Search results for: Al/Fe dissimilar metals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1328

Search results for: Al/Fe dissimilar metals

368 Changes in Some Morphological Characters of Dill Under Cadmium Stress

Authors: A. M. Daneshian Moghaddam, A. H. Hosseinzadeh, A. Bandehagh

Abstract:

To investigate the effect of cadmium heavy metal stress on five ecotype of dill, this experiment was conducted in the greenhouse of Tabriz University and Shabestar Islamic Azad University’s laboratories with tree replications. After growing the plants, cadmium treatments (concentration 0,300, 600 µmol) were applied. The essential oil of the samples was measured by hydro distillation and using a Clevenger apparatus. Variables used in this study include: wet and dry roots and aerial part of plant, plant height, stem diameter, and root length. The results showed that different concentrations of heavy metal has statistical difference (p < 0.01) on the fresh weight, dry weight, plant height and root length but hadn’t significant difference on essential oil percentage and root length. Dill ecotypes have statistical significant difference on essential oil percent, fresh plant weight, plant height, root length, except plant dry weight. The interactions between Cd concentration and dill ecotypes have not significant effect on all traits, except root length. Maximum fresh weight (4.98 gr) and minimum amount (3.13 gr) were obtained in control trait and 600 ppm of cd concentration, respectively. Highest amount of fresh weight (4.78 gr) was obtained in Birjand ecotype. Maximum plant dry weight (1.2 gr) was obtained at control. The highest plant height (32.54 cm) was obtained in control and with applies cadmium concentrations from zero to 300 and 600 ppm was found significantly reduced in plant height.

Keywords: pollution, essential oil, ecotype, dill, heavy metals, cadmium

Procedia PDF Downloads 428
367 Composite Electrodes Containing Ni-Fe-Cr as an Activatable Oxygen Evolution Catalyst

Authors: Olga A. Krysiak, Grzegorz Cichowicz, Wojciech Hyk, Michal Cyranski, Jan Augustynski

Abstract:

Metal oxides are known electrocatalyst in water oxidation reaction. Due to the fact that it is desirable for efficient oxygen evolution catalyst to contain numerous redox-active metal ions to guard four electron water oxidation reaction, mixed metal oxides exhibit enhanced catalytic activity towards oxygen evolution reaction compared to single metal oxide systems. On the surface of fluorine doped tin oxide coated glass slide (FTO) deposited (doctor blade technique) mixed metal oxide layer composed of nickel, iron, and chromium. Oxide coating was acquired by heat treatment of the aqueous precursors' solutions of the corresponding salts. As-prepared electrodes were photosensitive and acted as an efficient oxygen evolution catalyst. Our results showed that obtained by this method electrodes can be activated which leads to achieving of higher current densities. The recorded current and photocurrent associated with oxygen evolution process were at least two orders of magnitude higher in the presence of oxide layer compared to bare FTO electrode. The overpotential of the process is low (ca. 0,2 V). We have also checked the activity of the catalyst at different known photoanodes used in sun-driven water splitting. Herein, we demonstrate that we were able to achieve efficient oxygen evolution catalysts using relatively cheap precursor consisting of earth abundant metals and simple method of preparation.

Keywords: chromium, electrocatalysis, iron, metal oxides, nickel, oxygen evolution

Procedia PDF Downloads 210
366 Hydro-Geochemistry and Groundwater Quality Assessment of Rajshahi City in Bangladesh

Authors: M. G. Mostafa, S. M. Helal Uddin, A. B. M. H. Haque, M. R. Hasan

Abstract:

The study was carried out to understand the hydro-geochemistry and ground water quality in Rajshahi City of Bangladesh. 240 groundwater (shallow and deep tubewell) samples were collected during the year 2009-2010 covering pre-monsoon, monsoon and post-monsoon seasons and analyzed for various physico-chemical parameters including major ions. The results reveal that the groundwater was slightly acidic to neutral in nature, total hardness observed in all samples fall under hard to very hard category. The concentration of calcium, iron, manganese, arsenic and lead ions were found far above the permissible limit in most of the shallow tubewells water samples. The analysis results show that the mean concentrations of cations and anions were observed in the order: Ca > Mg > Na > K > Fe > Mn > Pb > Zn > Cu > As (total) > Cd and HCO3-> Cl-> SO42-> NO3-, respectively. The concentrations of TH, TDS, HCO3-, NO3-, Ca, Fe, Zn, Cu, Pb, and As (total) were found to be higher during post-monsoon compare to pre-monsoon, whilst K, Mg, Cd, and Cl were found higher during pre-monsoon and monsoon. Ca-HCO3 was identified as the major hydro chemical facie using piper trilinear diagram. Higher concentration of toxic metals including Fe, Mn, As and Pb were found indicating various health hazards. The results also illustrate that the rock water interaction was the major geochemical process controlling the chemistry of groundwater in the study area.

Keywords: physio-chemical parameters, groundwater, geochemistry, Rajshahi city

Procedia PDF Downloads 314
365 Delineation of Oil – Polluted Sites in Ibeno LGA, Nigeria, Using Microbiological and Physicochemical Characterization

Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John

Abstract:

Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the highest crude oil & condensate producer in Nigeria has its operational base and an oil terminal, the Qua Iboe terminal (QIT) located at Ibeno, Nigeria. Other oil companies like Network Exploration and Production Nigeria Ltd, Frontier Oil Ltd; Shell Petroleum Development Company Ltd; Elf Petroleum Nigeria Ltd and Nigerian Agip Energy, a subsidiary of the Italian ENI E&P operate onshore, on the continental shelf and in deep offshore of the Atlantic Ocean, respectively with the coastal waters of Ibeno, Nigeria as the nearest shoreline. This study was designed to delineate the oil-polluted sites in Ibeno, Nigeria using microbiological and physico-chemical characterization of soils, sediments and ground and surface water samples from the study area. Results obtained revealed that there have been significant recent hydrocarbon inputs into this environment as observed from the high counts of hydrocarbonoclastic microorganisms in excess of 1% at all the stations sampled. Moreover, high concentrations of THC, BTEX and heavy metals contents in all the samples analyzed corroborate the high recent crude oil input into the study area. The results also showed that the pollution of the different environmental media sampled were of varying degrees, following the trend: Ground water > surface water > sediments > soils.

