Search results for: modeling technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10177

Search results for: modeling technique

457 The Potential of Edaphic Algae for Bioremediation of the Diesel-Contaminated Soil

Authors: C. J. Tien, C. S. Chen, S. F. Huang, Z. X. Wang

Abstract:

Algae in soil ecosystems can produce organic matters and oxygen by photosynthesis. Heterocyst-forming cyanobacteria can fix nitrogen to increase soil nitrogen contents. Secretion of mucilage by some algae increases the soil water content and soil aggregation. These actions will improve soil quality and fertility, and further increase abundance and diversity of soil microorganisms. In addition, some mixotrophic and heterotrophic algae are able to degrade petroleum hydrocarbons. Therefore, the objectives of this study were to analyze the effects of algal addition on the degradation of total petroleum hydrocarbons (TPH), diversity and activity of bacteria and algae in the diesel-contaminated soil under different nutrient contents and frequency of plowing and irrigation in order to assess the potential bioremediation technique using edaphic algae. The known amount of diesel was added into the farmland soil. This diesel-contaminated soil was subject to five settings, experiment-1 with algal addition by plowing and irrigation every two weeks, experiment-2 with algal addition by plowing and irrigation every four weeks, experiment-3 with algal and nutrient addition by plowing and irrigation every two weeks, experiment-4 with algal and nutrient addition by plowing and irrigation every four weeks, and the control without algal addition. Soil samples were taken every two weeks to analyze TPH concentrations, diversity of bacteria and algae, and catabolic genes encoding functional degrading enzymes. The results show that the TPH removal rates of five settings after the two-month experimental period were in the order: experiment-2 > expermient-4 > experiment-3 > experiment-1 > control. It indicated that algal addition enhanced the degradation of TPH in the diesel-contaminated soil, but not for nutrient addition. Plowing and irrigation every four weeks resulted in more TPH removal than that every two weeks. The banding patterns of denaturing gradient gel electrophoresis (DGGE) revealed an increase in diversity of bacteria and algae after algal addition. Three petroleum hydrocarbon-degrading algae (Anabaena sp., Oscillatoria sp. and Nostoc sp.) and two added algal strains (Leptolyngbya sp. and Synechococcus sp.) were sequenced from DGGE prominent bands. The four hydrocarbon-degrading bacteria Gordonia sp., Mycobacterium sp., Rodococcus sp. and Alcanivorax sp. were abundant in the treated soils. These results suggested that growth of indigenous bacteria and algae were improved after adding edaphic algae. Real-time polymerase chain reaction results showed that relative amounts of four catabolic genes encoding catechol 2, 3-dioxygenase, toluene monooxygenase, xylene monooxygenase and phenol monooxygenase were appeared and expressed in the treated soil. The addition of algae increased the expression of these genes at the end of experiments to biodegrade petroleum hydrocarbons. This study demonstrated that edaphic algae were suitable biomaterials for bioremediating diesel-contaminated soils with plowing and irrigation every four weeks.

Keywords: catabolic gene, diesel, diversity, edaphic algae

Procedia PDF Downloads 280
456 An Exploration of Policy-related Documents on District Heating and Cooling in Flanders: A Slow and Bottom-up Process

Authors: Isaura Bonneux

Abstract:

District heating and cooling (DHC) is increasingly recognized as a viable path towards sustainable heating and cooling. While some countries like Sweden and Denmark have a longstanding tradition of DHC, Belgium is lacking behind. The Northern part of Belgium, Flanders, had only a total of 95 heating networks in July 2023. Nevertheless, it is increasingly exploring its possibilities to enhance the scope of DHC. DHC is a complex energy system, requiring a lot of collaboration between various stakeholders on various levels. Therefore, it is of interest to look closer at policy-related documents at the Flemish (regional) level, as these policies set the scene for DHC development in the Flemish region. This kind of analysis has not been undertaken so far. This paper has the following research question: “Who talks about DHC, and in which way and context is DHC discussed in Flemish policy-related documents?” To answer this question, the Overton policy database was used to search and retrieve relevant policy-related documents. Overton retrieves data from governments, think thanks, NGOs, and IGOs. In total, out of the 244 original results, 117 documents between 2009 and 2023 were analyzed. Every selected document included theme keywords, policymaking department(s), date, and document type. These elements were used for quantitative data description and visualization. Further, qualitative content analysis revealed patterns and main themes regarding DHC in Flanders. Four main conclusions can be drawn: First, it is obvious from the timeframe that DHC is a new topic in Flanders with still limited attention; 2014, 2016 and 2017 were the years with the most documents, yet this number is still only 12 documents. In addition, many documents talked about DHC but not much in depth and painted it as a future scenario with a lot of uncertainty around it. The largest part of the issuing government departments had a link to either energy or climate (e.g. Flemish Environmental Agency) or policy (e.g. Socio-Economic Council of Flanders) Second, DHC is mentioned most within an ‘Environment and Sustainability’ context, followed by ‘General Policy and Regulation’. This is intuitive, as DHC is perceived as a sustainable heating and cooling technique and this analysis compromises policy-related documents. Third, Flanders seems mostly interested in using waste or residual heat as a heating source for DHC. The harbors and waste incineration plants are identified as potential and promising supply sources. This approach tries to conciliate environmental and economic incentives. Last, local councils get assigned a central role and the initiative is mostly taken by them. The policy documents and policy advices demonstrate that Flanders opts for a bottom-up organization. As DHC is very dependent on local conditions, this seems a logic step. Nevertheless, this can impede smaller councils to create DHC networks and slow down systematic and fast implementation of DHC throughout Flanders.

