexible to respond to changing production styles and highly dynamic variations in product requirements. The traditional approaches limit the expandability and reconfiguration capabilities of the manufacturing systems. Thus many business houses face increasing pressure to lower production cost, improve production quality and increase responsiveness to customers. In a textile and apparel manufacturing, globalization has led to increase in competition and quality awareness and these industries have changed tremendously in the last few years. So, to sustain competitive advantage, companies must re-examine and fine-tune their business processes to deliver high quality goods at very low costs and it has become very important for the textile and apparel industries to integrate themselves with information technology to survive. IT can create competitive advantages for companies to improve coordination and communication among trading partners, increase the availability of information for intermediaries and customers and provide added value at various stages along the entire chain. Ethiopia is in the process of realizing its potential as the future sourcing location for the global textile and garments industry. With a population of over 90 million people and the fastest growing non-oil economy in Africa, Ethiopia today represents limitless opportunities for international investors. For the textile and garments industry Ethiopia promises a low cost production location with natural resources such as cotton to enable the setup of vertically integrated textile and garment operation. However; due to lack of integration of their business activities textile and apparel industry of Ethiopia faced a problem in that it can‘t be competent in the global market. On the other hand the textile and apparel industries of other countries have changed tremendously in the last few years and globalization has led to increase in competition and quality awareness. So the aim of this paper is to study the trend of Ethiopian Textile and Apparel Industry on the application of different IT system to integrate them in the global market.

Keywords: information technology, business integrity, textile and apparel industries, Ethiopia

Procedia PDF Downloads 362
228 Design and Control of a Brake-by-Wire System Using a Permanent Magnet Synchronous Motor

Authors: Daniel S. Gamba, Marc Sánchez, Javier Pérez, Juan J. Castillo, Juan A. Cabrera

Abstract:

The conventional hydraulic braking system operates through the activation of a master cylinder and solenoid valves that distribute and regulate brake fluid flow, adjusting the pressure at each wheel to prevent locking during sudden braking. However, in recent years, there has been a significant increase in the integration of electronic units into various vehicle control systems. In this context, one of the technologies most recently researched is the Brake-by-wire system, which combines electronic, hydraulic, and mechanical technologies to manage braking. This proposal introduces the design and control of a Brake-by-wire system, which will be part of a fully electric and teleoperated vehicle. This vehicle will have independent four-wheel drive, braking, and steering systems. The vehicle will be operated by embedded controllers programmed into a Speedgoat test system, which allows programming through Simulink and real-time capabilities. The braking system comprises all mechanical and electrical components, a vehicle control unit (VCU), and an electronic control unit (ECU). The mechanical and electrical components include a permanent magnet synchronous motor from Odrive and its inverter, the mechanical transmission system responsible for converting torque into pressure, and the hydraulic system that transmits this pressure to the brake caliper. The VCU is responsible for controlling the pressure and communicates with the other components through the CAN protocol, minimizing response times. The ECU, in turn, transmits the information obtained by a sensor installed in the caliper to the central computer, enabling the control loop to continuously regulate pressure by controlling the motor's speed and current. To achieve this, tree controllers are used, operating in a nested configuration for effective control. Since the computer allows programming in Simulink, a digital model of the braking system has been developed in Simscape, which makes it possible to reproduce different operating conditions, faithfully simulate the performance of alternative brake control systems, and compare the results with data obtained in various real tests. These tests involve evaluating the system's response to sinusoidal and square wave inputs at different frequencies, with the results compared to those obtained from conventional braking systems.