Keywords: microbiological characterization, oil-polluted sites, physico-chemical analyses, total hydrocarbon content

Procedia PDF Downloads 416
364 Effects of Fermentation Techniques on the Quality of Cocoa Beans

Authors: Monday O. Ale, Adebukola A. Akintade, Olasunbo O. Orungbemi

Abstract:

Fermentation as an important operation in the processing of cocoa beans is now affected by the recent climate change across the globe. The major requirement for effective fermentation is the ability of the material used to retain sufficient heat for the required microbial activities. Apart from the effects of climate on the rate of heat retention, the materials used for fermentation plays an important role. Most Farmers still restrict fermentation activities to the use of traditional methods. Improving on cocoa fermentation in this era of climate change makes it necessary to work on other materials that can be suitable for cocoa fermentation. Therefore, the objective of this study was to determine the effects of fermentation techniques on the quality of cocoa beans. The materials used in this fermentation research were heap-leaves (traditional), stainless steel, plastic tin, plastic basket and wooden box. The period of fermentation varies from zero days to 10 days. Physical and chemical tests were carried out for variables in quality determination in the samples. The weight per bean varied from 1.0-1.2 g after drying across the samples and the major color of the dry beans observed was brown except with the samples from stainless steel. The moisture content varied from 5.5-7%. The mineral content and the heavy metals decreased with increase in the fermentation period. A wooden box can conclusively be used as an alternative to heap-leaves as there was no significant difference in the physical features of the samples fermented with the two methods. The use of a wooden box as an alternative for cocoa fermentation is therefore recommended for cocoa farmers.

Keywords: fermentation, effects, fermentation materials, period, quality

Procedia PDF Downloads 207
363 Deciphering the Gut Microbiome's Role in Early-Life Immune Development

Authors: Xia Huo

Abstract:

Children are more vulnerable to environmental toxicants compared to adults, and their developing immune system is among the most sensitive targets regarding toxicity of environmental toxicants. Studies have found that exposure to environmental toxicants is associated with impaired immune function in children, but only a few studies have focused on the relationship between environmental toxicant exposure and vaccine antibody potency and immunoglobulin (Ig) levels in children. These studies investigated the associations of exposure to polychlorinated biphenyls (PCBs), perfluorinated compounds (PFCs), heavy metals (Pb, Cd, As, Hg) and PM2.5 with the serum-specific antibody concentrations and Ig levels against different vaccines, such as anti-Hib, tetanus, diphtheria toxoid, and analyze the possible mechanisms underlying exposure-related alterations of antibody titers and Ig levels against different vaccines. Results suggest that exposure to these toxicants is generally associated with decreased potency of antibodies produced from childhood immunizations and an overall deficiency in the protection the vaccines provide. Toxicant exposure is associated with vaccination failure and decreased antibody titers, and increased risk of immune-related diseases in children by altering specific immunoglobulin levels. Age, sex, nutritional status, and co-exposure may influence the effects of toxicants on the immune function in children. Epidemiological evidence suggests that exposure-induced changes to humoral immunerelated tissue/cells/molecules response to vaccines may have predominant roles in the inverse associations between antibody responsiveness to vaccines and environmental toxicants. These results help us to conduct better immunization policies for children under environmental toxicant burden.

Keywords: environmental toxicants, immunotoxicity, vaccination, antibodies, children's health

Procedia PDF Downloads 59
362 Design and Fabrication of a Smart Quadruped Robot

Authors: Shivani Verma, Amit Agrawal, Pankaj Kumar Meena, Ashish B. Deoghare

Abstract:

Over the decade robotics has been a major area of interest among the researchers and scientists in reducing human efforts. The need for robots to replace human work in different dangerous fields such as underground mining, nuclear power station and war against terrorist attack has gained huge attention. Most of the robot design is based on human structure popularly known as humanoid robots. However, the problems encountered in humanoid robots includes low speed of movement, misbalancing in structure, poor load carrying capacity, etc. The simplification and adaptation of the fundamental design principles seen in animals have led to the creation of bio-inspired robots. But the major challenges observed in naturally inspired robot include complexity in structure, several degrees of freedom and energy storage problem. The present work focuses on design and fabrication of a bionic quadruped walking robot which is based on different joint of quadruped mammals like a dog, cheetah, etc. The design focuses on the structure of the robot body which consists of four legs having three degrees of freedom per leg and the electronics system involved in it. The robot is built using readily available plastics and metals. The proposed robot is simple in construction and is able to move through uneven terrain, detect and locate obstacles and take images while carrying additional loads which may include hardware and sensors. The robot will find possible application in the artificial intelligence sector.

Keywords: artificial intelligence, bionic, quadruped robot, degree of freedom

Procedia PDF Downloads 215
361 SEAWIZARD-Multiplex AI-Enabled Graphene Based Lab-On-Chip Sensing Platform for Heavy Metal Ions Monitoring on Marine Water

Authors: M. Moreno, M. Alique, D. Otero, C. Delgado, P. Lacharmoise, L. Gracia, L. Pires, A. Moya

Abstract:

Marine environments are increasingly threatened by heavy metal contamination, including mercury (Hg), lead (Pb), and cadmium (Cd), posing significant risks to ecosystems and human health. Traditional monitoring techniques often fail to provide the spatial and temporal resolution needed for real-time detection of these contaminants, especially in remote or harsh environments. SEAWIZARD addresses these challenges by leveraging the flexibility, adaptability, and cost-effectiveness of printed electronics, with the integration of microfluidics to develop a compact, portable, and reusable sensor platform designed specifically for real-time monitoring of heavy metal ions in seawater. The SEAWIZARD sensor is a multiparametric Lab-on-Chip (LoC) device, a miniaturized system that integrates several laboratory functions into a single chip, drastically reducing sample volumes and improving adaptability. This platform integrates three printed graphene electrodes for the simultaneous detection of Hg, Cd and Pb via square wave voltammetry. These electrodes share the reference and the counter electrodes to improve space efficiency. Additionally, it integrates printed pH and temperature sensors to correct environmental interferences that may impact the accuracy of metal detection. The pH sensor is based on a carbon electrode with iridium oxide electrodeposited while the temperature sensor is graphene based. A protective dielectric layer is printed on top of the sensor to safeguard it in harsh marine conditions. The use of flexible polyethylene terephthalate (PET) as the substrate enables the sensor to conform to various surfaces and operate in challenging environments. One of the key innovations of SEAWIZARD is its integrated microfluidic layer, fabricated from cyclic olefin copolymer (COC). This microfluidic component allows a controlled flow of seawater over the sensing area, allowing for significant improved detection limits compared to direct water sampling. The system’s dual-channel design separates the detection of heavy metals from the measurement of pH and temperature, ensuring that each parameter is measured under optimal conditions. In addition, the temperature sensor is finely tuned with a serpentine-shaped microfluidic channel to ensure precise thermal measurements. SEAWIZARD also incorporates custom electronics that allow for wireless data transmission via Bluetooth, facilitating rapid data collection and user interface integration. Embedded artificial intelligence further enhances the platform by providing an automated alarm system, capable of detecting predefined metal concentration thresholds and issuing warnings when limits are exceeded. This predictive feature enables early warnings of potential environmental disasters, such as industrial spills or toxic levels of heavy metal pollutants, making SEAWIZARD not just a detection tool, but a comprehensive monitoring and early intervention system. In conclusion, SEAWIZARD represents a significant advancement in printed electronics applied to environmental sensing. By combining flexible, low-cost materials with advanced microfluidics, custom electronics, and AI-driven intelligence, SEAWIZARD offers a highly adaptable and scalable solution for real-time, high-resolution monitoring of heavy metals in marine environments. Its compact and portable design makes it an accessible, user-friendly tool with the potential to transform water quality monitoring practices and provide critical data to protect marine ecosystems from contamination-related risks.

