Search results for: hierarchical text classification models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10057

Search results for: hierarchical text classification models

307 Boredom in the Classroom: Sentiment Analysis on Teaching Practices and Related Outcomes

Authors: Elisa Santana-Monagas, Juan L. Núñez, Jaime León, Samuel Falcón, Celia Fernández, Rocío P. Solís

Abstract:

Students’ emotional experiences have been a widely discussed theme among researchers, proving a central role on students’ outcomes. Yet, up to now, far too little attention has been paid to teaching practices that negatively relate with students’ negative emotions in the higher education. The present work aims to examine the relationship between teachers’ teaching practices (i.e., students’ evaluations of teaching and autonomy support), the students’ feelings of boredom and agentic engagement and motivation in the higher education context. To do so, the present study incorporates one of the most popular tools in natural processing language to address students’ evaluations of teaching: sentiment analysis. Whereas most research has focused on the creation of SA models and assessing students’ satisfaction regarding teachers and courses to the author’s best knowledge, no research before has included results from SA into an explanatory model. A total of 225 university students (Mean age = 26.16, SD = 7.4, 78.7 % women) participated in the study. Students were enrolled in degree and masters’ studies at the faculty of Education of a public university of Spain. Data was collected using an online questionnaire students could access through a QR code they completed during a teaching period where the assessed teacher was not present. To assess students’ sentiments towards their teachers’ teaching, we asked them the following open-ended question: “If you had to explain a peer who doesn't know your teacher how he or she communicates in class, what would you tell them?”. Sentiment analysis was performed with Microsoft's pre-trained model. For this study, we relied on the probability of the students answer belonging to the negative category. To assess the reliability of the measure, inter-rater agreement between this NLP tool and one of the researchers, who independently coded all answers, was examined. The average pairwise percent agreement and the Cohen’s kappa were calculated with ReCal2. The agreement reached was of 90.8% and Cohen’s kappa .68, both considered satisfactory. To test the hypothesis relations a structural equation model (SEM) was estimated. Results showed that the model fit indices displayed a good fit to the data; χ² (134) = 351.129, p < .001, RMSEA = .07, SRMR = .09, TLI = .91, CFI = .92. Specifically, results show that boredom was negatively predicted by autonomy support practices (β = -.47[-.61, -.33]), whereas for the negative sentiment extracted from SET, this relation was positive (β = .23[.16, .30]). In other words, when students’ opinion towards their instructors’ teaching practices was negative, it was more likely for them to feel bored. Regarding the relations among boredom and student outcomes, results showed a negative predictive value of boredom on students’ motivation to study (β = -.46[-.63, -.29]) and agentic engagement (β = -.24[-.33, -.15]). Altogether, results show a promising future for sentiment analysis techniques in the field of education as they proved the usefulness of this tool when evaluating relations among teaching practices and student outcomes.

Keywords: sentiment analysis, boredom, motivation, agentic engagement

Procedia PDF Downloads 97
306 Doctor-Patient Interaction in an L2: Pragmatic Study of a Nigerian Experience

Authors: Ayodele James Akinola

Abstract:

This study investigated the use of English in doctor-patient interaction in a university teaching hospital from a southwestern state in Nigeria with the aim of identifying the role of communication in an L2, patterns of communication, discourse strategies, pragmatic acts, and contexts that shape the interaction. Jacob Mey’s Pragmatic Acts notion complemented with Emanuel and Emanuel’s model of doctor-patient relationship provided the theoretical standpoint. Data comprising 7 audio-recorded doctors-patient interactions were collected from a University Hospital in Oyo state, Nigeria. Interactions involving the use of English language were purposefully selected. These were supplemented with patients’ case notes and interviews conducted with doctors. Transcription was patterned alongside modified Arminen’s notations of conversation analysis. In the study, interaction in English between doctor and patients has the preponderance of direct-translation, code-mixing and switching, Nigerianism and use of cultural worldviews to express medical experience. Irrespective of these, three patterns communication, namely the paternalistic, interpretive, and deliberative were identified. These were exhibited through varying discourse strategies. The paternalistic model reflected slightly casual conversational conventions and registers. These were achieved through the pragmemic activities of situated speech acts, psychological and physical acts, via patients’ quarrel-induced acts, controlled and managed through doctors’ shared situation knowledge. All these produced empathising, pacifying, promising and instructing practs. The patients’ practs were explaining, provoking, associating and greeting in the paternalistic model. The informative model reveals the use of adjacency pairs, formal turn-taking, precise detailing, institutional talks and dialogic strategies. Through the activities of the speech, prosody and physical acts, the practs of declaring, alerting and informing were utilised by doctors, while the patients exploited adapting, requesting and selecting practs. The negotiating conversational strategy of the deliberative model featured in the speech, prosody and physical acts. In this model, practs of suggesting, teaching, persuading and convincing were utilised by the doctors. The patients deployed the practs of questioning, demanding, considering and deciding. The contextual variables revealed that other patterns (such as phatic and informative) are also used and they coalesced in the hospital within the situational and psychological contexts. However, the paternalistic model was predominantly employed by doctors with over six years in practice, while the interpretive, informative and deliberative models were found among registrar and others below six years of medical practice. Doctors’ experience, patients’ peculiarities and shared cultural knowledge influenced doctor-patient communication in the study.

Keywords: pragmatics, communication pattern, doctor-patient interaction, Nigerian hospital situation

Procedia PDF Downloads 178
305 Re-Evaluation of Field X Located in Northern Lake Albert Basin to Refine the Structural Interpretation

Authors: Calorine Twebaze, Jesca Balinga

Abstract:

Field X is located on the Eastern shores of L. Albert, Uganda, on the rift flank where the gross sedimentary fill is typically less than 2,000m. The field was discovered in 2006 and encountered about 20.4m of net pay across three (3) stratigraphic intervals within the discovery well. The field covers an area of 3 km2, with the structural configuration comprising a 3-way dip-closed hanging wall anticline that seals against the basement to the southeast along the bounding fault. Field X had been mapped on reprocessed 3D seismic data, which was originally acquired in 2007 and reprocessed in 2013. The seismic data quality is good across the field, and reprocessing work reduced the uncertainty in the location of the bounding fault and enhanced the lateral continuity of reservoir reflectors. The current study was a re-evaluation of Field X to refine fault interpretation and understand the structural uncertainties associated with the field. The seismic data, and three (3) wells datasets were used during the study. The evaluation followed standard workflows using Petrel software and structural attribute analysis. The process spanned from seismic- -well tie, structural interpretation, and structural uncertainty analysis. Analysis of three (3) well ties generated for the 3 wells provided a geophysical interpretation that was consistent with geological picks. The generated time-depth curves showed a general increase in velocity with burial depth. However, separation in curve trends observed below 1100m was mainly attributed to minimal lateral variation in velocity between the wells. In addition to Attribute analysis, three velocity modeling approaches were evaluated, including the Time-Depth Curve, Vo+ kZ, and Average Velocity Method. The generated models were calibrated at well locations using well tops to obtain the best velocity model for Field X. The Time-depth method resulted in more reliable depth surfaces with good structural coherence between the TWT and depth maps with minimal error at well locations of 2 to 5m. Both the NNE-SSW rift border fault and minor faults in the existing interpretation were reevaluated. However, the new interpretation delineated an E-W trending fault in the northern part of the field that had not been interpreted before. The fault was interpreted at all stratigraphic levels and thus propagates from the basement to the surface and is an active fault today. It was also noted that the entire field is less faulted with more faults in the deeper part of the field. The major structural uncertainties defined included 1) The time horizons due to reduced data quality, especially in the deeper parts of the structure, an error equal to one-third of the reflection time thickness was assumed, 2) Check shot analysis showed varying velocities within the wells thus varying depth values for each well, and 3) Very few average velocity points due to limited wells produced a pessimistic average Velocity model.

Keywords: 3D seismic data interpretation, structural uncertainties, attribute analysis, velocity modelling approaches

Procedia PDF Downloads 59
304 Experimental and Numerical Investigations on the Vulnerability of Flying Structures to High-Energy Laser Irradiations

Authors: Vadim Allheily, Rudiger Schmitt, Lionel Merlat, Gildas L'Hostis

Abstract:

Inflight devices are nowadays major actors in both military and civilian landscapes. Among others, missiles, mortars, rockets or even drones this last decade are increasingly sophisticated, and it is today of prior manner to develop always more efficient defensive systems from all these potential threats. In this frame, recent High Energy Laser weapon prototypes (HEL) have demonstrated some extremely good operational abilities to shot down within seconds flying targets several kilometers off. Whereas test outcomes are promising from both experimental and cost-related perspectives, the deterioration process still needs to be explored to be able to closely predict the effects of a high-energy laser irradiation on typical structures, heading finally to an effective design of laser sources and protective countermeasures. Laser matter interaction researches have a long history of more than 40 years at the French-German Research Institute (ISL). Those studies were tied with laser sources development in the mid-60s, mainly for specific metrology of fast phenomena. Nowadays, laser matter interaction can be viewed as the terminal ballistics of conventional weapons, with the unique capability of laser beams to carry energy at light velocity over large ranges. In the last years, a strong focus was made at ISL on the interaction process of laser radiation with metal targets such as artillery shells. Due to the absorbed laser radiation and the resulting heating process, an encased explosive charge can be initiated resulting in deflagration or even detonation of the projectile in flight. Drones and Unmanned Air Vehicles (UAVs) are of outmost interests in modern warfare. Those aerial systems are usually made up of polymer-based composite materials, whose complexity involves new scientific challenges. Aside this main laser-matter interaction activity, a lot of experimental and numerical knowledge has been gathered at ISL within domains like spectrometry, thermodynamics or mechanics. Techniques and devices were developed to study separately each aspect concerned by this topic; optical characterization, thermal investigations, chemical reactions analysis or mechanical examinations are beyond carried out to neatly estimate essential key values. Results from these diverse tasks are then incorporated into analytic or FE numerical models that were elaborated, for example, to predict thermal repercussion on explosive charges or mechanical failures of structures. These simulations highlight the influence of each phenomenon during the laser irradiation and forecast experimental observations with good accuracy.