Keywords: braking, CAN protocol, permanent magnet motor, pressure control

Procedia PDF Downloads 19
227 2D Titanium, Vanadium Carbide Mxene, and Polyaniline Heterostructures for Electrochemical Energy Storage

Authors: Ayomide A. Sijuade, Nafiza Anjum

Abstract:

The rising demand to meet the need for clean and sustainable energy solutions has led the market to create effective energy storage technologies. In this study, we look at the possibility of using a heterostructure made of polyaniline (PANI), titanium carbide (Ti₃C₂), and vanadium carbide (V₂C) for energy storage devices. V₂C is a two-dimensional transition metal carbide with remarkable mechanical and electrical conductivity. Ti₃C2 has solid thermal conductivity and mechanical strength. PANI, on the other hand, is a conducting polymer with customizable electrical characteristics and environmental stability. Layer-by-layer assembly creates the heterostructure of V₂C, Ti₃C₂, and PANI, allowing for precise film thickness and interface quality control. Structural and morphological characterization is carried out using X-ray diffraction, scanning electron microscopy, and atomic force microscopy. For energy storage applications, the heterostructure’s electrochemical performance is assessed. Electrochemical experiments, such as cyclic voltammetry and galvanostatic charge-discharge tests, examine the heterostructure’s charge storage capacity, cycle stability, and rate performance. Comparing the heterostructure to the individual components reveals better energy storage capabilities. V₂C, Ti₃C₂, and PANI synergize to increase specific capacitance, boost charge storage, and prolong cycling stability. The heterostructure’s unique arrangement of 2D materials and conducting polymers promotes effective ion diffusion and charge transfer processes, improving the effectiveness of energy storage. The heterostructure also exhibits remarkable electrochemical stability, which minimizes capacity loss after repeated cycling. The longevity and long-term dependability of energy storage systems depend on this quality. By examining the potential of V₂C, Ti₃C₂, and PANI heterostructures, the results of this study expand energy storage technology. These materials’ specialized integration and design show potential for use in hybrid energy storage systems, lithium-ion batteries, and supercapacitors. Overall, the development of high-performance energy storage devices utilizing V₂C, Ti₃C₂, and PANI heterostructures is clarified by this research, opening the door to the realization of effective, long-lasting, and eco-friendly energy storage solutions to satisfy the demands of the modern world.

Keywords: MXenes, energy storage materials, conductive polymers, composites

Procedia PDF Downloads 56
226 A Comparative Study on the Development of Webquest and Online Treasure Hunt as Instructional Materials in Teaching Motion in One Dimension for Grade VII Students

Authors: Mark Anthony Burdeos, Kara Ella Catoto, Alraine Pauyon, Elesar Malicoban

Abstract:

This study sought to develop, validate, and implement the WebQuest and Online Treasure Hunt as instructional materials in teaching Motion in One Dimension for Grade 7 students and to determine its effects on the students’ conceptual learning, performance and attitude towards Physics. In the development stage, several steps were taken, such as the actual planning and developing the WebQuest and Online Treasure Hunt and making the lesson plan and achievement test. The content and the ICT(Information Communications Technology) effect of the developed instructional materials were evaluated by the Content and ICT experts using adapted evaluation forms. During the implementation, pretest and posttest were administered to determine students’ performance, and pre-attitude and post-attitude tests to investigate students’ attitudes towards Physics before and after the WebQuest and Online Treasure Hunt activity. The developed WebQuest and Online Treasure Hunt passed the validation of Content experts and ICT experts. Students acquired more knowledge on Motion in One Dimension and gained a positive attitude towards Physics after the utilization of WebQuest and Online Treasure Hunt, evidenced significantly higher scores in posttest compared to pretest and higher ratings in post-attitude than pre-attitude. The developed WebQuest and Online Treasure Hunt were proven good in quality and effective materials in teaching Motion in One Dimension and developing a positive attitude towards Physics. However, students performed better in the pretest and posttest and rated higher in the pre-attitude and post-attitude tests in the WebQuest than in the Online Treasure Hunt. This study would provide significant learning experiences to the students that would be useful in building their knowledge, in understanding concepts in a most understandable way, in exercising to use their higher-order thinking skills, and in utilizing their capabilities and abilities to relate Physics topics to real-life situations thereby, students can have in-depth learning about Motion in One Dimension. This study would help teachers to enhance the teaching strategies as the two instructional materials provide interesting, engaging, and innovative teaching-learning experiences for the learners, which are helpful in increasing the level of their motivation and participation in learning Physics. In addition, it would provide information as a reference in using technology in the classroom and to determine which of the two instructional materials, WebQuest and Online Treasure Hunt, is suitable for the teaching-learning process in Motion in One Dimension.