Keywords: lab-on-chip, printed electronics, real-time monitoring, microfluidics, heavy metal contamination

Procedia PDF Downloads 30
360 Black Shales Outcrops in Malaysia: Occurrence and Geological Setting

Authors: Hassan Baioumy, Yuniarti Ulfa, Mohd Nawawi, Mohammad Noor Akmal Anuar

Abstract:

Paleozoic, Mesozoic and Cenozoic black shales that can be a potential source of energy and precious metals are widely distributed in Malaysia Peninsula, Sarawak and Sabah. Two Paleozoic black shales outcrops were reported in the Langkawi Island belonging to the Cambrian fluvial Machinchang Formation and the Silurian glaciomarine Singa Formation. More the seventeen occurrences of Paleozoic black shales outcrops have been found in the Peninsular Malaysia that range in age from Devonian, Carboniferous, and Permian in the Terengganu, Perlis, Pahang, and Perak States. Mesozoic black shales outcrops occur in several places in both the Peninsular Malaysia and Sarawak. In the Peninsular Malaysia, Triassic black shales occur in the Nami area, Northern Kedah and in the Pahang area. In Sarawak, Triassic black shales have been reported in the Bau area. Cenozoic black shales outcrops were reported in both Sarawak at Miri area and Sabah at the Ranau and Tenom areas. Preliminary mineralogical and geochemical investigations on some of these black shales outcrops showed distinct compositional variations among these black shales outcrops probably due to variations in their source area composition and/or depositional and diagenetic settings of these shales. Some of these shalese also subjected to post-depositional hydrothermal mineralization that enriched these shales with Au-bearing minerals such as pyrite, calchopyrite, and arsenopyrite. Many of the studied black shales outcrops look rich in organic matter, which increase the possibility of using these black shales as an unconventional energy resource.

Keywords: black shales, energy, mineralization, Malaysia

Procedia PDF Downloads 533
359 Lead Removal by Using the Synthesized Zeolites from Sugarcane Bagasse Ash

Authors: Sirirat Jangkorn, Pornsawai Praipipat

Abstract:

Sugarcane bagasse ash of sugar factories is solid wastes that the richest source of silica. The alkali fusion method, quartz particles in material can be dissolved and they can be used as the silicon source for synthesizing silica-based materials such as zeolites. Zeolites have many advantages such as catalyst to improve the chemical reactions and they can also remove heavy metals in the water including lead. Therefore, this study attempts to synthesize zeolites from the sugarcane bagasse ash, investigate their structure characterizations and chemical components to confirm the happening of zeolites, and examine their lead removal efficiency through the batch test studies. In this study, the sugarcane bagasse ash was chosen as the silicon source to synthesize zeolites, X-ray diffraction (XRD) and X-ray fluorescence spectrometry (XRF) were used to verify the zeolite pattern structures and element compositions, respectively. The batch test studies in dose (0.05, 0.1, 0.15 g.), contact time (1, 2, 3), and pH (3, 5, 7) were used to investigate the lead removal efficiency by the synthesized zeolite. XRD analysis result showed the crystalline phase of zeolite pattern, and XRF result showed the main element compositions of the synthesized zeolite that were SiO₂ (50%) and Al₂O₃ (30%). The batch test results showed the best optimum conditions of the synthesized zeolite for lead removal were 0.1 g, 2 hrs., and 5 of dose, contact time, and pH, respectively. As a result, this study can conclude that the zeolites can synthesize from the sugarcane bagasse ash and they can remove lead in the water.

Keywords: sugarcane bagasse ash, solid wastes, zeolite, lead

Procedia PDF Downloads 140
358 Efficient Mercury Sorbent: Activated Carbon and Metal Organic Framework Hybrid

Authors: Yongseok Hong, Kurt Louis Solis

Abstract:

In the present study, a hybrid sorbent using the metal organic framework (MOF), UiO-66, and powdered activated carbon (pAC) is synthesized to remove cationic and anionic metals simultaneously. UiO-66 is an octahedron-shaped MOF with a Zr₆O₄(OH)₄ metal node and 1,4-benzene dicarboxylic acid (BDC) organic linker. Zr-based MOFs are attractive for trace element remediation in wastewaters, because Zr is relatively non-toxic as compared to other classes of MOF and, therefore, it will not cause secondary pollution. Most remediation studies with UiO-66 target anions such as fluoride, but trace element oxyanions such as arsenic, selenium, and antimony have also been investigated. There have also been studies involving mercury removal by UiO-66 derivatives, however these require post-synthetic modifications or have lower effective surface areas. Activated carbon is known for being a readily available, well-studied, effective adsorbent for metal contaminants. Solvothermal method was employed to prepare hybrid sorbent from UiO66 and activated carbon, which could be used to remove mercury and selenium simultaneously. The hybrid sorbent was characterized using FSEM-EDS, FT-IR, XRD, and TGA. The results showed that UiO66 and activated carbon are successfully composited. From BET studies, the hybrid sorbent has a SBET of 1051 m² g⁻¹. Adsorption studies were performed, where the hybrid showed maximum adsorption of 204.63 mg g⁻¹ and 168 mg g⁻¹ for Hg (II) and selenite, respectively, and follows the Langmuir model for both species. Kinetics studies have revealed that the Hg uptake of the hybrid is pseudo-2nd order and has rate constant of 5.6E-05 g mg⁻¹ min⁻¹ and the selenite uptake follows the simplified Elovich model with α = 2.99 mg g⁻¹ min⁻¹, β = 0.032 g mg⁻¹.

Keywords: adsorption, flue gas wastewater, mercury, selenite, metal organic framework

Procedia PDF Downloads 175
357 Information Technology Impacts on the Supply Chain Performance: Case Study Approach

Authors: Kajal Zarei

Abstract:

Supply chain management is becoming an increasingly important issue in many businesses today. In such circumstances, a number of reasons such as management deficiency in different segments of the supply chain, lack of streamlined processes, resistance to change the current systems and technologies, and lack of advanced information system have paved the ground to ask for innovative research studies. To this end, information technology (IT) is becoming a major driver to overcome the supply chain limitations and deficiencies. The emergence of IT has provided an excellent opportunity for redefining the supply chain to be more effective and competitive. This paper has investigated the IT impact on two-digit industry codes in the International Standard Industrial Classification (ISIC) that are operating in four groups of the supply chains. Firstly, the primary fields of the supply chain were investigated, and then paired comparisons of different industry parts were accomplished. Using experts' ideas and Analytical Hierarchy Process (AHP), the status of industrial activities in Kurdistan Province in Iran was determined. The results revealed that manufacturing and inventory fields have been more important compared to other fields of the supply chain. In addition, IT has had greater impact on food and beverage industry, chemical industry, wood industry, wood products, and production of basic metals. The results indicated the need to IT awareness in supply chain management; in other words, IT applications needed to be developed for the identified industries.