Keywords: composite materials, countermeasure, experimental work, high-energy laser, laser-matter interaction, modeling

Procedia PDF Downloads 262
303 Enhancing Industrial Wastewater Treatment: Efficacy and Optimization of Ultrasound-Assisted Laccase Immobilized on Magnetic Fe₃O₄ Nanoparticles

Authors: K. Verma, v. S. Moholkar

Abstract:

In developed countries, water pollution caused by industrial discharge has emerged as a significant environmental concern over the past decades. However, despite ongoing efforts, a fully effective and sustainable remediation strategy has yet to be identified. This paper describes how enzymatic and sonochemical treatments have demonstrated great promise in degrading bio-refractory pollutants. Mainly, a compelling area of interest lies in the combined technique of sono-enzymatic treatment, which has exhibited a synergistic enhancement effect surpassing that of the individual techniques. This study employed the covalent attachment method to immobilize Laccase from Trametes versicolor onto amino-functionalized magnetic Fe₃O₄ nanoparticles. To comprehensively characterize the synthesized free nanoparticles and the laccase-immobilized nanoparticles, various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), and surface area through Brunauer-Emmett-Teller (BET) were employed. The size of immobilized Fe₃O₄@Laccase was found to be 60 nm, and the maximum loading of laccase was found to be 24 mg/g of nanoparticle. An investigation was conducted to study the effect of various process parameters, such as immobilized Fe₃O₄ Laccase dose, temperature, and pH, on the % Chemical oxygen demand (COD) removal as a response. The statistical design pinpointed the optimum conditions (immobilized Fe₃O₄ Laccase dose = 1.46 g/L, pH = 4.5, and temperature = 66 oC), resulting in a remarkable 65.58% COD removal within 60 minutes. An even more significant improvement (90.31% COD removal) was achieved with ultrasound-assisted enzymatic reaction utilizing a 10% duty cycle. The investigation of various kinetic models for free and immobilized laccase, such as the Haldane, Yano, and Koga, and Michaelis-Menten, showed that ultrasound application impacted the kinetic parameters Vmax and Km. Specifically, Vmax values for free and immobilized laccase were found to be 0.021 mg/L min and 0.045 mg/L min, respectively, while Km values were 147.2 mg/L for free laccase and 136.46 mg/L for immobilized laccase. The lower Km and higher Vmax for immobilized laccase indicate its enhanced affinity towards the substrate, likely due to ultrasound-induced alterations in the enzyme's confirmation and increased exposure of active sites, leading to more efficient degradation. Furthermore, the toxicity and Liquid chromatography-mass spectrometry (LC-MS) analysis revealed that after the treatment process, the wastewater exhibited 70% less toxicity than before treatment, with over 25 compounds degrading by more than 75%. At last, the prepared immobilized laccase had excellent recyclability retaining 70% activity up to 6 consecutive cycles. A straightforward manufacturing strategy and outstanding performance make the recyclable magnetic immobilized Laccase (Fe₃O₄ Laccase) an up-and-coming option for various environmental applications, particularly in water pollution control and treatment.

Keywords: kinetic, laccase enzyme, sonoenzymatic, ultrasound irradiation

Procedia PDF Downloads 67
302 Toward Understanding the Glucocorticoid Receptor Network in Cancer

Authors: Swati Srivastava, Mattia Lauriola, Yuval Gilad, Adi Kimchi, Yosef Yarden

Abstract:

The glucocorticoid receptor (GR) has been proposed to play important, but incompletely understood roles in cancer. Glucocorticoids (GCs) are widely used as co-medication of various carcinomas, due to their ability to reduce the toxicity of chemotherapy. Furthermore, GR antagonism has proven to be a strategy to treat triple negative breast cancer and castration-resistant prostate cancer. These observations suggest differential GR involvement in cancer subtypes. The goal of our study has been to elaborate the current understanding of GR signaling in tumor progression and metastasis. Our study involves two cellular models, non-tumorigenic breast epithelial cells (MCF10A) and Ewing sarcoma cells (CHLA9). In our breast cell model, the results indicated that the GR agonist dexamethasone inhibits EGF-induced mammary cell migration, and this effect was blocked when cells were stimulated with a GR antagonist, namely RU486. Microarray analysis for gene expression revealed that the mechanism underlying inhibition involves dexamenthasone-mediated repression of well-known activators of EGFR signaling, alongside with enhancement of several EGFR’s negative feedback loops. Because GR mainly acts primarily through composite response elements (GREs), or via a tethering mechanism, our next aim has been to find the transcription factors (TFs) which can interact with GR in MCF10A cells.The TF-binding motif overrepresented at the promoter of dexamethasone-regulated genes was predicted by using bioinformatics. To validate the prediction, we performed high-throughput Protein Complementation Assays (PCA). For this, we utilized the Gaussia Luciferase PCA strategy, which enabled analysis of protein-protein interactions between GR and predicted TFs of mammary cells. A library comprising both nuclear receptors (estrogen receptor, mineralocorticoid receptor, GR) and TFs was fused to fragments of GLuc, namely GLuc(1)-X, X-GLuc(1), and X-GLuc(2), where GLuc(1) and GLuc(2) correspond to the N-terminal and C-terminal fragments of the luciferase gene.The resulting library was screened, in human embryonic kidney 293T (HEK293T) cells, for all possible interactions between nuclear receptors and TFs. By screening all of the combinations between TFs and nuclear receptors, we identified several positive interactions, which were strengthened in response to dexamethasone and abolished in response to RU486. Furthermore, the interactions between GR and the candidate TFs were validated by co-immunoprecipitation in MCF10A and in CHLA9 cells. Currently, the roles played by the uncovered interactions are being evaluated in various cellular processes, such as cellular proliferation, migration, and invasion. In conclusion, our assay provides an unbiased network analysis between nuclear receptors and other TFs, which can lead to important insights into transcriptional regulation by nuclear receptors in various diseases, in this case of cancer.

Keywords: epidermal growth factor, glucocorticoid receptor, protein complementation assay, transcription factor

Procedia PDF Downloads 227
301 Biophysical Analysis of the Interaction of Polymeric Nanoparticles with Biomimetic Models of the Lung Surfactant

Authors: Weiam Daear, Patrick Lai, Elmar Prenner

Abstract:

The human body offers many avenues that could be used for drug delivery. The pulmonary route, which is delivered through the lungs, presents many advantages that have sparked interested in the field. These advantages include; 1) direct access to the lungs and the large surface area it provides, and 2) close proximity to the blood circulation. The air-blood barrier of the alveoli is about 500 nm thick. The air-blood barrier consist of a monolayer of lipids and few proteins called the lung surfactant and cells. This monolayer consists of ~90% lipids and ~10% proteins that are produced by the alveolar epithelial cells. The two major lipid classes constitutes of various saturation and chain length of phosphatidylcholine (PC) and phosphatidylglycerol (PG) representing 80% of total lipid component. The major role of the lung surfactant monolayer is to reduce surface tension experienced during breathing cycles in order to prevent lung collapse. In terms of the pulmonary drug delivery route, drugs pass through various parts of the respiratory system before reaching the alveoli. It is at this location that the lung surfactant functions as the air-blood barrier for drugs. As the field of nanomedicine advances, the use of nanoparticles (NPs) as drug delivery vehicles is becoming very important. This is due to the advantages NPs provide with their large surface area and potential specific targeting. Therefore, studying the interaction of NPs with lung surfactant and whether they affect its stability becomes very essential. The aim of this research is to develop a biomimetic model of the human lung surfactant followed by a biophysical analysis of the interaction of polymeric NPs. This biomimetic model will function as a fast initial mode of testing for whether NPs affect the stability of the human lung surfactant. The model developed thus far is an 8-component lipid system that contains major PC and PG lipids. Recently, a custom made 16:0/16:1 PC and PG lipids were added to the model system. In the human lung surfactant, these lipids constitute 16% of the total lipid component. According to the author’s knowledge, there is not much monolayer data on the biophysical analysis of the 16:0/16:1 lipids, therefore more analysis will be discussed here. Biophysical techniques such as the Langmuir Trough is used for stability measurements which monitors changes to a monolayer's surface pressure upon NP interaction. Furthermore, Brewster Angle Microscopy (BAM) employed to visualize changes to the lateral domain organization. Results show preferential interactions of NPs with different lipid groups that is also dependent on the monolayer fluidity. Furthermore, results show that the film stability upon compression is unaffected, but there are significant changes in the lateral domain organization of the lung surfactant upon NP addition. This research is significant in the field of pulmonary drug delivery. It is shown that NPs within a certain size range are safe for the pulmonary route, but little is known about the mode of interaction of those polymeric NPs. Moreover, this work will provide additional information about the nanotoxicology of NPs tested.