Keywords: district heating and cooling, flanders, overton database, policy analysis

Procedia PDF Downloads 46
455 Effects of Classroom-Based Intervention on Academic Performance of Pupils with Attention Deficit Hyperactivity Disorder in Inclusive Classrooms in Buea

Authors: John Njikem

Abstract:

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most commonly diagnosed behavioral disorders in children, associated with this disorder are core symptoms of inattention, hyperactivity and impulsivity. This study was purposely to enlighten and inform teachers, policy makers and other professionals concern in the education of this group of learners in inclusive schools in Buea, Cameroon. The major purpose of this study was to identify children with ADHD in elementary schools practicing inclusive education and to investigate the effect of classroom based intervention on their academic performance. The research problem stems from the fact that majority of children with ADHD in our school mostly have problems with classroom tasks like paying attention, easily distracted, and difficulties in organization and very little has been done to manage this numerous conditions, therefore it was necessary for the researcher to identify them and implement some inclusive strategies that teachers can better use in managing the behavior of this group of learners. There were four research questions and the study; the sample population used for the study was 27 pupils (3-7years old) formally identified with key symptoms of ADHD from primary 3-6 from four primary inclusive schools in Buea. Two sub-types of ADHD children were identified by using the recent DSM-IV behavioral checklist in recording their behavior after teacher and peer nomination they were later subjected to three groups for classroom intervention. Data collection was done by using interviews and other supportive methods such as document consultation, field notes and informal talks as additional sources was also used to gather information. Classroom Intervention techniques were carried out by the teachers themselves for 8 weeks under the supervision of the researcher, results were recorded for the 27 children's academic performance in the areas of math’s, writing and reading. Descriptive Statistics was applied in analyzing the data in percentages while tables and diagrams were used to represent the results. Findings obtained indicated that there was significant increase in the level of attention and organization on classroom tasks in the areas of reading, writing and mathematics. Finding also show that there was a more significant improvement made on their academic performance using the combined intervention approach which was proven to be the most effective intervention technique for pupils with ADHD in the study. Therefore it is necessary that teachers in inclusive primary schools in Buea understand the needs of these children and learn how to identify them and also use this intervention approaches to accommodate them in classroom task in order to encourage inclusive educational classroom practices in the country. Recommendations were based on each research objective and suggestions for further studies centered on other methods of classroom intervention for ADHD children in inclusive settings.

Keywords: attention deficit hyperactivity disorder, inclusive classrooms, academic performance, impulsivity

Procedia PDF Downloads 253
454 Community Perception towards the Major Drivers for Deforestation and Land Degradation of Choke Afro-alpine and Sub-afro alpine Ecosystem, Northwest Ethiopia

Authors: Zelalem Teshager

Abstract:

The Choke Mountains have several endangered and endemic wildlife species and provide important ecosystem services. Despite their environmental importance, the Choke Mountains are found in dangerous conditions. This raised the need for an evaluation of the community's perception of deforestation and its major drivers and suggested possible solutions in the Choke Mountains of northwestern Ethiopia. For this purpose, household surveys, key informant interviews, and focus group discussions were used. A total sample of 102 informants was used for this survey. A purposive sampling technique was applied to select the participants for in-depth interviews and focus group discussions. Both qualitative and quantitative data analyses were used. Computation of descriptive statistics such as mean, percentages, frequency, tables, figures, and graphs was applied to organize, analyze, and interpret the study. This study assessed smallholder agricultural land expansion, Fuel wood collection, population growth; encroachment, free grazing, high demand of construction wood, unplanned resettlement, unemployment, border conflict, lack of a strong forest protecting system, and drought were the serious causes of forest depletion reported by local communities. Loss of land productivity, Soil erosion, soil fertility decline, increasing wind velocity, rising temperature, and frequency of drought were the most perceived impacts of deforestation. Most of the farmers have a holistic understanding of forest cover change. Strengthening forest protection, improving soil and water conservation, enrichment planting, awareness creation, payment for ecosystem services, and zero grazing campaigns were mentioned as possible solutions to the current state of deforestation. Applications of Intervention measures, such as animal fattening, beekeeping, and fruit production can contribute to decreasing the deforestation causes and improve communities’ livelihood. In addition, concerted efforts of conservation will ensure that the forests’ ecosystems contribute to increased ecosystem services. The major drivers of deforestation should be addressed with government intervention to change dependency on forest resources, income sources of the people, and institutional set-up of the forestry sector. Overall, further reduction in anthropogenic pressure is urgent and crucial for the recovery of the afro-alpine vegetation and the interrelated endangered wildlife in the Choke Mountains.