Keywords: supply chain, information technology, analytical hierarchy process, two-digit codes, international standard industrial classification

Procedia PDF Downloads 281
356 Pharmacokinetics and Safety of Pacritinib in Patients with Hepatic Impairment and Healthy Volunteers

Authors: Suliman Al-Fayoumi, Sherri Amberg, Huafeng Zhou, Jack W. Singer, James P. Dean

Abstract:

Pacritinib is an oral kinase inhibitor with specificity for JAK2, FLT3, IRAK1, and CSF1R. In clinical studies, pacritinib was well tolerated with clinical activity in patients with myelofibrosis. The most frequent adverse events (AEs) observed with pacritinib are gastrointestinal (diarrhea, nausea, and vomiting; mostly grade 1-2 in severity) and typically resolve within 2 weeks. A human ADME mass balance study demonstrated that pacritinib is predominantly cleared via hepatic metabolism and biliary excretion (>85% of administered dose). The major hepatic metabolite identified, M1, is not thought to materially contribute to the pharmacological activity of pacritinib. Hepatic diseases are known to impair hepatic blood flow, drug-metabolizing enzymes, and biliary transport systems and may affect drug absorption, disposition, efficacy, and toxicity. This phase 1 study evaluated the pharmacokinetics (PK) and safety of pacritinib and the M1 metabolite in study subjects with mild, moderate, or severe hepatic impairment (HI) and matched healthy subjects with normal liver function to determine if pacritinib dosage adjustments are necessary for patients with varying degrees of hepatic insufficiency. Study participants (aged 18-85 y) were enrolled into 4 groups based on their degree of HI as defined by Child-Pugh Clinical Assessment Score: mild (n=8), moderate (n=8), severe (n=4), and healthy volunteers (n=8) matched for age, BMI, and sex. Individuals with concomitant renal dysfunction or progressive liver disease were excluded. A single 400 mg dose of pacritinib was administered to all participants. Blood samples were obtained for PK evaluation predose and at multiple time points postdose through 168 h. Key PK parameters evaluated included maximum plasma concentration (Cmax), time to Cmax (Tmax), area under the plasma concentration time curve (AUC) from hour zero to last measurable concentration (AUC0-t), AUC extrapolated to infinity (AUC0-∞), and apparent terminal elimination half-life (t1/2). Following treatment, pacritinib was quantifiable for all study participants at 1 h through 168 h postdose. Systemic pacritinib exposure was similar between healthy volunteers and individuals with mild HI. However, there was a significant difference between those with moderate and severe HI and healthy volunteers with respect to peak concentration (Cmax) and plasma exposure (AUC0-t, AUC0-∞). Mean Cmax decreased by 47% and 57% respectively in participants with moderate and severe HI vs matched healthy volunteers. Similarly, mean AUC0-t decreased by 36% and 45% and mean AUC0-∞ decreased by 46% and 48%, respectively in individuals with moderate and severe HI vs healthy volunteers. Mean t1/2 ranged from 51.5 to 74.9 h across all groups. The variability on exposure ranged from 17.8% to 51.8% across all groups. Systemic exposure of M1 was also significantly decreased in study participants with moderate or severe HI vs. healthy participants and individuals with mild HI. These changes were not significantly dissimilar from the inter-patient variability in these parameters observed in healthy volunteers. All AEs were grade 1-2 in severity. Diarrhea and headache were the only AEs reported in >1 participant (n=4 each). Based on these observations, it is unlikely that dosage adjustments would be warranted in patients with mild, moderate, or severe HI treated with pacritinib.

Keywords: pacritinib, myelofibrosis, hepatic impairment, pharmacokinetics

Procedia PDF Downloads 298
355 Effect of Filler Metal Diameter on Weld Joint of Carbon Steel SA516 Gr 70 and Filler Metal SFA 5.17 in Submerged Arc Welding SAW

Authors: A. Nait Salah, M. Kaddami

Abstract:

This work describes an investigation on the effect of filler metals diameter to weld joint, and low alloy carbon steel A516 Grade 70 is the base metal. Commercially SA516 Grade70 is frequently used for the manufacturing of pressure vessels, boilers and storage tank, etc. In fabrication industry, the hardness of the weld joint is between the important parameters to check, after heat treatment of the weld. Submerged arc welding (SAW) is used with two filler metal diameters, and this solid wire electrode is used for SAW non-alloy and for fine grain steels (SFA 5.17). The different diameters were selected (Ø = 2.4 mm and Ø = 4 mm) to weld two specimens. Both specimens were subjected to the same preparation conditions, heat treatment, macrograph, metallurgy micrograph, and micro-hardness test. Samples show almost similar structure with highest hardness. It is important to indicate that the thickness used in the base metal is 22 mm, and all specifications, preparation and controls were according to the ASME section IX. It was observed that two different filler metal diameters performed on two similar specimens demonstrated that the mechanical property (hardness) increases with decreasing diameter. It means that even the heat treatment has the same effect with the same conditions, the filler metal diameter insures a depth weld penetration and better homogenization. Hence, the SAW welding technique mentioned in the present study is favorable to implicate for the industry using the small filler metal diameter.

Keywords: ASME, base metal, micro-hardness test, submerged arc welding

Procedia PDF Downloads 153
354 Thiourea: Single Crystal with Non Linear Optical Characteristics

Authors: Kishor C. Poria, Deepak Adroja, Arvind Bajaj

Abstract:

During the last few decades, the growth of single crystals has attained enormous importance for both academic research and technology. Single crystals are pillars of modern technology. In recent emerging trends of photonics and optoelectronics technology, there has been increased need for organic and semi organic materials for Non-Linear Optical (NLO) applications. The paper dealt with the initiation of good single crystals of thiourea and metal doped thiourea. The authors have successfully grown thiourea (pure) and metal doped thiourea crystals using relatively simple and inexpensive slow evaporation of aqueous solution technique. Pure thiourea crystals were grown with different light intensities and frequencies as there growth conditions. Metals (Cu, Co, Ni, Fe) doped crystals were grown using a simple evaporation technique. The paper explains growth methods and associated grown parameters in detail. The average size of the crystal is varied in size from 40 mm x 1mm to 1.5 mm x 1.5 mm to 0.5 mm. Crystals obtained are hexagonal, tetragonal, and rectangular in shape with different optical qualities. All grown crystals are characterized using X-Ray Diffraction Analysis (XRD), Ultra Violet Visible analysis, and Fourier Transform Infrared Spectrometry. Their non-linear optical characteristics were determined by Second Harmonic Generation (SHG) and their Laser Dispersive analysis. The grown crystals are characterized using Nd:YAG laser and the highest conversion efficiency of the signal pass light are calculated. It shows 58 % of standard values for KDP crystals. All results are summarized in this work.