Keywords: Brewster angle microscopy, lipids, lung surfactant, nanoparticles

Procedia PDF Downloads 178
300 Improving the Biocontrol of the Argentine Stem Weevil; Using the Parasitic Wasp Microctonus hyperodae

Authors: John G. Skelly, Peter K. Dearden, Thomas W. R. Harrop, Sarah N. Inwood, Joseph Guhlin

Abstract:

The Argentine stem weevil (ASW; L. bonariensis) is an economically important pasture pest in New Zealand, which causes about $200 million of damage per annum. Microctonus hyperodae (Mh), a parasite of the ASW in its natural range in South America, was introduced into New Zealand to curb the pasture damage caused by the ASW. Mh is an endoparasitic wasp that lays its eggs in the ASW halting its reproduction. Mh was initially successful at preventing ASW proliferation and reducing pasture damage. The effectiveness of Mh has since declined due to decreased parasitism rates and has resulted in increased pasture damage. Although the mechanism through which ASW has developed resistance to Mh has not been discovered, it has been proposed to be due to the different reproductive modes used by Mh and the ASW in New Zealand. The ASW reproduces sexually, whereas Mh reproduces asexually, which has been hypothesised to have allowed the ASW to ‘out evolve’ Mh. Other species within the Microctonus genus reproduce both sexually and asexually. Strains of Microctonus aethiopoides (Ma), a species closely related to Mh, reproduce either by sexual or asexual reproduction. Comparing the genomes of sexual and asexual Microctonus may allow for the identification of the mechanism of asexual reproduction and other characteristics that may improve Mh as a biocontrol agent. The genomes of Mh and three strains of Ma, two of which reproduce sexually and one reproduces asexually, have been sequenced and annotated. The French (MaFR) and Moroccan (MaMO) reproduce sexually, whereas the Irish strain (MaIR) reproduces asexually. Like Mh, The Ma strains are also used as biocontrol agents, but for different weevil species. The genomes of Mh and MaIR were subsequently upgraded using Hi-C, resulting in a set of high quality, highly contiguous genomes. A subset of the genes involved in mitosis and meiosis, which have been identified though the use of Hidden Markov Models generated from genes involved in these processes in other Hymenoptera, have been catalogued in Mh and the strains of Ma. Meiosis and mitosis genes were broadly conserved in both sexual and asexual Microctonus species. This implies that either the asexual species have retained a subset of the molecular components required for sexual reproduction or that the molecular mechanisms of mitosis and meiosis are different or differently regulated in Microctonus to other insect species in which these mechanisms are more broadly characterised. Bioinformatic analysis of the chemoreceptor compliment in Microctonus has revealed some variation in the number of olfactory receptors, which may be related to host preference. Phylogenetic analysis of olfactory receptors highlights variation, which may be able to explain different host range preferences in the Microctonus. Hi-C clustering implies that Mh has 12 chromosomes, and MaIR has 8. Hence there may be variation in gene regulation between species. Genome alignment of Mh and MaIR implies that there may be large scale genome structural variation. Greater insight into the genetics of these agriculturally important group of parasitic wasps may be beneficial in restoring or maintaining their biocontrol efficacy.

Keywords: argentine stem weevil, asexual, genomics, Microctonus hyperodae

Procedia PDF Downloads 156
299 Elucidation of Dynamics of Murine Double Minute 2 Shed Light on the Anti-cancer Drug Development

Authors: Nigar Kantarci Carsibasi

Abstract:

Coarse-grained elastic network models, namely Gaussian network model (GNM) and Anisotropic network model (ANM), are utilized in order to investigate the fluctuation dynamics of Murine Double Minute 2 (MDM2), which is the native inhibitor of p53. Conformational dynamics of MDM2 are elucidated in unbound, p53 bound, and non-peptide small molecule inhibitor bound forms. With this, it is aimed to gain insights about the alterations brought to global dynamics of MDM2 by native peptide inhibitor p53, and two small molecule inhibitors (HDM201 and NVP-CGM097) that are undergoing clinical stages in cancer studies. MDM2 undergoes significant conformational changes upon inhibitor binding, carrying pieces of evidence of induced-fit mechanism. Small molecule inhibitors examined in this work exhibit similar fluctuation dynamics and characteristic mode shapes with p53 when complexed with MDM2, which would shed light on the design of novel small molecule inhibitors for cancer therapy. The results showed that residues Phe 19, Trp 23, Leu 26 reside in the minima of slowest modes of p53, pointing to the accepted three-finger binding model. Pro 27 displays the most significant hinge present in p53 and comes out to be another functionally important residue. Three distinct regions are identified in MDM2, for which significant conformational changes are observed upon binding. Regions I (residues 50-77) and III (residues 90-105) correspond to the binding interface of MDM2, including (α2, L2, and α4), which are stabilized during complex formation. Region II (residues 77-90) exhibits a large amplitude motion, being highly flexible, both in the absence and presence of p53 or other inhibitors. MDM2 exhibits a scattered profile in the fastest modes of motion, while binding of p53 and inhibitors puts restraints on MDM2 domains, clearly distinguishing the kinetically hot regions. Mode shape analysis revealed that the α4 domain controls the size of the cleft by keeping the cleft narrow in unbound MDM2; and open in the bound states for proper penetration and binding of p53 and inhibitors, which points to the induced-fit mechanism of p53 binding. P53 interacts with α2 and α4 in a synchronized manner. Collective modes are shifted upon inhibitor binding, i.e., second mode characteristic motion in MDM2-p53 complex is observed in the first mode of apo MDM2; however, apo and bound MDM2 exhibits similar features in the softest modes pointing to pre-existing modes facilitating the ligand binding. Although much higher amplitude motions are attained in the presence of non-peptide small molecule inhibitor molecules as compared to p53, they demonstrate close similarity. Hence, NVP-CGM097 and HDM201 succeed in mimicking the p53 behavior well. Elucidating how drug candidates alter the MDM2 global and conformational dynamics would shed light on the rational design of novel anticancer drugs.

Keywords: cancer, drug design, elastic network model, MDM2

Procedia PDF Downloads 130
298 Statistical Optimization of Adsorption of a Harmful Dye from Aqueous Solution

Authors: M. Arun, A. Kannan

Abstract:

Textile industries cater to varied customer preferences and contribute substantially to the economy. However, these textile industries also produce a considerable amount of effluents. Prominent among these are the azo dyes which impart considerable color and toxicity even at low concentrations. Azo dyes are also used as coloring agents in food and pharmaceutical industry. Despite their applications, azo dyes are also notorious pollutants and carcinogens. Popular techniques like photo-degradation, biodegradation and the use of oxidizing agents are not applicable for all kinds of dyes, as most of them are stable to these techniques. Chemical coagulation produces a large amount of toxic sludge which is undesirable and is also ineffective towards a number of dyes. Most of the azo dyes are stable to UV-visible light irradiation and may even resist aerobic degradation. Adsorption has been the most preferred technique owing to its less cost, high capacity and process efficiency and the possibility of regenerating and recycling the adsorbent. Adsorption is also most preferred because it may produce high quality of the treated effluent and it is able to remove different kinds of dyes. However, the adsorption process is influenced by many variables whose inter-dependence makes it difficult to identify optimum conditions. The variables include stirring speed, temperature, initial concentration and adsorbent dosage. Further, the internal diffusional resistance inside the adsorbent particle leads to slow uptake of the solute within the adsorbent. Hence, it is necessary to identify optimum conditions that lead to high capacity and uptake rate of these pollutants. In this work, commercially available activated carbon was chosen as the adsorbent owing to its high surface area. A typical azo dye found in textile effluent waters, viz. the monoazo Acid Orange 10 dye (CAS: 1936-15-8) has been chosen as the representative pollutant. Adsorption studies were mainly focused at obtaining equilibrium and kinetic data for the batch adsorption process at different process conditions. Studies were conducted at different stirring speed, temperature, adsorbent dosage and initial dye concentration settings. The Full Factorial Design was the chosen statistical design framework for carrying out the experiments and identifying the important factors and their interactions. The optimum conditions identified from the experimental model were validated with actual experiments at the recommended settings. The equilibrium and kinetic data obtained were fitted to different models and the model parameters were estimated. This gives more details about the nature of adsorption taking place. Critical data required to design batch adsorption systems for removal of Acid Orange 10 dye and identification of factors that critically influence the separation efficiency are the key outcomes from this research.

Keywords: acid orange 10, activated carbon, optimum adsorption conditions, statistical design

Procedia PDF Downloads 169
297 Research Project on Learning Rationality in Strategic Behaviors: Interdisciplinary Educational Activities in Italian High Schools

Authors: Giovanna Bimonte, Luigi Senatore, Francesco Saverio Tortoriello, Ilaria Veronesi

Abstract:

The education process considers capabilities not only to be seen as a means to a certain end but rather as an effective purpose. Sen's capability approach challenges human capital theory, which sees education as an ordinary investment undertaken by individuals. A complex reality requires complex thinking capable of interpreting the dynamics of society's changes to be able to make decisions that can be rational for private, ethical and social contexts. Education is not something removed from the cultural and social context; it exists and is structured within it. In Italy, the "Mathematical High School Project" is a didactic research project is based on additional laboratory courses in extracurricular hours where mathematics intends to bring itself in a dialectical relationship with other disciplines as a cultural bridge between the two cultures, the humanistic and the scientific ones, with interdisciplinary educational modules on themes of strong impact in younger life. This interdisciplinary mathematics presents topics related to the most advanced technologies and contemporary socio-economic frameworks to demonstrate how mathematics is not only a key to reading but also a key to resolving complex problems. The recent developments in mathematics provide the potential for profound and highly beneficial changes in mathematics education at all levels, such as in socio-economic decisions. The research project is built to investigate whether repeated interactions can successfully promote cooperation among students as rational choice and if the skill, the context and the school background can influence the strategies choice and the rationality. A Laboratory on Game Theory as mathematical theory was conducted in the 4th year of the Mathematical High Schools and in an ordinary scientific high school of the Scientific degree program. Students played two simultaneous games of repeated Prisoner's Dilemma with an indefinite horizon, with two different competitors in each round; even though the competitors in each round will remain the same for the duration of the game. The results highlight that most of the students in the two classes used the two games with an immunization strategy against the risk of losing: in one of the games, they started by playing Cooperate, and in the other by the strategy of Compete. In the literature, theoretical models and experiments show that in the case of repeated interactions with the same adversary, the optimal cooperation strategy can be achieved by tit-for-tat mechanisms. In higher education, individual capacities cannot be examined independently, as conceptual framework presupposes a social construction of individuals interacting and competing, making individual and collective choices. The paper will outline all the results of the experimentation and the future development of the research.