Keywords: ICT integration, motion in one dimension, online treasure hunt, Webquest

Procedia PDF Downloads 176
225 CSoS-STRE: A Combat System-of-System Space-Time Resilience Enhancement Framework

Authors: Jiuyao Jiang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge

Abstract:

Modern warfare has transitioned from the paradigm of isolated combat forces to system-to-system confrontations due to advancements in combat technologies and application concepts. A combat system-of-systems (CSoS) is a combat network composed of independently operating entities that interact with one another to provide overall operational capabilities. Enhancing the resilience of CSoS is garnering increasing attention due to its significant practical value in optimizing network architectures, improving network security and refining operational planning. Accordingly, a unified framework called CSoS space-time resilience enhancement (CSoS-STRE) has been proposed, which enhances the resilience of CSoS by incorporating spatial features. Firstly, a multilayer spatial combat network model has been constructed, which incorporates an information layer depicting the interrelations among combat entities based on the OODA loop, along with a spatial layer that considers the spatial characteristics of equipment entities, thereby accurately reflecting the actual combat process. Secondly, building upon the combat network model, a spatiotemporal resilience optimization model is proposed, which reformulates the resilience optimization problem as a classical linear optimization model with spatial features. Furthermore, the model is extended from scenarios without obstacles to those with obstacles, thereby further emphasizing the importance of spatial characteristics. Thirdly, a resilience-oriented recovery optimization method based on improved non dominated sorting genetic algorithm II (R-INSGA) is proposed to determine the optimal recovery sequence for the damaged entities. This method not only considers spatial features but also provides the optimal travel path for multiple recovery teams. Finally, the feasibility, effectiveness, and superiority of the CSoS-STRE are demonstrated through a case study. Simultaneously, under deliberate attack conditions based on degree centrality and maximum operational loop performance, the proposed CSoS-STRE method is compared with six baseline recovery strategies, which are based on performance, time, degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. The comparison demonstrates that CSoS-STRE achieves faster convergence and superior performance.

Keywords: space-time resilience enhancement, resilience optimization model, combat system-of-systems, recovery optimization method, no-obstacles and obstacles

Procedia PDF Downloads 15
224 Antioxidant, Hypoglycemic and Hypotensive Effects Affected by Various Molecular Weights of Cold Water Extract from Pleurotus Citrinopileatus

Authors: Pao-Huei Chen, Shu-Mei Lin, Yih-Ming Weng, Zer-Ran Yu, Be-Jen Wang

Abstract:

Pancreatic α-amylase and intestinal α-glucosidase are the critical enzymes for the breakdown of complex carbohydrates into di- or mono-saccharide, which play an important role in modulating postprandial blood sugars. Angiotensin converting enzyme (ACE) converts inactive angiotensin-I into active angiotensin-II, which subsequently increase blood pressure through triggering vasoconstriction and aldosterone secretion. Thus, inhibition of carbohydrate-digestion enzymes and ACE will help the management of blood glucose and blood pressure, respectively. Studies showed Pleurotus citrinopileatus (PC), an edible mushroom and commonly cultured in oriental countries, exerted anticancer, immune improving, antioxidative, hypoglycemic and hypolipidemic effects. Previous studies also showed various molecular weights (MW) fractioned from extracts may affect biological activities due to varying contents of bioactive components. Thus, the objective of this study is to investigate the in vitro antioxidant, hypoglycemic and hypotenstive effects and distribution of active compounds of various MWs of cold water extract from P. citrinopileatus (CWEPC). CWEPC was fractioned into four various MW fractions, PC-I (<1 kDa), PC-II (1-3.5 kDa), PC-III (3.5-10 kDa), and PC-IV (>10 kDa), using an ultrafiltration system. The physiological activities, including antioxidant activities, the inhibition capabilities of pancreatic α-amylase, intestinal α-glucosidase, and hypertension-linked ACE, and the active components, including polysaccharides, protein, and phenolic contents, of CWEPC and four fractions were determined. The results showed that fractions with lower MW exerted a higher antioxidant activity (p<0.05), which was positively correlated to the levels of total phenols. In contrast, the inhibition effects on the activities of α-amylase, α-glucosidase, and ACE of PC-IV fraction were significantly higher than CWEPC and the other three low MW fractions (< 10 kDa), which was more related to protein contents. The inhibition capability of CWEPC and PC-IV on α-amylase activity was 1/13.4 to 1/2.7 relative to that of acarbose (positive control), respectively. However, the inhibitory ability of PC-IV on α-glucosidase (IC50 = 0.5 mg/mL) was significantly higher than acarbose (IC50 = 1.7 mg/mL). Kinetic data revealed that PC-IV fraction followed a non-competitive inhibition on α-glucosidase activity. In conclusion, the distribution of various bioactive components contribute to the functions of different MW fractions on oxidative stress prevention, and blood pressure and glucose modulation.

Keywords: α-Amylase, angiotensin converting enzyme, α-Glucosidase, Pleurotus citrinopileatus

Procedia PDF Downloads 460
223 CFD Simulation of Spacer Effect on Turbulent Mixing Phenomena in Sub Channels of Boiling Nuclear Assemblies

Authors: Shashi Kant Verma, S. L. Sinha, D. K. Chandraker

Abstract:

Numerical simulations of selected subchannel tracer (Potassium Nitrate) based experiments have been performed to study the capabilities of state-of-the-art of Computational Fluid Dynamics (CFD) codes. The Computational Fluid Dynamics (CFD) methodology can be useful for investigating the spacer effect on turbulent mixing to predict turbulent flow behavior such as Dimensionless mixing scalar distributions, radial velocity and vortices in the nuclear fuel assembly. A Gibson and Launder (GL) Reynolds stress model (RSM) has been selected as the primary turbulence model to be applied for the simulation case as it has been previously found reasonably accurate to predict flows inside rod bundles. As a comparison, the case is also simulated using a standard k-ε turbulence model that is widely used in industry. Despite being an isotropic turbulence model, it has also been used in the modeling of flow in rod bundles and to produce lateral velocities after thorough mixing of coolant fairly. Both these models have been solved numerically to find out fully developed isothermal turbulent flow in a 30º segment of a 54-rod bundle. Numerical simulation has been carried out for the study of natural mixing of a Tracer (Passive scalar) to characterize the growth of turbulent diffusion in an injected sub-channel and, afterwards on, cross-mixing between adjacent sub-channels. The mixing with water has been numerically studied by means of steady state CFD simulations with the commercial code STAR-CCM+. Flow enters into the computational domain through the mass inflow at the three subchannel faces. Turbulence intensity and hydraulic diameter of 1% and 5.9 mm respectively were used for the inlet. A passive scalar (Potassium nitrate) is injected through the mass fraction of 5.536 PPM at subchannel 2 (Upstream of the mixing section). Flow exited the domain through the pressure outlet boundary (0 Pa), and the reference pressure was 1 atm. Simulation results have been extracted at different locations of the mixing zone and downstream zone. The local mass fraction shows uniform mixing. The effect of the applied turbulence model is nearly negligible just before the outlet plane because the distributions look like almost identical and the flow is fully developed. On the other hand, quantitatively the dimensionless mixing scalar distributions change noticeably, which is visible in the different scale of the colour bars.