Keywords: crystal, metal-doped thiourea, non-linear optical, NLO, thiourea

Procedia PDF Downloads 142
353 Treatment of Sanitary Landfill Leachate by Advanced Oxidation Techniques

Authors: R. Kerbachi , Y. Medkour, F. Sahnoune

Abstract:

The integrated waste management is an important aspect in the implementation of sustainable development. Leachate generated by sanitary landfills is a high-strength wastewater that is likely to contain large amounts of organic and inorganic matter, with humic substances, as well as ammonia nitrogen, heavy metals, chlorinated organic and inorganic salts. Untreated leachates create a great potential for harm to the environment, they can permeate ground water or mix with surface water and contribute to the pollution of soil, ground water, and surface water. In Algeria, the treatment of landfill leachate is the weakest link in the solid waste management. This study focuses on the evaluation of the pollution load carried by leachate produced in a former sanitary landfill located to the west of Algiers and the implementation of advanced oxidation treatment (advanced oxidation process, AOP), Fenton, electro-Fenton etc. The characterization of these leachates shows that they have a high organic load, mineral and nitrogen. Measured COD reaches very high values of the order of 5000 to 20,000 mg O2 / L. On this non-biodegradable leachate, treatment tests have been carried out by the methods of coagulation-flocculation, Fenton oxidation, electrocoagulation and electro-Fenton. The removal efficiencies of pollution obtained for each of these modes of treatment are respectively 69, 80, 84 and 97%. The study shows that advanced oxidation processes are very suitable for the treatment of poorly biodegradable leachate.

Keywords: advanced oxidation processes, electrocoagulation, electro-Fenton, leachates treatment, sanitary landfill

Procedia PDF Downloads 298
352 ZnO / TiO2 Nanoparticles for Degradation of Cyanide Ion

Authors: Masoumeh Tabatabaee, Zahra Shahryarzadeh, Masoud R. Shishebor

Abstract:

Advanced oxidation process (AOPs) is alternative method for the complete degradation many organic pollutants. When a photocatalyst absorbs radiation whose energy hν > Eg an ē from its filled valance band (VB) is promoted to its conduction band (CB) and valance band holes h+ are formed. Electron would reduce any available species, including O2, water and hydroxide ion to form hydroxyl radicals. ZnO and TiO2 are important photocatalysts with high catalytic activity that have attracted much research attention. TiO2 can only absorb a small portion of solar spectrum in the UV region and many methods such as dye sensitization, doping of other metals and using TiO2 with another semiconductor have been used to improve the photocatalytic activity of TiO2 under solar irradiation. Studies have shown that the use of metal oxides or sulfide such as WO3, MoO3, SiO2, MgO, ZnO, and CdS with TiO2 can significantly enhance the photocatalytic activity of TiO2. Due to similarity of photodegradation mechanism of ZnO with TiO2, it is a suitable semiconductor using with TiO2 and recently nanosized bicomponent TiO2-ZnO photocatalysts were prepared and used for degradation of some pollutants. In this study, Nano-sized ZnO/TiO2 composite was synthesized. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to characterize the structure and morphology of it. The effect of photocatalytic activity of prepared ZnO/TiO2 on the degradation of cyanide ion under UV was investigated. The effect of various parameters such as ZnO/TiO2 concentration, amount of photocatalyst, amount of H2O2, initial dye or cyanide ion concentration, pH and irradiation time on were investigated. Results show that more than 95% of 4 mgL-1 cyanide ion degraded after 60-min reaction time and under UV irradiation.

Keywords: photodegradation, ZnO/TiO2, nanoparticle, cyanide ion

Procedia PDF Downloads 395
351 PM10 Chemical Characteristics in a Background Site at the Universidad Libre Bogotá

Authors: Laura X. Martinez, Andrés F. Rodríguez, Ruth A. Catacoli

Abstract:

One of the most important factors for air pollution is that the concentrations of PM10 maintain a constant trend, with the exception of some places where that frequently surpasses the allowed ranges established by Colombian legislation. The community that surrounds the Universidad Libre Bogotá is inhabited by a considerable number of students and workers, all of whom are possibly being exposed to PM10 for long periods of time while on campus. Thus, the chemical characterization of PM10 found in the ambient air at the Universidad Libre Bogotá was identified as a problem. A Hi-Vol sampler and EPA Test Method 5 were used to determine if the quality of air is adequate for the human respiratory system. Additionally, quartz fiber filters were utilized during sampling. Samples were taken three days a week during a dry period throughout the months of November and December 2015. The gravimetric analysis method was used to determine PM10 concentrations. The chemical characterization includes non-conventional carcinogenic pollutants. Atomic absorption spectrophotometry (AAS) was used for the determination of metals and VOCs were analyzed using the FTIR (Fourier transform infrared spectroscopy) method. In this way, concentrations of PM10, ranging from values of 13 µg/m3 to 66 µg/m3, were obtained; these values were below standard conditions. This evidence concludes that the PM10 concentrations during an exposure period of 24 hours are lower than the values established by Colombian law, Resolution 610 of 2010; however, when comparing these with the limits set by the World Health Organization (WHO), these concentrations could possibly exceed permissible levels.

Keywords: air quality, atomic absorption spectrophotometry, gas chromatography, particulate matter

Procedia PDF Downloads 256
350 Rapid and Efficient Removal of Lead from Water Using Chitosan/Magnetite Nanoparticles

Authors: Othman M. Hakami, Abdul Jabbar Al-Rajab

Abstract:

Occurrence of heavy metals in water resources increased in the recent years albeit at low concentrations. Lead (PbII) is among the most important inorganic pollutants in ground and surface water. However, removal of this toxic metal efficiently from water is of public and scientific concern. In this study, we developed a rapid and efficient removal method of lead from water using chitosan/magnetite nanoparticles. A simple and effective process has been used to prepare chitosan/magnetite nanoparticles (NPs) (CS/Mag NPs) with effect on saturation magnetization value; the particles were strongly responsive to an external magnetic field making separation from solution possible in less than 2 minutes using a permanent magnet and the total Fe in solution was below the detection limit of ICP-OES (<0.19 mg L-1). The hydrodynamic particle size distribution increased from an average diameter of ~60 nm for Fe3O4 NPs to ~75 nm after chitosan coating. The feasibility of the prepared NPs for the adsorption and desorption of Pb(II) from water were evaluated using Chitosan/Magnetite NPs which showed a high removal efficiency for Pb(II) uptake, with 90% of Pb(II) removed during the first 5 minutes and equilibrium in less than 10 minutes. Maximum adsorption capacities for Pb(II) occurred at pH 6.0 and under room temperature were as high as 85.5 mg g-1, according to Langmuir isotherm model. Desorption of adsorbed Pb on CS/Mag NPs was evaluated using deionized water at different pH values ranged from 1 to 7 which was an effective eluent and did not result the destruction of NPs, then, they could subsequently be reused without any loss of their activity in further adsorption tests. Overall, our results showed the high efficiency of chitosan/magnetite nanoparticles (NPs) in lead removal from water in controlled conditions, and further studies should be realized in real field conditions.