Keywords: game theory, interdisciplinarity, mathematics education, mathematical high school

Procedia PDF Downloads 74
296 Emotion Regulation and Executive Functioning Scale for Children and Adolescents (REMEX): Scale Development

Authors: Cristina Costescu, Carmen David, Adrian Roșan

Abstract:

Executive functions (EF) and emotion regulation strategies are processes that allow individuals to function in an adaptative way and to be goal-oriented, which is essential for success in daily living activities, at school, or in social contexts. The Emotion Regulation and Executive Functioning Scale for Children and Adolescents (REMEX) represents an empirically based tool (based on the model of EF developed by Diamond) for evaluating significant dimensions of child and adolescent EFs and emotion regulation strategies, mainly in school contexts. The instrument measures the following dimensions: working memory, inhibition, cognitive flexibility, executive attention, planning, emotional control, and emotion regulation strategies. Building the instrument involved not only a top-down process, as we selected the content in accordance with prominent models of FE, but also a bottom-up one, as we were able to identify valid contexts in which FE and ER are put to use. For the construction of the instrument, we implemented three focus groups with teachers and other professionals since the aim was to develop an accurate, objective, and ecological instrument. We used the focus group method in order to address each dimension and to yield a bank of items to be further tested. Each dimension is addressed through a task that the examiner will apply and through several items derived from the main task. For the validation of the instrument, we plan to use item response theory (IRT), also known as the latent response theory, that attempts to explain the relationship between latent traits (unobservable cognitive processes) and their manifestations (i.e., observed outcomes, responses, or performance). REMEX represents an ecological scale that integrates a current scientific understanding of emotion regulation and EF and is directly applicable to school contexts, and it can be very useful for developing intervention protocols. We plan to test his convergent validity with the Childhood Executive Functioning Inventory (CHEXI) and Emotion Dysregulation Inventory (EDI) and divergent validity between a group of typically developing children and children with neurodevelopmental disorders, aged between 6 and 9 years old. In a previous pilot study, we enrolled a sample of 40 children with autism spectrum disorders and attention-deficit/hyperactivity disorder aged 6 to 12 years old, and we applied the above-mentioned scales (CHEXI and EDI). Our results showed that deficits in planning, bebavior regulation, inhibition, and working memory predict high levels of emotional reactivity, leading to emotional and behavioural problems. Considering previous results, we expect our findings to provide support for the validity and reliability of the REMEX version as an ecological instrument for assessing emotion regulation and EF in children and for key features of its uses in intervention protocols.

Keywords: executive functions, emotion regulation, children, item response theory, focus group

Procedia PDF Downloads 100
295 Qualitative Narrative Framework as Tool for Reduction of Stigma and Prejudice

Authors: Anastasia Schnitzer, Oliver Rehren

Abstract:

Mental health has become an increasingly important topic in society in recent years, not least due to the challenges posed by the corona pandemic. Along with this, the public has become more and more aware that a lack of enlightenment and proper coping mechanisms may result in a notable risk to develop mental disorders. Yet, there are still many biases against those affected, which are further connected to issues of stigmatization and societal exclusion. One of the main strategies to combat these forms of prejudice and stigma is to induce intergroup contact. More specifically, the Intergroup Contact Theory states engaging in certain types of contact with members of marginalized groups may be an effective way to improve attitudes towards these groups. However, due to the persistent prejudice and stigmatization, affected individuals often do not dare to speak openly about their mental disorders, so that intergroup contact often goes unnoticed. As a result, many people only experience conscious contact with individuals with a mental disorder through media. As an analogy to the Intergroup Contact Theory, the Parasocial Contact Hypothesis proposes that repeatedly being exposed to positive media representations of outgroup members can lead to a reduction of negative prejudices and attitudes towards this outgroup. While there is a growing body of research on the merit of this mechanism, measurements often only consist of 'positive' or 'negative' parasocial contact conditions (or examine the valence or quality of the previous contact with the outgroup); meanwhile, more specific conditions are often neglected. The current study aims to tackle this shortcoming. By scrutinizing the potential of contemporary series as a narrative framework of high quality, we strive to elucidate more detailed aspects of beneficial parasocial contact -for the sake of reducing prejudice and stigma towards individuals with mental disorders. Thus, a two-factorial between-subject online panel study with three measurement points was conducted (N = 95). Participants were randomly assigned to one of two groups, having to watch episodes of either a series with a narrative framework of high (Quality-TV) or low quality (Continental-TV), with one-week interval in-between the episodes. Suitable series were determined with the help of a pretest. Prejudice and stigma towards people with mental disorders were measured at the beginning of the study, before and after each episode, and in a final follow-up one week after the last two episodes. Additionally, parasocial interaction (PSI), quality of contact (QoC), and transportation were measured several times. Based on these data, multivariate multilevel analyses were performed in R using the lavaan package. Latent growth models showed moderate to high increases in QoC and PSI as well as small to moderate decreases in stigma and prejudice over time. Multilevel path analysis with individual and group levels further revealed that a qualitative narrative framework leads to a higher quality of contact experience, which then leads to lower prejudice and stigma, with effects ranging from moderate to high.

Keywords: prejudice, quality of contact, parasocial contact, narrative framework

Procedia PDF Downloads 83
294 The Effectiveness of an Occupational Therapy Metacognitive-Functional Intervention for the Improvement of Human Risk Factors of Bus Drivers

Authors: Navah Z. Ratzon, Rachel Shichrur

Abstract:

Background: Many studies have assessed and identified the risk factors of safe driving, but there is relatively little research-based evidence concerning the ability to improve the driving skills of drivers in general and in particular of bus drivers, who are defined as a population at risk. Accidents involving bus drivers can endanger dozens of passengers and cause high direct and indirect damages. Objective: To examine the effectiveness of a metacognitive-functional intervention program for the reduction of risk factors among professional drivers relative to a control group. Methods: The study examined 77 bus drivers working for a large public company in the center of the country, aged 27-69. Twenty-one drivers continued to the intervention stage; four of them dropped out before the end of the intervention. The intervention program we developed was based on previous driving models and the guiding occupational therapy practice framework model in Israel, while adjusting the model to the professional driving in public transportation and its particular risk factors. Treatment focused on raising awareness to safe driving risk factors identified at prescreening (ergonomic, perceptual-cognitive and on-road driving data), with reference to the difficulties that the driver raises and providing coping strategies. The intervention has been customized for each driver and included three sessions of two hours. The effectiveness of the intervention was tested using objective measures: In-Vehicle Data Recorders (IVDR) for monitoring natural driving data, traffic accident data before and after the intervention, and subjective measures (occupational performance questionnaire for bus drivers). Results: Statistical analysis found a significant difference between the degree of change in the rate of IVDR perilous events (t(17)=2.14, p=0.046), before and after the intervention. There was significant difference in the number of accidents per year before and after the intervention in the intervention group (t(17)=2.11, p=0.05), but no significant change in the control group. Subjective ratings of the level of performance and of satisfaction with performance improved in all areas tested following the intervention. The change in the ‘human factors/person’ field, was significant (performance : t=- 2.30, p=0.04; satisfaction with performance : t=-3.18, p=0.009). The change in the ‘driving occupation/tasks’ field, was not significant but showed a tendency toward significance (t=-1.94, p=0.07,). No significant differences were found in driving environment-related variables. Conclusions: The metacognitive-functional intervention significantly improved the objective and subjective measures of safety of bus drivers’ driving. These novel results highlight the potential contribution of occupational therapists, using metacognitive functional treatment, to preventing car accidents among the healthy drivers population and improving the well-being of these drivers. This study also enables familiarity with advanced technologies of IVDR systems and enriches the knowledge of occupational therapists in regards to using a wide variety of driving assessment tools and making the best practice decisions.

Keywords: bus drivers, IVDR, human risk factors, metacognitive-functional intervention

Procedia PDF Downloads 346
293 A Fast Multi-Scale Finite Element Method for Geophysical Resistivity Measurements

Authors: Mostafa Shahriari, Sergio Rojas, David Pardo, Angel Rodriguez- Rozas, Shaaban A. Bakr, Victor M. Calo, Ignacio Muga

Abstract:

Logging-While Drilling (LWD) is a technique to record down-hole logging measurements while drilling the well. Nowadays, LWD devices (e.g., nuclear, sonic, resistivity) are mostly used commercially for geo-steering applications. Modern borehole resistivity tools are able to measure all components of the magnetic field by incorporating tilted coils. The depth of investigation of LWD tools is limited compared to the thickness of the geological layers. Thus, it is a common practice to approximate the Earth’s subsurface with a sequence of 1D models. For a 1D model, we can reduce the dimensionality of the problem using a Hankel transform. We can solve the resulting system of ordinary differential equations (ODEs) either (a) analytically, which results in a so-called semi-analytic method after performing a numerical inverse Hankel transform, or (b) numerically. Semi-analytic methods are used by the industry due to their high performance. However, they have major limitations, namely: -The analytical solution of the aforementioned system of ODEs exists only for piecewise constant resistivity distributions. For arbitrary resistivity distributions, the solution of the system of ODEs is unknown by today’s knowledge. -In geo-steering, we need to solve inverse problems with respect to the inversion variables (e.g., the constant resistivity value of each layer and bed boundary positions) using a gradient-based inversion method. Thus, we need to compute the corresponding derivatives. However, the analytical derivatives of cross-bedded formation and the analytical derivatives with respect to the bed boundary positions have not been published to the best of our knowledge. The main contribution of this work is to overcome the aforementioned limitations of semi-analytic methods by solving each 1D model (associated with each Hankel mode) using an efficient multi-scale finite element method. The main idea is to divide our computations into two parts: (a) offline computations, which are independent of the tool positions and we precompute only once and use them for all logging positions, and (b) online computations, which depend upon the logging position. With the above method, (a) we can consider arbitrary resistivity distributions along the 1D model, and (b) we can easily and rapidly compute the derivatives with respect to any inversion variable at a negligible additional cost by using an adjoint state formulation. Although the proposed method is slower than semi-analytic methods, its computational efficiency is still high. In the presentation, we shall derive the mathematical variational formulation, describe the proposed multi-scale finite element method, and verify the accuracy and efficiency of our method by performing a wide range of numerical experiments and comparing the numerical solutions to semi-analytic ones when the latest are available.