Keywords: single-phase flow, turbulent mixing, tracer, sub channel analysis

Procedia PDF Downloads 207
222 Innovative Preparation Techniques: Boosting Oral Bioavailability of Phenylbutyric Acid Through Choline Salt-Based API-Ionic Liquids and Therapeutic Deep Eutectic Systems

Authors: Lin Po-Hsi, Sheu Ming-Thau

Abstract:

Urea cycle disorders (UCD) are rare genetic metabolic disorders that compromise the body's urea cycle. Sodium phenylbutyrate (SPB) is a medication commonly administered in tablet or powder form to lower ammonia levels. Nonetheless, its high sodium content poses risks to sodium-sensitive UCD patients. This necessitates the creation of an alternative drug formulation to mitigate sodium load and optimize drug delivery for UCD patients. This study focused on crafting a novel oral drug formulation for UCD, leveraging choline bicarbonate and phenylbutyric acid. The active pharmaceutical ingredient-ionic liquids (API-ILs) and therapeutic deep eutectic systems (THEDES) were formed by combining these with choline chloride. These systems display characteristics like maintaining a liquid state at room temperature and exhibiting enhanced solubility. This in turn amplifies drug dissolution rate, permeability, and ultimately oral bioavailability. Incorporating choline-based phenylbutyric acid as a substitute for traditional SPB can effectively curtail the sodium load in UCD patients. Our in vitro dissolution experiments revealed that the ILs and DESs, synthesized using choline bicarbonate and choline chloride with phenylbutyric acid, surpassed commercial tablets in dissolution speed. Pharmacokinetic evaluations in SD rats indicated a notable uptick in the oral bioavailability of phenylbutyric acid, underscoring the efficacy of choline salt ILs in augmenting its bioavailability. Additional in vitro intestinal permeability tests on SD rats authenticated that the ILs, formulated with choline bicarbonate and phenylbutyric acid, demonstrate superior permeability compared to their sodium and acid counterparts. To conclude, choline salt ILs developed from choline bicarbonate and phenylbutyric acid present a promising avenue for UCD treatment, with the added benefit of reduced sodium load. They also hold merit in formulation engineering. The sustained-release capabilities of DESs position them favorably for drug delivery, while the low toxicity and cost-effectiveness of choline chloride signal potential in formulation engineering. Overall, this drug formulation heralds a prospective therapeutic avenue for UCD patients.

Keywords: phenylbutyric acid, sodium phenylbutyrate, choline salt, ionic liquids, deep eutectic systems, oral bioavailability

Procedia PDF Downloads 115
221 Water Quality Trading with Equitable Total Maximum Daily Loads

Authors: S. Jamshidi, E. Feizi Ashtiani, M. Ardestani, A. Feizi Ashtiani

Abstract:

Waste load allocation (WLA) strategies usually intend to find economical policies for water resource management. Water quality trading (WQT) is an approach that uses discharge permit market to reduce total environmental protection costs. This primarily requires assigning discharge limits known as total maximum daily loads (TMDLs). These are determined by monitoring organizations with respect to the receiving water quality and remediation capabilities. The purpose of this study is to compare two approaches of TMDL assignment for WQT policy in small catchment area of Haraz River, in north of Iran. At first, TMDLs are assigned uniformly for the whole point sources to keep the concentrations of BOD and dissolved oxygen (DO) at the standard level at checkpoint (terminus point). This was simply simulated and controlled by Qual2kw software. In the second scenario, TMDLs are assigned using multi objective particle swarm optimization (MOPSO) method in which the environmental violation at river basin and total treatment costs are minimized simultaneously. In both scenarios, the equity index and the WLA based on trading discharge permits (TDP) are calculated. The comparative results showed that using economically optimized TMDLs (2nd scenario) has slightly more cost savings rather than uniform TMDL approach (1st scenario). The former annually costs about 1 M$ while the latter is 1.15 M$. WQT can decrease these annual costs to 0.9 and 1.1 M$, respectively. In other word, these approaches may save 35 and 45% economically in comparison with command and control policy. It means that using multi objective decision support systems (DSS) may find more economical WLA, however its outcome is not necessarily significant in comparison with uniform TMDLs. This may be due to the similar impact factors of dischargers in small catchments. Conversely, using uniform TMDLs for WQT brings more equity that makes stakeholders not feel that much envious of difference between TMDL and WQT allocation. In addition, for this case, determination of TMDLs uniformly would be much easier for monitoring. Consequently, uniform TMDL for TDP market is recommended as a sustainable approach. However, economical TMDLs can be used for larger watersheds.