Keywords: chitosan, magnetite, water, treatment

Procedia PDF Downloads 404
349 Adsorption and Transformation of Lead in Coimbatore Urban Soils

Authors: K. Sivasubramanin, S. Mahimairaja, S. Pavithrapriya

Abstract:

Heavy metal pollution originating from industrial wastes is becoming a serious problem in many urban environments. These heavy metals, if not properly managed, could enter into the food chain and cause a serious health hazards in animals and humans. Industrial wastes, sewage sludge, and automobile emissions also contribute to heavy metal like Pb pollution in the urban environment. However, information is scarce on the heavy metal pollution in Coimbatore urban environment. Therefore, the current study was carried out to examine the extent of lead pollution in Coimbatore urban environment the maximum Pb concentration in Coimbatore urban environment was found in ukkadam, whose concentration in soils 352 mg kg-1. In many places, the Pb concentration was found exceeded the permissible limit of 100 mg kg-1. In laboratory, closed incubation experiment showed that the concentration of different species of Pb viz., water soluble Pb(H2O-Pb), exchangeable Pb(KNO3-Pb), organic-Pb(NaOH-Pb), and organic plus metal (Fe & Al) oxides bound-Pb(Na2 EDTA-Pb) was found significantly increased during the 15 days incubation, mainly due to biotransformation processes. Both the moisture content of soil and ambient temperature exerted a profound influence on the transformation of Pb. The results of a batch experiment has shown that the sorption data was adequately described by the Freundlich equation as indicated by the high correlation coefficients (R2= 0.64) than the Langmuir equation (R2 = 0.33). A maximum of 86 mg of Pb was found adsorbed per kilogram of soil. Consistently, a soil column experiment result had shown that only a small amount of Pb( < 1.0 µg g-1 soil) alone was found leached from the soil. This might be due to greater potential of the soil towards Pb adsorption.

Keywords: lead pollution, adsorption, transformation, heavy metal pollution

Procedia PDF Downloads 322
348 Caught in the Crossfire : Natural Resources, Energy Transition, and Conflict in the Democratic Republic of Congo

Authors: Koami West Togbetse

Abstract:

The global shift towards clean and sustainable energy sources, known as the energy transition, is compelling numerous countries to transition from polluting energy systems to cleaner alternatives, commonly referred to as green energies. In this context, cobalt holds significant importance as a crucial mineral in facilitating this energy transition due to its pivotal role in electric batteries. Considering the Democratic Republic of Congo’s reputation for political instability and its position as the largest producer of cobalt, possessing over 50% of the world’s reserves, we have assessed the potential conflicts that may arise as a result of the rapid increase in cobalt demand. The results show that cobalt does not appear to be a determinant contributing to all past conflicts over the study period in the Democratic Republic of Congo (DRC). Gold, on the other hand, stands out as one of the coveted metals for rebel groups engaged in rampant exploitation, increasing the likelihood of conflicts occurring. However, a more in-depth analysis reveals a shift in the relationship between cobalt production and conflict events around 2006. Prior to 2006, increased cobalt production was significantly associated with a reduction in conflict events. However, after 2006, this relationship became positive, indicating that higher cobalt production is now linked to a slight increase in conflict events. This suggests a change in the dynamics affecting conflicts related to cobalt production before and after 2006. According to our predictive model, cobalt has the potential to emerge increasingly as a contributing factor, just like gold.

Keywords: conflicts, natural resources, energy transition, geopolitics

Procedia PDF Downloads 31
347 Arsenic Removal from Drinking Water by Hybrid Hydrogel-Biochar Matrix: An Understanding of Process Parameters

Authors: Vibha Sinha, Sumedha Chakma

Abstract:

Arsenic (As) contamination in drinking water is a serious concern worldwide resulting in severe health maladies. To tackle this problem, several hydrogel based matrix which selectively uptake toxic metals from contaminated water has increasingly been examined as a potential practical method for metal removal. The major concern in hydrogels is low stability of matrix, resulting in poor performance. In this study, the potential of hybrid hydrogel-biochar matrix synthesized from natural plant polymers, specific for As removal was explored. Various compositional and functional group changes of the elements contained in the matrix due to the adsorption of As were identified. Moreover, to resolve the stability issue in hydrogel matrix, optimum and effective mixing of hydrogel with biochar was studied. Mixing varied proportions of matrix components at the time of digestion process was tested. Preliminary results suggest that partial premixing methods may increase the stability and reduce cost. Addition of nanoparticles and specific catalysts with different concentrations of As(III) and As(V) under batch conditions was performed to study their role in performance enhancement of the hydrogel matrix. Further, effect of process parameters, optimal uptake conditions and detailed mechanism derived from experimental studies were suitably conducted. This study provides an efficient, specific and a low-cost As removal method that offers excellent regeneration abilities which can be reused for value.

Keywords: arsenic, catalysts, hybrid hydrogel-biochar, water purification

Procedia PDF Downloads 189
346 Electrokinetic Remediation of Nickel Contaminated Clayey Soils

Authors: Waddah S. Abdullah, Saleh M. Al-Sarem

Abstract:

Electrokinetic remediation of contaminated soils has undoubtedly proven to be one of the most efficient techniques used to clean up soils contaminated with polar contaminants (such as heavy metals) and nonpolar organic contaminants. It can efficiently be used to clean up low permeability mud, wastewater, electroplating wastes, sludge, and marine dredging. EK processes have proved to be superior to other conventional methods, such as the pump and treat, and soil washing, since these methods are ineffective in such cases. This paper describes the use of electrokinetic remediation to clean up soils contaminated with nickel. Open cells, as well as advanced cylindrical cells, were used to perform electrokinetic experiments. Azraq green clay (low permeability soil, taken from the east part of Jordan) was used for the experiments. The clayey soil was spiked with 500 ppm of nickel. The EK experiments were conducted under direct current of 80 mA and 50 mA. Chelating agents (NaEDTA), disodium ethylene diamine-tetra-ascetic acid was used to enhance the electroremediation processes. The effect of carbonates presence in soils was, also, investigated by use of sodium carbonate. pH changes in the anode and the cathode compartments were controlled by using buffer solutions. The results showed that the average removal efficiency was 64%, for the Nickel spiked saturated clayey soil.Experiment results have shown that carbonates retarded the remediation process of nickel contaminated soils. Na-EDTA effectively enhanced the decontamination process, with removal efficiency increased from 64% without using the NaEDTA to over 90% after using Na-EDTA.