Keywords: logging-While-Drilling, resistivity measurements, multi-scale finite elements, Hankel transform

Procedia PDF Downloads 386
292 Harnessing Artificial Intelligence for Early Detection and Management of Infectious Disease Outbreaks

Authors: Amarachukwu B. Isiaka, Vivian N. Anakwenze, Chinyere C. Ezemba, Chiamaka R. Ilodinso, Chikodili G. Anaukwu, Chukwuebuka M. Ezeokoli, Ugonna H. Uzoka

Abstract:

Infectious diseases continue to pose significant threats to global public health, necessitating advanced and timely detection methods for effective outbreak management. This study explores the integration of artificial intelligence (AI) in the early detection and management of infectious disease outbreaks. Leveraging vast datasets from diverse sources, including electronic health records, social media, and environmental monitoring, AI-driven algorithms are employed to analyze patterns and anomalies indicative of potential outbreaks. Machine learning models, trained on historical data and continuously updated with real-time information, contribute to the identification of emerging threats. The implementation of AI extends beyond detection, encompassing predictive analytics for disease spread and severity assessment. Furthermore, the paper discusses the role of AI in predictive modeling, enabling public health officials to anticipate the spread of infectious diseases and allocate resources proactively. Machine learning algorithms can analyze historical data, climatic conditions, and human mobility patterns to predict potential hotspots and optimize intervention strategies. The study evaluates the current landscape of AI applications in infectious disease surveillance and proposes a comprehensive framework for their integration into existing public health infrastructures. The implementation of an AI-driven early detection system requires collaboration between public health agencies, healthcare providers, and technology experts. Ethical considerations, privacy protection, and data security are paramount in developing a framework that balances the benefits of AI with the protection of individual rights. The synergistic collaboration between AI technologies and traditional epidemiological methods is emphasized, highlighting the potential to enhance a nation's ability to detect, respond to, and manage infectious disease outbreaks in a proactive and data-driven manner. The findings of this research underscore the transformative impact of harnessing AI for early detection and management, offering a promising avenue for strengthening the resilience of public health systems in the face of evolving infectious disease challenges. This paper advocates for the integration of artificial intelligence into the existing public health infrastructure for early detection and management of infectious disease outbreaks. The proposed AI-driven system has the potential to revolutionize the way we approach infectious disease surveillance, providing a more proactive and effective response to safeguard public health.

Keywords: artificial intelligence, early detection, disease surveillance, infectious diseases, outbreak management

Procedia PDF Downloads 66
291 Patterns of Change in Specific Behaviors of Autism Symptoms for Boys and for Girls Across Childhood

Authors: Einat Waizbard, Emilio Ferrer, Meghan Miller, Brianna Heath, Derek S. Andrews, Sally J. Rogers, Christine Wu Nordahl, Marjorie Solomon, David G. Amaral

Abstract:

Background: Autism symptoms are comprised of social-communication deficits and restricted/repetitive behaviors (RRB). The severity of these symptoms can change during childhood, with differences between boys and girls. From the literature, it was found that young autistic girls show a stronger tendency to decrease and a weaker tendency to increase their overall autism symptom severity levels compared to young autistic boys. It is not clear, however, which symptoms are driving these sex differences across childhood. In the current study, we evaluated the trajectories of independent autism symptoms across childhood and compared the patterns of change in such symptoms between boys and girls. Method: The study included 183 children diagnosed with autism (55 girls) evaluated three times across childhood, at ages 3, 6 and 11. We analyzed 22 independent items from the Autism Diagnostic Observation Scheudule-2 (ADOS-2), the gold-standard assessment tool for autism symptoms, each item representing a specific autism symptom. First, we used latent growth curve models to estimate the trajectories for the 22 ADOS-2 items for each child in the study. Second, we extracted the factor scores representing the individual slopes for each ADOS-2 item (i.e., slope representing that child’s change in that specific item). Third, we used factor analysis to identify common patterns of change among the ADOS-2 items, separately for boys and girls, i.e., which autism symptoms tend to change together and which change independently across childhood. Results: The best-emerging patterns for both boys and girls identified four common factors: three factors representative of changes in social-communication symptoms and one factor describing changes in RRB. Boys and girls showed the same pattern of change in RRB, with four items (e.g., speech abnormalities) changing together across childhood and three items (e.g., mannerisms) changing independently of other items. For social-communication deficits in boys, three factors were identified: the first factor included six items representing initiating and engaging in social-communication (e.g., quality of social overtures, conversation), the second factor included five items describing responsive social-communication (e.g., response to name) and the third factor included three items related to different aspects of social-communication (e.g., level of language). Girls’ social-communications deficits also loaded onto three factors: the first factor included five items (e.g., unusual eye contact), the second factor included six items (e.g., quality of social response), and the third factor included four items (e.g., showing). Some items showed similar patterns of change for both sexes (e.g., responsive joint attention), while other items showed differences (e.g., shared enjoyment). Conclusions: Girls and boys had different patterns of change in autism symptom severity across childhood. For RRB, both sexes showed similar patterns. For social-communication symptoms, however, there were both similarities and differences between boys and girls in the way symptoms changed over time. The strongest patterns of change were identified for initiating and engaging in social communication for boys and responsive social communication for girls.

Keywords: autism spectrum disorder, autism symptom severity, symptom trajectories, sex differences

Procedia PDF Downloads 51
290 Spatial Analysis and Determinants of Number of Antenatal Health Care Visit Among Pregnant Women in Ethiopia: Application of Spatial Multilevel Count Regression Models

Authors: Muluwerk Ayele Derebe

Abstract:

Background: Antenatal care (ANC) is an essential element in the continuum of reproductive health care for preventing preventable pregnancy-related morbidity and mortality. Objective: The aim of this study is to assess the spatial pattern and predictors of ANC visits in Ethiopia. Method: This study was done using Ethiopian Demographic and Health Survey data of 2016 among 7,174 pregnant women aged 15-49 years which was a nationwide community-based cross-sectional survey. Spatial analysis was done using Getis-Ord Gi* statistics to identify hot and cold spot areas of ANC visits. Multilevel glmmTMB packages adjusted for spatial effects were used in R software. Spatial multilevel count regression was conducted to identify predictors of antenatal care visits for pregnant women, and proportional change in variance was done to uncover the effect of individual and community-level factors of ANC visits. Results: The distribution of ANC visits was spatially clustered Moran’s I = 0.271, p<.0.001, ICC = 0.497, p<0.001). The highest spatial outlier areas of ANC visit was found in Amhara (South Wollo, Weast Gojjam, North Shewa), Oromo (west Arsi and East Harariga), Tigray (Central Tigray) and Benishangul-Gumuz (Asosa and Metekel) regions. The data was found with excess zeros (34.6%) and over-dispersed. The expected ANC visit of pregnant women with pregnancy complications was higher at 0.7868 [ARR= 2.1964, 95% CI: 1.8605, 2.5928, p-value <0.0001] compared to pregnant women who had no pregnancy complications. The expected ANC visit of a pregnant woman who lived in a rural area was 1.2254 times higher [ARR=3.4057, 95% CI: 2.1462, 5.4041, p-value <0.0001] as compared to a pregnant woman who lived in an urban. The study found dissimilar clusters with a low number of zero counts for a mean number of ANC visits surrounded by clusters with a higher number of counts of an average number of ANC visits when other variables held constant. Conclusion: This study found that the number of ANC visits in Ethiopia had a spatial pattern associated with socioeconomic, demographic, and geographic risk factors. Spatial clustering of ANC visits exists in all regions of Ethiopia. The predictor age of the mother, religion, mother’s education, husband’s education, mother's occupation, husband's occupation, signs of pregnancy complication, wealth index and marital status had a strong association with the number of ANC visits by each individual. At the community level, place of residence, region, age of the mother, sex of the household head, signs of pregnancy complications and distance to health facility factors had a strong association with the number of ANC visits.