Keywords: waste load allocation (WLA), water quality trading (WQT), total maximum daily loads (TMDLs), Haraz River, multi objective particle swarm optimization (MOPSO), equity

Procedia PDF Downloads 394
220 Sustainable Nanoengineering of Copper Oxide: Harnessing Its Antimicrobial and Anticancer Capabilities

Authors: Yemane Tadesse Gebreslassie, Fisseha Guesh Gebremeskel

Abstract:

Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an alternative approach for future therapeutic interventions against cancer and microbial infections.

Keywords: copper oxide nanoparticles, green synthesis, nanotechnology, microbial infection

Procedia PDF Downloads 63
219 Investigation a New Approach "AGM" to Solve of Complicate Nonlinear Partial Differential Equations at All Engineering Field and Basic Science

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Davood Domiri Danji

Abstract:

In this conference, our aims are accuracy, capabilities and power at solving of the complicated non-linear partial differential. Our purpose is to enhance the ability to solve the mentioned nonlinear differential equations at basic science and engineering field and similar issues with a simple and innovative approach. As we know most of engineering system behavior in practical are nonlinear process (especially basic science and engineering field, etc.) and analytical solving (no numeric) these problems are difficult, complex, and sometimes impossible like (Fluids and Gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure an innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical method (Runge-Kutta 4th). Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear partial differential equations, with help of that there is no difficulty for solving all nonlinear differential equations. Advantages and ability of this method (AGM) as follow: (a) Non-linear Differential equations (ODE, PDE) are directly solvable by this method. (b) In this method (AGM), most of the time, without any dimensionless procedure, we can solve equation(s) by any boundary or initial condition number. (c) AGM method always is convergent in boundary or initial condition. (d) Parameters of exponential, Trigonometric and Logarithmic of the existent in the non-linear differential equation with AGM method no needs Taylor expand which are caused high solve precision. (e) AGM method is very flexible in the coding system, and can solve easily varieties of the non-linear differential equation at high acceptable accuracy. (f) One of the important advantages of this method is analytical solving with high accuracy such as partial differential equation in vibration in solids, waves in water and gas, with minimum initial and boundary condition capable to solve problem. (g) It is very important to present a general and simple approach for solving most problems of the differential equations with high non-linearity in engineering sciences especially at civil engineering, and compare output with numerical method (Runge-Kutta 4th) and Exact solutions.

Keywords: new approach, AGM, sets of coupled nonlinear differential equation, exact solutions, numerical

Procedia PDF Downloads 463
218 Comparison of Phytochemicals in Grapes and Wine from Shenton Park Winery

Authors: Amanda Sheard, Garry Lee, Katherine Stockham

Abstract:

Introduction: Health benefits associated with wine consumption have been well documented; these include anticancer, anti-inflammatory, and cardiovascular protection. The majority of these health benefits have been linked to polyphenols found within wine and grapes. Once consumed polyphenols exhibit free radical quenching capabilities. Environmental factors such as rainfall, temperature, CO2 levels and sunlight exposure have been shown to affect the polyphenol content of grapes. The objective of this work was to evaluate the effect of growing conditions on the antioxidant capacity of grapes obtained from a single plot vineyard in Perth. This was achieved through the analysis of samples using; oxygen radical antioxidant capacity (ORAC), cellular antioxidant activity (CAA) in human red blood cells, ICP-MS and ICP-OES, total polyphenols (PP’s), and total flavonoid’s (FLa). The data obtained was compared to observed climate data. The 14 Selected Vitis Vinefera L. cultivars included Cabernet franc, Cabernet Sauvignon, Carnelian, Chardonnay, Grenache, Melbec, Merlot, Orange muscat, Rousanne, Sauvignon Blanc, Shiraz, Tempernillo, Verdelho, and Voignier. Results: Notable variation’s between cultivars included results ranging from 125 mg/100 g-350 mg/100 g for PP’s, 93 mg/100 g–300 mg/100 g for FLa, 13 mM T.E/kg–33 mM T.E/kg for ORAC and 0.3 mM Q.E/kg–27 mM Q.E/kg CAA were found between red and white grape cultivars. No correlation was found between CAA and the ORAC obtained in this study; except that white cultivars were consistently lower than red. ICP analysis showed that seeds contained the highest concentration of copper followed by skins and flesh of the grape. A positive correlation between copper and ORAC was found. The ORAC, PP’s, and FLa in red grapes were consistently higher than white grape cultivars; these findings were supported by literature values. Significance: The cellular antioxidant activities of white and red wine cultivars were used to compare the bioactivity of these grapes against the chemical ORAC measurement. The common method of antioxidant activity measurement is the chemical value from ORAC analysis; however this may not reflect the activity within the human body. Hence, the measurements were also carried out using the cellular antioxidant activity to perform a comparison. Additionally, the study explored the influence of weather systems such as El Niño and La Niña on the polyphenol content of Australian wine cultivars grown in Perth.

Keywords: oxygen radical antioxidant activity, cellular antioxidant activity, total polyphenols, total flavonoids, wine grapes, climate

Procedia PDF Downloads 290
217 The Algerian Experience in Developing Higher Education in the Country in Light of Modern Technology: Challenges and Prospects

Authors: Mohammed Messaoudi

Abstract:

The higher education sector in Algeria has witnessed in recent years a remarkable transformation, as it witnessed the integration of institutions within the modern technological environment and harnessing all appropriate mechanisms to raise the level of education and the level of training. Observers and those interested that it is necessary for the Algerian university to enter this field, especially with the efforts that seek to employ modern technology in the sector and encourage investment in this field, in addition to the state’s keenness to move towards building a path to benefit from modern technology, and to encourage energies in light of a reality that carries many Aspirations and challenges by achieving openness to the new digital environment and keeping pace with the ranks of international universities. Higher education is one of the engines of development for societies, as it is a vital field for the transfer of knowledge and scientific expertise, and the university is at the top of the comprehensive educational system for various disciplines in light of the achievement of a multi-dimensional educational system, and amid the integration of three basic axes that establish the sound educational process (teaching, research, relevant outputs efficiency), and according to a clear strategy that monitors the advancement of academic work, and works on developing its future directions to achieve development in this field. The Algerian University is considered one of the service institutions that seeks to find the optimal mechanisms to keep pace with the changes of the times, as it has become necessary for the university to enter the technological space and thus ensure the quality of education in it and achieve the required empowerment by dedicating a structure that matches the requirements of the challenges on which the sector is based, amid unremitting efforts to develop the capabilities. He sought to harness the mechanisms of communication and information technology and achieve transformation at the level of the higher education sector with what is called higher education technology. The conceptual framework of information and communication technology at the level of higher education institutions in Algeria is determined through the factors of organization, factors of higher education institutions, characteristics of the professor, characteristics of students, the outcomes of the educational process, and there is a relentless pursuit to achieve a positive interaction between these axes as they are basic components on which the success and achievement of higher education are based for his goals.

Keywords: Information and communication technology, Algerian university, scientific and cognitive development, challenges

Procedia PDF Downloads 83
216 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method

Authors: Mohamad R. Moshtagh, Ahmad Bagheri

Abstract:

Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.

Keywords: fault detection, gearbox, machine learning, wiener method

Procedia PDF Downloads 80