Keywords: buffer solution, contaminated soils, EDTA enhancement, electrokinetic processes, Nickel contaminated soil, soil remediation

Procedia PDF Downloads 245
345 Comparative Study of the Sensitivity of Two Freshwater Gastropods, Lymnaea Stagnalis and Planorbarius Corneus, to Silver Nanoparticles: Bioaccumulation and Toxicity

Authors: Ting Wang, Pierre Marle, Vera I. Slaveykova, Kristin Schirmer, Wei Liu

Abstract:

Metal-based nanoparticles (NPs) are considered detrimental to aquatic organisms due to their potential accumulation. However, little is known about the mechanisms underlying these effects and their species-specificity. Here, we used stable silver (Ag) NPs (20 nm, from 10 to 500 μg/L) with a low dissolution rate (≤2.4%) to study the bioaccumulation and biological impacts in two freshwater gastropods: Lymnaea stagnalis and Planorbarius corneus. No mortality was detected during the experiments. Ag bioaccumulation showed a dose-related increase with an enhanced concentration in both species after 7d exposure. L. stagnalis displayed a higher accumulation for AgNPs than P. corneus (e.g., up to 18- and 15-fold in hepatopancreas and hemolymph, respectively), which could be due to the more active L. stagnalis having greater contact with suspended AgNPs. Furthermore, the hepatopancreas and stomach were preferred organs for bioaccumulation compared to the kidney, mantle and foot. Regarding biological responses, the hemolymph rather than hepatopancreas appeared more susceptible to oxidative stress elicited by AgNPs, as shown by significantly increasing lipid peroxidation (i.e., formation of malondialdehyde). Neurotoxicity was detected in L. stagnalis when exposed to high concentrations (500 μg/L). Comparison with impacts elicited by dissolved Ag revealed that the effects observed on AgNPs exposure were mainly attributable to NPs. These results highlighted the relationship between the physiological traits, bioaccumulation, and toxicity responses of these two species to AgNPs and demonstrated the necessity of species-specificity considerations when assessing the toxicity of NPs.

Keywords: nanotoxicity, freshwater gastropods, species-specificity, metals, physiological traits

Procedia PDF Downloads 63
344 Changes in Amounts of Glycyrrhizin and Phenolic Compounds of Glycrrhiza glabra L. Seedlings Treated by Copper and Zinc Oxide

Authors: Roya Razavizadeh, Razieh Soltaninejad, Hakimeh Oloumi

Abstract:

Glycyrrhiza glabra L. (Licorice) is one of the oldest medicinal plants in Iran and secondary metabolites present in the plant root is used in food and pharmaceutical industries. With the use of heavy metals as elicitors, plant secondary metabolite production can be increased. In this study, the effects of the concentrations of 1 and 10 μM of zinc oxide and copper oxide on the contents of reducing sugars (as precursor of secondary metabolites), proline, glycyrrhizin, total phenolic compounds, flavonoids and anthocyanin in Glycyrrhiza glabra seedlings were investigated. Also, the correlation between the content of these metabolites in the treated seedlings was examined using Pearson's test. The amount of reducing sugars at concentration of 10 μM zinc oxide was decreased. Whereas, the amounts of proline and glycyrrhizin under treatment 1 and 10 μM copper oxide and 1 μM zinc oxide compared with the control plants was increased. The content of total phenolic compounds was increased with increasing concentrations of copper oxide. The highest amount of flavonoids was observed at concentrations of 1 and 10 μM copper oxide. Anthocyanin content was increased in concentration of 1 μM copper oxide. Also, the tannin content of the Glycyrrhiza glabra seedlings at concentrations of 10 μM zinc oxide was increased. Based on the result it seemed that at concentrations of 1 and 10 μM copper oxide the amount of glycyrrhizin, phenolic compounds, flavonoids, anthocyanins were significantly increased, whereas, zinc oxide had no significant impact on the levels of these metabolites.

Keywords: zinc oxide, copper oxide, phenolic compounds, licorice (glycyrrhiza glabra L.), glycyrrhizin

Procedia PDF Downloads 470
343 Blue Economy and Marine Mining

Authors: Fani Sakellariadou

Abstract:

The Blue Economy includes all marine-based and marine-related activities. They correspond to established, emerging as well as unborn ocean-based industries. Seabed mining is an emerging marine-based activity; its operations depend particularly on cutting-edge science and technology. The 21st century will face a crisis in resources as a consequence of the world’s population growth and the rising standard of living. The natural capital stored in the global ocean is decisive for it to provide a wide range of sustainable ecosystem services. Seabed mineral deposits were identified as having a high potential for critical elements and base metals. They have a crucial role in the fast evolution of green technologies. The major categories of marine mineral deposits are deep-sea deposits, including cobalt-rich ferromanganese crusts, polymetallic nodules, phosphorites, and deep-sea muds, as well as shallow-water deposits including marine placers. Seabed mining operations may take place within continental shelf areas of nation-states. In international waters, the International Seabed Authority (ISA) has entered into 15-year contracts for deep-seabed exploration with 21 contractors. These contracts are for polymetallic nodules (18 contracts), polymetallic sulfides (7 contracts), and cobalt-rich ferromanganese crusts (5 contracts). Exploration areas are located in the Clarion-Clipperton Zone, the Indian Ocean, the Mid Atlantic Ridge, the South Atlantic Ocean, and the Pacific Ocean. Potential environmental impacts of deep-sea mining include habitat alteration, sediment disturbance, plume discharge, toxic compounds release, light and noise generation, and air emissions. They could cause burial and smothering of benthic species, health problems for marine species, biodiversity loss, reduced photosynthetic mechanism, behavior change and masking acoustic communication for mammals and fish, heavy metals bioaccumulation up the food web, decrease of the content of dissolved oxygen, and climate change. An important concern related to deep-sea mining is our knowledge gap regarding deep-sea bio-communities. The ecological consequences that will be caused in the remote, unique, fragile, and little-understood deep-sea ecosystems and inhabitants are still largely unknown. The blue economy conceptualizes oceans as developing spaces supplying socio-economic benefits for current and future generations but also protecting, supporting, and restoring biodiversity and ecological productivity. In that sense, people should apply holistic management and make an assessment of marine mining impacts on ecosystem services, including the categories of provisioning, regulating, supporting, and cultural services. The variety in environmental parameters, the range in sea depth, the diversity in the characteristics of marine species, and the possible proximity to other existing maritime industries cause a span of marine mining impact the ability of ecosystems to support people and nature. In conclusion, the use of the untapped potential of the global ocean demands a liable and sustainable attitude. Moreover, there is a need to change our lifestyle and move beyond the philosophy of single-use. Living in a throw-away society based on a linear approach to resource consumption, humans are putting too much pressure on the natural environment. Applying modern, sustainable and eco-friendly approaches according to the principle of circular economy, a substantial amount of natural resource savings will be achieved. Acknowledgement: This work is part of the MAREE project, financially supported by the Division VI of IUPAC. This work has been partly supported by the University of Piraeus Research Center.