Keywords: Ethiopia, ANC, spatial, multilevel, zero inflated Poisson

Procedia PDF Downloads 74
289 Unlocking New Room of Production in Brown Field; ‎Integration of Geological Data Conditioned 3D Reservoir ‎Modelling of Lower Senonian Matulla Formation, RAS ‎Budran Field, East Central Gulf of Suez, Egypt

Authors: Nader Mohamed

Abstract:

The Late Cretaceous deposits are well developed through-out Egypt. This is due to a ‎transgression phase associated with the subsidence caused by the neo-Tethyan rift event that ‎took place across the northern margin of Africa, resulting in a period of dominantly marine ‎deposits in the Gulf of Suez. The Late Cretaceous Nezzazat Group represents the Cenomanian, ‎Turonian and clastic sediments of the Lower Senonian. The Nezzazat Group has been divided ‎into four formations namely, from base to top, the Raha Formation, the Abu Qada Formation, ‎the Wata Formation and the Matulla Formation. The Cenomanian Raha and the Lower Senonian ‎Matulla formations are the most important clastic sequence in the Nezzazat Group because they ‎provide the highest net reservoir thickness and the highest net/gross ratio. This study emphasis ‎on Matulla formation located in the eastern part of the Gulf of Suez. The three stratigraphic ‎surface sections (Wadi Sudr, Wadi Matulla and Gabal Nezzazat) which represent the exposed ‎Coniacian-Santonian sediments in Sinai are used for correlating Matulla sediments of Ras ‎Budran field. Cutting description, petrographic examination, log behaviors, biostratigraphy with ‎outcrops are used to identify the reservoir characteristics, lithology, facies environment logs and ‎subdivide the Matulla formation into three units. The lower unit is believed to be the main ‎reservoir where it consists mainly of sands with shale and sandy carbonates, while the other ‎units are mainly carbonate with some streaks of shale and sand. Reservoir modeling is an ‎effective technique that assists in reservoir management as decisions concerning development ‎and depletion of hydrocarbon reserves, So It was essential to model the Matulla reservoir as ‎accurately as possible in order to better evaluate, calculate the reserves and to determine the ‎most effective way of recovering as much of the petroleum economically as possible. All ‎available data on Matulla formation are used to build the reservoir structure model, lithofacies, ‎porosity, permeability and water saturation models which are the main parameters that describe ‎the reservoirs and provide information on effective evaluation of the need to develop the oil ‎potentiality of the reservoir. This study has shown the effectiveness of; 1) the integration of ‎geological data to evaluate and subdivide Matulla formation into three units. 2) Lithology and ‎facies environment interpretation which helped in defining the nature of deposition of Matulla ‎formation. 3) The 3D reservoir modeling technology as a tool for adequate understanding of the ‎spatial distribution of property and in addition evaluating the unlocked new reservoir areas of ‎Matulla formation which have to be drilled to investigate and exploit the un-drained oil. 4) This ‎study led to adding a new room of production and additional reserves to Ras Budran field. ‎

Keywords: geology, oil and gas, geoscience, sequence stratigraphy

Procedia PDF Downloads 105
288 Optimization of Biomass Production and Lipid Formation from Chlorococcum sp. Cultivation on Dairy and Paper-Pulp Wastewater

Authors: Emmanuel C. Ngerem

Abstract:

The ever-increasing depletion of the dominant global form of energy (fossil fuels) calls for the development of sustainable and green alternative energy sources such as bioethanol, biohydrogen, and biodiesel. The production of the major biofuels relies on biomass feedstocks that are mainly derived from edible food crops and some inedible plants. One suitable feedstock with great potential as raw material for biofuel production is microalgal biomass. Despite the tremendous attributes of microalgae as a source of biofuel, their cultivation requires huge volumes of freshwater, thus posing a serious threat to commercial-scale production and utilization of algal biomass. In this study, a multi-media wastewater mixture for microalgae growth was formulated and optimized. Moreover, the obtained microalgae biomass was pre-treated to reduce sugar recovery and was compared with previous studies on microalgae biomass pre-treatment. The formulated and optimized mixed wastewater media for biomass and lipid accumulation was established using the simplex lattice mixture design. Based on the superposition approach of the potential results, numerical optimization was conducted, followed by the analysis of biomass concentration and lipid accumulation. The coefficients of regression (R²) of 0.91 and 0.98 were obtained for biomass concentration and lipid accumulation models, respectively. The developed optimization model predicted optimal biomass concentration and lipid accumulation of 1.17 g/L and 0.39 g/g, respectively. It suggested 64.69% dairy wastewater (DWW) and 35.31% paper and pulp wastewater (PWW) mixture for biomass concentration, 34.21% DWW, and 65.79% PWW for lipid accumulation. Experimental validation generated 0.94 g/L and 0.39 g/g of biomass concentration and lipid accumulation, respectively. The obtained microalgae biomass was pre-treated, enzymatically hydrolysed, and subsequently assessed for reducing sugars. The optimization of microwave pre-treatment of Chlorococcum sp. was achieved using response surface methodology (RSM). Microwave power (100 – 700 W), pre-treatment time (1 – 7 min), and acid-liquid ratio (1 – 5%) were selected as independent variables for RSM optimization. The optimum conditions were achieved at microwave power, pre-treatment time, and acid-liquid ratio of 700 W, 7 min, and 32.33:1, respectively. These conditions provided the highest amount of reducing sugars at 10.73 g/L. Process optimization predicted reducing sugar yields of 11.14 g/L on microwave-assisted pre-treatment of 2.52% HCl for 4.06 min at 700 watts. Experimental validation yielded reducing sugars of 15.67 g/L. These findings demonstrate that dairy wastewater and paper and pulp wastewater that could pose a serious environmental nuisance. They could be blended to form a suitable microalgae growth media, consolidating the potency of microalgae as a viable feedstock for fermentable sugars. Also, the outcome of this study supports the microalgal wastewater biorefinery concept, where wastewater remediation is coupled with bioenergy production.

Keywords: wastewater cultivation, mixture design, lipid, biomass, nutrient removal, microwave, Chlorococcum, raceway pond, fermentable sugar, modelling, optimization

Procedia PDF Downloads 40
287 Sensor and Sensor System Design, Selection and Data Fusion Using Non-Deterministic Multi-Attribute Tradespace Exploration

Authors: Matthew Yeager, Christopher Willy, John Bischoff

Abstract:

The conceptualization and design phases of a system lifecycle consume a significant amount of the lifecycle budget in the form of direct tasking and capital, as well as the implicit costs associated with unforeseeable design errors that are only realized during downstream phases. Ad hoc or iterative approaches to generating system requirements oftentimes fail to consider the full array of feasible systems or product designs for a variety of reasons, including, but not limited to: initial conceptualization that oftentimes incorporates a priori or legacy features; the inability to capture, communicate and accommodate stakeholder preferences; inadequate technical designs and/or feasibility studies; and locally-, but not globally-, optimized subsystems and components. These design pitfalls can beget unanticipated developmental or system alterations with added costs, risks and support activities, heightening the risk for suboptimal system performance, premature obsolescence or forgone development. Supported by rapid advances in learning algorithms and hardware technology, sensors and sensor systems have become commonplace in both commercial and industrial products. The evolving array of hardware components (i.e. sensors, CPUs, modular / auxiliary access, etc…) as well as recognition, data fusion and communication protocols have all become increasingly complex and critical for design engineers during both concpetualization and implementation. This work seeks to develop and utilize a non-deterministic approach for sensor system design within the multi-attribute tradespace exploration (MATE) paradigm, a technique that incorporates decision theory into model-based techniques in order to explore complex design environments and discover better system designs. Developed to address the inherent design constraints in complex aerospace systems, MATE techniques enable project engineers to examine all viable system designs, assess attribute utility and system performance, and better align with stakeholder requirements. Whereas such previous work has been focused on aerospace systems and conducted in a deterministic fashion, this study addresses a wider array of system design elements by incorporating both traditional tradespace elements (e.g. hardware components) as well as popular multi-sensor data fusion models and techniques. Furthermore, statistical performance features to this model-based MATE approach will enable non-deterministic techniques for various commercial systems that range in application, complexity and system behavior, demonstrating a significant utility within the realm of formal systems decision-making.

Keywords: multi-attribute tradespace exploration, data fusion, sensors, systems engineering, system design

Procedia PDF Downloads 183
286 Impact of Customer Experience Quality on Loyalty of Mobile and Fixed Broadband Services: Case Study of Telecom Egypt Group

Authors: Nawal Alawad, Passent Ibrahim Tantawi, Mohamed Abdel Salam Ragheb

Abstract:

Providing customers with quality experiences has been confirmed to be a sustainable, competitive advantage with a distinct financial impact for companies. The success of service providers now relies on their ability to provide customer-centric services. The importance of perceived service quality and customer experience is widely recognized. The focus of this research is in the area of mobile and fixed broadband services. This study is of dual importance both academically and practically. Academically, this research applies a new model investigating the impact of customer experience quality on loyalty based on modifying the multiple-item scale for measuring customers’ service experience in a new area and did not depend on the traditional models. The integrated scale embraces four dimensions: service experience, outcome focus, moments of truth and peace of mind. In addition, it gives a scientific explanation for this relationship so this research fill the gap in such relations in which no one correlate or give explanations for these relations before using such integrated model and this is the first time to apply such modified and integrated new model in telecom field. Practically, this research gives insights to marketers and practitioners to improve customer loyalty through evolving the experience quality of broadband customers which is interpreted to suggested outcomes: purchase, commitment, repeat purchase and word-of-mouth, this approach is one of the emerging topics in service marketing. Data were collected through 412 questionnaires and analyzed by using structural equation modeling.Findings revealed that both outcome focus and moments of truth have a significant impact on loyalty while both service experience and peace of mind have insignificant impact on loyalty.In addition, it was found that 72% of the variation occurring in loyalty is explained by the model. The researcher also measured the net prompters score and gave explanation for the results. Furthermore, assessed customer’s priorities of broadband services. The researcher recommends that the findings of this research will extend to be considered in the future plans of Telecom Egypt Group. In addition, to be applied in the same industry especially in the developing countries that have the same circumstances with similar service settings. This research is a positive contribution in service marketing, particularly in telecom industry for making marketing more reliable as managers can relate investments in service experience directly with the performance closest to income for instance, repurchasing behavior, positive word of mouth and, commitment. Finally, the researcher recommends that future studies should consider this model to explain significant marketing outcomes such as share of wallet and ultimately profitability.

Keywords: broadband services, customer experience quality, loyalty, net promoters score

Procedia PDF Downloads 266
285 Active Development of Tacit Knowledge: Knowledge Management, High Impact Practices and Experiential Learning

Authors: John Zanetich

Abstract:

Due to their positive associations with student learning and retention, certain undergraduate opportunities are designated ‘high-impact.’ High-Impact Practices (HIPs) such as, learning communities, community based projects, research, internships, study abroad and culminating senior experience, share several traits bin common: they demand considerable time and effort, learning occurs outside of the classroom, and they require meaningful interactions between faculty and students, they encourage collaboration with diverse others, and they provide frequent and substantive feedback. As a result of experiential learning in these practices, participation in these practices can be life changing. High impact learning helps individuals locate tacit knowledge, and build mental models that support the accumulation of knowledge. On-going learning from experience and knowledge conversion provides the individual with a way to implicitly organize knowledge and share knowledge over a lifetime. Knowledge conversion is a knowledge management component which focuses on the explication of the tacit knowledge that exists in the minds of students and that knowledge which is embedded in the process and relationships of the classroom educational experience. Knowledge conversion is required when working with tacit knowledge and the demand for a learner to align deeply held beliefs with the cognitive dissonance created by new information. Knowledge conversion and tacit knowledge result from the fact that an individual's way of knowing, that is, their core belief structure, is considered generalized and tacit instead of explicit and specific. As a phenomenon, tacit knowledge is not readily available to the learner for explicit description unless evoked by an external source. The development of knowledge–related capabilities such as Aggressive Development of Tacit Knowledge (ADTK) can be used in experiential educational programs to enhance knowledge, foster behavioral change, improve decision making, and overall performance. ADTK allows the student in HIPs to use their existing knowledge in a way that allows them to evaluate and make any necessary modifications to their core construct of reality in order to amalgamate new information. Based on the Lewin/Schein Change Theory, the learner will reach for tacit knowledge as a stabilizing mechanism when they are challenged by new information that puts them slightly off balance. As in word association drills, the important concept is the first thought. The reactionary outpouring to an experience is the programmed or tacit memory and knowledge of their core belief structure. ADTK is a way to help teachers design their own methods and activities to unfreeze, create new learning, and then refreeze the core constructs upon which future learning in a subject area is built. This paper will explore the use of ADTK as a technique for knowledge conversion in the classroom in general and in HIP programs specifically. It will focus on knowledge conversion in curriculum development and propose the use of one-time educational experiences, multi-session experiences and sequential program experiences focusing on tacit knowledge in educational programs.

Keywords: tacit knowledge, knowledge management, college programs, experiential learning

Procedia PDF Downloads 262
284 Development of a Novel Ankle-Foot Orthotic Using a User Centered Approach for Improved Satisfaction

Authors: Ahlad Neti, Elisa Arch, Martha Hall

Abstract:

Studies have shown that individuals who use Ankle-Foot-Orthoses (AFOs) have a high level of dissatisfaction regarding their current AFOs. Studies point to the focus on technical design with little attention given to the user perspective as a source of AFO designs that leave users dissatisfied. To design a new AFO that satisfies users and thereby improves their quality of life, the reasons for their dissatisfaction and their wants and needs for an improved AFO design must be identified. There has been little research into the user perspective on AFO use and desired improvements, so the relationship between AFO design and satisfaction in daily use must be assessed to develop appropriate metrics and constraints prior to designing a novel AFO. To assess the user perspective on AFO design, structured interviews were conducted with 7 individuals (average age of 64.29±8.81 years) who use AFOs. All interviews were transcribed and coded to identify common themes using Grounded Theory Method in NVivo 12. Qualitative analysis of these results identified sources of user dissatisfaction such as heaviness, bulk, and uncomfortable material and overall needs and wants for an AFO. Beyond the user perspective, certain objective factors must be considered in the construction of metrics and constraints to ensure that the AFO fulfills its medical purpose. These more objective metrics are rooted in a common medical device market and technical standards. Given the large body of research concerning these standards, these objective metrics and constraints were derived through a literature review. Through these two methods, a comprehensive list of metrics and constraints accounting for both the user perspective on AFO design and the AFO’s medical purpose was compiled. These metrics and constraints will establish the framework for designing a new AFO that carries out its medical purpose while also improving the user experience. The metrics can be categorized into several overarching areas for AFO improvement. Categories of user perspective related metrics include comfort, discreteness, aesthetics, ease of use, and compatibility with clothing. Categories of medical purpose related metrics include biomechanical functionality, durability, and affordability. These metrics were used to guide an iterative prototyping process. Six concepts were ideated and compared using system-level analysis. From these six concepts, two concepts – the piano wire model and the segmented model – were selected to move forward into prototyping. Evaluation of non-functional prototypes of the piano wire and segmented models determined that the piano wire model better fulfilled the metrics by offering increased stability, longer durability, fewer points for failure, and a strong enough core component to allow a sock to cover over the AFO while maintaining the overall structure. As such, the piano wire AFO has moved forward into the functional prototyping phase, and healthy subject testing is being designed and recruited to conduct design validation and verification.

Keywords: ankle-foot orthotic, assistive technology, human centered design, medical devices

Procedia PDF Downloads 156
283 An Investigation of Wind Loading Effects on the Design of Elevated Steel Tanks with Lattice Tower Supporting Structures

Authors: J. van Vuuren, D. J. van Vuuren, R. Muigai

Abstract:

In recent times, South Africa has experienced extensive droughts that created the need for reliable small water reservoirs. These reservoirs have comparatively quick fabrication and installation times compared to market alternatives. An elevated water tank has inherent potential energy, resulting in that no additional water pumps are required to sustain water pressure at the outlet point – thus ensuring that, without electricity, a water source is available. The initial construction formwork and the complex geometric shape of concrete towers that requires casting can become time-consuming, rendering steel towers preferable. Reinforced concrete foundations, cast in advance, are required to be of sufficient strength. Thereafter, the prefabricated steel supporting structure and tank, which consist of steel panels, can be assembled and erected on site within a couple of days. Due to the time effectiveness of this system, it has become a popular solution to aid drought-stricken areas. These sites are normally in rural, schools or farmland areas. As these tanks can contain up to 2000kL (approximately 19.62MN) of water, combined with supporting lattice steel structures ranging between 5m and 30m in height, failure of one of the supporting members will result in system failure. Thus, there is a need to gain a comprehensive understanding of the operation conditions because of wind loadings on both the tank and the supporting structure. The aim of the research is to investigate the relationship between the theoretical wind loading on a lattice steel tower in combination with an elevated sectional steel tank, and the current wind loading codes, as applicable to South Africa. The research compares the respective design parameters (both theoretical and wind loading codes) whereby FEA analyses are conducted on the various design solutions. The currently available wind loading codes are not sufficient to design slender cantilever latticed steel towers that support elevated water storage tanks. Numerous factors in the design codes are not comprehensively considered when designing the system as these codes are dependent on various assumptions. Factors that require investigation for the study are; the wind loading angle to the face of the structure that will result in maximum load; the internal structural effects on models with different bracing patterns; the loading influence of the aspect ratio of the tank; and the clearance height of the tank on the structural members. Wind loads, as the variable that results in the highest failure rate of cantilevered lattice steel tower structures, require greater understanding. This study aims to contribute towards the design process of elevated steel tanks with lattice tower supporting structures.

Keywords: aspect ratio, bracing patterns, clearance height, elevated steel tanks, lattice steel tower, wind loads

Procedia PDF Downloads 150
282 Evaluation of Coupled CFD-FEA Simulation for Fire Determination

Authors: Daniel Martin Fellows, Sean P. Walton, Jennifer Thompson, Oubay Hassan, Ella Quigley, Kevin Tinkham

Abstract:

Fire performance is a crucial aspect to consider when designing cladding products, and testing this performance is extremely expensive. Appropriate use of numerical simulation of fire performance has the potential to reduce the total number of fire tests required when designing a product by eliminating poor-performing design ideas early in the design phase. Due to the complexity of fire and the large spectrum of failures it can cause, multi-disciplinary models are needed to capture the complex fire behavior and its structural effects on its surroundings. Working alongside Tata Steel U.K., the authors have focused on completing a coupled CFD-FEA simulation model suited to test Polyisocyanurate (PIR) based sandwich panel products to gain confidence before costly experimental standards testing. The sandwich panels are part of a thermally insulating façade system primarily for large non-domestic buildings. The work presented in this paper compares two coupling methodologies of a replicated physical experimental standards test LPS 1181-1, carried out by Tata Steel U.K. The two coupling methodologies that are considered within this research are; one-way and two-way. A one-way coupled analysis consists of importing thermal data from the CFD solver into the FEA solver. A two-way coupling analysis consists of continuously importing the updated changes in thermal data, due to the fire's behavior, to the FEA solver throughout the simulation. Likewise, the mechanical changes will also be updated back to the CFD solver to include geometric changes within the solution. For CFD calculations, a solver called Fire Dynamic Simulator (FDS) has been chosen due to its adapted numerical scheme to focus solely on fire problems. Validation of FDS applicability has been achieved in past benchmark cases. In addition, an FEA solver called ABAQUS has been chosen to model the structural response to the fire due to its crushable foam plasticity model, which can accurately model the compressibility of PIR foam. An open-source code called FDS-2-ABAQUS is used to couple the two solvers together, using several python modules to complete the process, including failure checks. The coupling methodologies and experimental data acquired from Tata Steel U.K are compared using several variables. The comparison data includes; gas temperatures, surface temperatures, and mechanical deformation of the panels. Conclusions are drawn, noting improvements to be made on the current coupling open-source code FDS-2-ABAQUS to make it more applicable to Tata Steel U.K sandwich panel products. Future directions for reducing the computational cost of the simulation are also considered.