Keywords: blue economy, deep-sea mining, ecosystem services, environmental impacts

Procedia PDF Downloads 83
342 Immobilization of Lead in Contaminated Soil Using Enzyme Induced Calcite Precipitation (EİCP) Along with Coconut Fiber Biochar (CFB)

Authors: Kaniz Roksana, Aluthgun Hewage Shaini, Cheng Zhu

Abstract:

Lead is environmentally hazardous because it may persist for a long time in soil, water, and air, and it can travel large distances when carried by wind or water. Lead is toxic to many different species of organisms and has the potential to disrupt ecosystem stability. Moreover, lead can contaminate crops and livestock, which can then have an adverse effect on human health. This study was conducted to use the enzyme-induced calcium carbonate precipitation (EICP) technique from soybean crude extract urease along coconut fiber derived biochar’s (CFB) to bioremediate lead. To study the desorption rates of heavy metals from the soil, lead (Pb) was added to the soil at load ratios of 50 and 100 mg/kg. There were five separate treatment soil columns created: control sample, only CFB, only EICP, EICP with 2% (w/w) CFB, and EICP with 4% (w/w) CFB. Laboratory scale experiment demonstrates significant lead removal from soil. The amount of CaCO₃ precipitated in the soil was measured using a gravimetric acid digestion test, which related heavy metal desorption to the amount of precipitated calcium carbonate. These findings were validated using a scanning electron microscope (SEM), which revealed calcium carbonate and lead coprecipitation. As a result, the study reveals that the EICP technique, in conjunction with coconut fiber biochar, could be an efficient alternative in the remediation of heavy metal ion-contaminated soils.

Keywords: enzyme induced calcium carbonate precipitation (EICP), coconut fiber derived biochar’s (CFB), bioremediation, heavy metal

Procedia PDF Downloads 76
341 Food Safety and Quality Assurance and Skills Development among Farmers in Georgia

Authors: Kakha Nadiardze, Nana Phirosmanashvili

Abstract:

The goal of this paper is to present the problems of lack of information among farmers in food safety. Global food supply chains are becoming more and more diverse, making traceability systems much harder to implement across different food markets. In this abstract, we will present our work for analyzing the key developments in Georgian food market from regulatory controls to administrative procedures to traceability technologies. Food safety and quality assurance are most problematic issues in Georgia as food trade networks become more and more complex, food businesses are under more and more pressure to ensure that their products are safe and authentic. The theme follow-up principles from farm to table must be top-of-mind for all food manufacturers, farmers and retailers. Following the E. coli breakout last year, as well as more recent cases of food mislabeling, developments in food traceability systems is essential to food businesses if they are to present a credible brand image. Alongside this are the ever-developing technologies in food traceability networks, technologies that manufacturers and retailers need to be aware of if they are to keep up with food safety regulations and avoid recall. How to examine best practice in food management is the main question in order to protect company brand through safe and authenticated food. We are working with our farmers to work with our food safety experts and technology developers throughout the food supply chain. We provide time by time food analyses on heavy metals, pesticide residues and different pollutants. We are disseminating information among farmers how the latest food safety regulations will impact the methods to use to identify risks within their products.

Keywords: food safety, GMO, LMO, E. coli, quality

Procedia PDF Downloads 514
340 Industrial Wastewater Sludge Treatment in Chongqing, China

Authors: Victor Emery David Jr., Jiang Wenchao, Yasinta John, Md. Sahadat Hossain

Abstract:

Sludge originates from the process of treatment of wastewater. It is the byproduct of wastewater treatment containing concentrated heavy metals and poorly biodegradable trace organic compounds, as well as potentially pathogenic organisms (viruses, bacteria, etc.) which are usually difficult to treat or dispose of. China, like other countries, is no stranger to the challenges posed by an increase of wastewater. Treatment and disposal of sludge have been a problem for most cities in China. However, this problem has been exacerbated by other issues such as lack of technology, funding, and other factors. Suitable methods for such climatic conditions are still unavailable for modern cities in China. Against this background, this paper seeks to describe the methods used for treatment and disposal of sludge from industries and suggest a suitable method for treatment and disposal in Chongqing/China. From the research conducted, it was discovered that the highest treatment rate of sludge in Chongqing was 10.08%. The industrial waste piping system is not separated from the domestic system. Considering the proliferation of industry and urbanization, there is a likelihood that the production of sludge in Chongqing will increase. If the sludge produced is not properly managed, this may lead to adverse health and environmental effects. Disposal costs and methods for Chongqing were also included in this paper’s analysis. Research showed that incineration is the most expensive method of sludge disposal in China/Chongqing. Subsequent research, therefore, considered optional alternatives such as composting. Composting represents a relatively cheap waste disposal method considering the vast population, current technology and economic conditions of Chongqing, as well as China at large.

Keywords: Chongqing/China, disposal, industrial, sludge, treatment

Procedia PDF Downloads 321
339 Correlation Volumic Shrinkage, Conversion Degree of Dental Composites

Authors: A. Amirouche, M. Mouzali, D. C. Watts

Abstract:

During polymerization of dental composites, the volumic shrinkage is related to the conversion degree. The variation of the volumic shrinkage (S max according to the degree of conversion CD.), was examined for the experimental composites: (BisGMA/TEGDMA): (50/50), (75/25), (25/75) mixed with seven radiopac fillers: La2O3, BaO, BaSO4, SrO, ZrO2 , SrZrO3 and BaZrO 3 with different contents in weight, from 0 to 80%. We notice that whatever the filler and the composition in monomers, Smax increases with the increase in CD. This variation is, linear in particular in the case of the fillers containing only one heavy metal, and that whatever the composition in monomers. For a given salt, the increase of BisGMA composition leads to significant increase of S max more pronounced than the increase in CD. The variation of ratio (S max / CD.) with the increase of filler content is negligible. However the fillers containing two types of heavy metals have more effect on the volumic shrinkage than on the degree of conversion. Whatever the composition in monomer, and the content of filler containing only one heavy atom, S max increases with the increase in CD. Nevertheless, S max is affected by the viscosity of the medium compared with CD. For high percentages of mineral fillers (≥ 70% in weight), the diagrams S max according to CD are deviated of the linearity, owing to the fact that S max is affected by the high percentage of fillers compared with CD. The number of heavy atoms influences directly correlation (S max / CD.). In the case of the two mineral fillers: SrZrO3 and BaZrO3 ratio (S max / CD) moves away from the proportionality. The linearity of the diagrams Smax according to CD is less regular, due to the viscosity of high content of BisGMA. The study of Smax and DC of four commercial composites are presented and compared to elaborate experimental composites.

Keywords: Dental composites, degree of conversion, volumic shrinkage, photopolymerization

Procedia PDF Downloads 373