Keywords: fire engineering, numerical coupling, sandwich panels, thermo fluids

Procedia PDF Downloads 89
281 Business Intelligent to a Decision Support Tool for Green Entrepreneurship: Meso and Macro Regions

Authors: Anishur Rahman, Maria Areias, Diogo Simões, Ana Figeuiredo, Filipa Figueiredo, João Nunes

Abstract:

The circular economy (CE) has gained increased awareness among academics, businesses, and decision-makers as it stimulates resource circularity in the production and consumption systems. A large epistemological study has explored the principles of CE, but scant attention eagerly focused on analysing how CE is evaluated, consented to, and enforced using economic metabolism data and business intelligent framework. Economic metabolism involves the ongoing exchange of materials and energy within and across socio-economic systems and requires the assessment of vast amounts of data to provide quantitative analysis related to effective resource management. Limited concern, the present work has focused on the regional flows pilot region from Portugal. By addressing this gap, this study aims to promote eco-innovation and sustainability in the regions of Intermunicipal Communities Região de Coimbra, Viseu Dão Lafões and Beiras e Serra da Estrela, using this data to find precise synergies in terms of material flows and give companies a competitive advantage in form of valuable waste destinations, access to new resources and new markets, cost reduction and risk sharing benefits. In our work, emphasis on applying artificial intelligence (AI) and, more specifically, on implementing state-of-the-art deep learning algorithms is placed, contributing to construction a business intelligent approach. With the emergence of new approaches generally highlighted under the sub-heading of AI and machine learning (ML), the methods for statistical analysis of complex and uncertain production systems are facing significant changes. Therefore, various definitions of AI and its differences from traditional statistics are presented, and furthermore, ML is introduced to identify its place in data science and the differences in topics such as big data analytics and in production problems that using AI and ML are identified. A lifecycle-based approach is then taken to analyse the use of different methods in each phase to identify the most useful technologies and unifying attributes of AI in manufacturing. Most of macroeconomic metabolisms models are mainly direct to contexts of large metropolis, neglecting rural territories, so within this project, a dynamic decision support model coupled with artificial intelligence tools and information platforms will be developed, focused on the reality of these transition zones between the rural and urban. Thus, a real decision support tool is under development, which will surpass the scientific developments carried out to date and will allow to overcome imitations related to the availability and reliability of data.

Keywords: circular economy, artificial intelligence, economic metabolisms, machine learning

Procedia PDF Downloads 72
280 Methodological Deficiencies in Knowledge Representation Conceptual Theories of Artificial Intelligence

Authors: Nasser Salah Eldin Mohammed Salih Shebka

Abstract:

Current problematic issues in AI fields are mainly due to those of knowledge representation conceptual theories, which in turn reflected on the entire scope of cognitive sciences. Knowledge representation methods and tools are driven from theoretical concepts regarding human scientific perception of the conception, nature, and process of knowledge acquisition, knowledge engineering and knowledge generation. And although, these theoretical conceptions were themselves driven from the study of the human knowledge representation process and related theories; some essential factors were overlooked or underestimated, thus causing critical methodological deficiencies in the conceptual theories of human knowledge and knowledge representation conceptions. The evaluation criteria of human cumulative knowledge from the perspectives of nature and theoretical aspects of knowledge representation conceptions are affected greatly by the very materialistic nature of cognitive sciences. This nature caused what we define as methodological deficiencies in the nature of theoretical aspects of knowledge representation concepts in AI. These methodological deficiencies are not confined to applications of knowledge representation theories throughout AI fields, but also exceeds to cover the scientific nature of cognitive sciences. The methodological deficiencies we investigated in our work are: - The Segregation between cognitive abilities in knowledge driven models.- Insufficiency of the two-value logic used to represent knowledge particularly on machine language level in relation to the problematic issues of semantics and meaning theories. - Deficient consideration of the parameters of (existence) and (time) in the structure of knowledge. The latter requires that we present a more detailed introduction of the manner in which the meanings of Existence and Time are to be considered in the structure of knowledge. This doesn’t imply that it’s easy to apply in structures of knowledge representation systems, but outlining a deficiency caused by the absence of such essential parameters, can be considered as an attempt to redefine knowledge representation conceptual approaches, or if proven impossible; constructs a perspective on the possibility of simulating human cognition on machines. Furthermore, a redirection of the aforementioned expressions is required in order to formulate the exact meaning under discussion. This redirection of meaning alters the role of Existence and time factors to the Frame Work Environment of knowledge structure; and therefore; knowledge representation conceptual theories. Findings of our work indicate the necessity to differentiate between two comparative concepts when addressing the relation between existence and time parameters, and between that of the structure of human knowledge. The topics presented throughout the paper can also be viewed as an evaluation criterion to determine AI’s capability to achieve its ultimate objectives. Ultimately, we argue some of the implications of our findings that suggests that; although scientific progress may have not reached its peak, or that human scientific evolution has reached a point where it’s not possible to discover evolutionary facts about the human Brain and detailed descriptions of how it represents knowledge, but it simply implies that; unless these methodological deficiencies are properly addressed; the future of AI’s qualitative progress remains questionable.

Keywords: cognitive sciences, knowledge representation, ontological reasoning, temporal logic

Procedia PDF Downloads 112
279 Development of an Interface between BIM-model and an AI-based Control System for Building Facades with Integrated PV Technology

Authors: Moser Stephan, Lukasser Gerald, Weitlaner Robert

Abstract:

Urban structures will be used more intensively in the future through redensification or new planned districts with high building densities. Especially, to achieve positive energy balances like requested for Positive Energy Districts (PED) the single use of roofs is not sufficient for dense urban areas. However, the increasing share of window significantly reduces the facade area available for use in PV generation. Through the use of PV technology at other building components, such as external venetian blinds, onsite generation can be maximized and standard functionalities of this product can be positively extended. While offering advantages in terms of infrastructure, sustainability in the use of resources and efficiency, these systems require an increased optimization in planning and control strategies of buildings. External venetian blinds with PV technology require an intelligent control concept to meet the required demands such as maximum power generation, glare prevention, high daylight autonomy, avoidance of summer overheating but also use of passive solar gains in wintertime. Today, geometric representation of outdoor spaces and at the building level, three-dimensional geometric information is available for planning with Building Information Modeling (BIM). In a research project, a web application which is called HELLA DECART was developed to provide this data structure to extract the data required for the simulation from the BIM models and to make it usable for the calculations and coupled simulations. The investigated object is uploaded as an IFC file to this web application and includes the object as well as the neighboring buildings and possible remote shading. This tool uses a ray tracing method to determine possible glare from solar reflections of a neighboring building as well as near and far shadows per window on the object. Subsequently, an annual estimate of the sunlight per window is calculated by taking weather data into account. This optimized daylight assessment per window provides the ability to calculate an estimation of the potential power generation at the integrated PV on the venetian blind but also for the daylight and solar entry. As a next step, these results of the calculations as well as all necessary parameters for the thermal simulation can be provided. The overall aim of this workflow is to advance the coordination between the BIM model and coupled building simulation with the resulting shading and daylighting system with the artificial lighting system and maximum power generation in a control system. In the research project Powershade, an AI based control concept for PV integrated façade elements with coupled simulation results is investigated. The developed automated workflow concept in this paper is tested by using an office living lab at the HELLA company.

Keywords: BIPV, building simulation, optimized control strategy, planning tool

Procedia PDF Downloads 110
278 Screens Design and Application for Sustainable Buildings

Authors: Fida Isam Abdulhafiz

Abstract:

Traditional vernacular architecture in the United Arab Emirates constituted namely of adobe houses with a limited number of openings in their facades. The thick mud and rubble walls and wooden window screens protected its inhabitants from the harsh desert climate and provided them with privacy and fulfilled their comfort zone needs to an extent. However, with the rise of the immediate post petroleum era reinforced concrete villas with glass and steel technology has replaced traditional vernacular dwellings. And more load was put on the mechanical cooling systems to ensure the satisfaction of today’s more demanding doweling inhabitants. However, In the early 21at century professionals started to pay more attention to the carbon footprint caused by the built constructions. In addition, many studies and innovative approaches are now dedicated to lower the impact of the existing operating buildings on their surrounding environments. The UAE government agencies started to regulate that aim to revive sustainable and environmental design through Local and international building codes and urban design policies such as Estidama and LEED. The focus in this paper is on the reduction of the emissions resulting from the use of energy sources in the cooling and heating systems, and that would be through using innovative screen designs and façade solutions to provide a green footprint and aesthetic architectural icons. Screens are one of the popular innovative techniques that can be added in the design process or used in existing building as a renovation techniques to develop a passive green buildings. Preparing future architects to understand the importance of environmental design was attempted through physical modelling of window screens as an educational means to combine theory with a hands on teaching approach. Designing screens proved to be a popular technique that helped them understand the importance of sustainable design and passive cooling. After creating models of prototype screens, several tests were conducted to calculate the amount of Sun, light and wind that goes through the screens affecting the heat load and light entering the building. Theory further explored concepts of green buildings and material that produce low carbon emissions. This paper highlights the importance of hands on experience for student architects and how physical modelling helped rise eco awareness in Design studio. The paper will study different types of façade screens and shading devices developed by Architecture students and explains the production of diverse patterns for traditional screens by student architects based on sustainable design concept that works properly with the climate requirements in the Middle East region.

Keywords: building’s screens modeling, façade design, sustainable architecture, sustainable dwellings, sustainable education

Procedia PDF Downloads 298