Keywords: choke afro-alpine, deforestation, drivers, intervention measures, perceptions

Procedia PDF Downloads 55
453 In-situ Acoustic Emission Analysis of a Polymer Electrolyte Membrane Water Electrolyser

Authors: M. Maier, I. Dedigama, J. Majasan, Y. Wu, Q. Meyer, L. Castanheira, G. Hinds, P. R. Shearing, D. J. L. Brett

Abstract:

Increasing the efficiency of electrolyser technology is commonly seen as one of the main challenges on the way to the Hydrogen Economy. There is a significant lack of understanding of the different states of operation of polymer electrolyte membrane water electrolysers (PEMWE) and how these influence the overall efficiency. This in particular means the two-phase flow through the membrane, gas diffusion layers (GDL) and flow channels. In order to increase the efficiency of PEMWE and facilitate their spread as commercial hydrogen production technology, new analytic approaches have to be found. Acoustic emission (AE) offers the possibility to analyse the processes within a PEMWE in a non-destructive, fast and cheap in-situ way. This work describes the generation and analysis of AE data coming from a PEM water electrolyser, for, to the best of our knowledge, the first time in literature. Different experiments are carried out. Each experiment is designed so that only specific physical processes occur and AE solely related to one process can be measured. Therefore, a range of experimental conditions is used to induce different flow regimes within flow channels and GDL. The resulting AE data is first separated into different events, which are defined by exceeding the noise threshold. Each acoustic event consists of a number of consequent peaks and ends when the wave diminishes under the noise threshold. For all these acoustic events the following key attributes are extracted: maximum peak amplitude, duration, number of peaks, peaks before the maximum, average intensity of a peak and time till the maximum is reached. Each event is then expressed as a vector containing the normalized values for all criteria. Principal Component Analysis is performed on the resulting data, which orders the criteria by the eigenvalues of their covariance matrix. This can be used as an easy way of determining which criteria convey the most information on the acoustic data. In the following, the data is ordered in the two- or three-dimensional space formed by the most relevant criteria axes. By finding spaces in the two- or three-dimensional space only occupied by acoustic events originating from one of the three experiments it is possible to relate physical processes to certain acoustic patterns. Due to the complex nature of the AE data modern machine learning techniques are needed to recognize these patterns in-situ. Using the AE data produced before allows to train a self-learning algorithm and develop an analytical tool to diagnose different operational states in a PEMWE. Combining this technique with the measurement of polarization curves and electrochemical impedance spectroscopy allows for in-situ optimization and recognition of suboptimal states of operation.

Keywords: acoustic emission, gas diffusion layers, in-situ diagnosis, PEM water electrolyser

Procedia PDF Downloads 157
452 Evaluation of Suspended Particles Impact on Condensation in Expanding Flow with Aerodynamics Waves

Authors: Piotr Wisniewski, Sławomir Dykas

Abstract:

Condensation has a negative impact on turbomachinery efficiency in many energy processes.In technical applications, it is often impossible to dry the working fluid at the nozzle inlet. One of the most popular working fluid is atmospheric air that always contains water in form of steam, liquid, or ice crystals. Moreover, it always contains some amount of suspended particles which influence the phase change process. It is known that the phenomena of evaporation or condensation are connected with release or absorption of latent heat, what influence the fluid physical properties and might affect the machinery efficiency therefore, the phase transition has to be taken under account. This researchpresents an attempt to evaluate the impact of solid and liquid particles suspended in the air on the expansion of moist air in a low expansion rate, i.e., with expansion rate, P≈1000s⁻¹. The numerical study supported by analytical and experimental research is presented in this work. The experimental study was carried out using an in-house experimental test rig, where nozzle was examined for different inlet air relative humidity values included in the range of 25 to 51%. The nozzle was tested for a supersonic flow as well as for flow with shock waves induced by elevated back pressure. The Schlieren photography technique and measurement of static pressure on the nozzle wall were used for qualitative identification of both condensation and shock waves. A numerical model validated against experimental data available in the literature was used for analysis of occurring flow phenomena. The analysis of the suspended particles number, diameter, and character (solid or liquid) revealed their connection with heterogeneous condensation importance. If the expansion of fluid without suspended particlesis considered, the condensation triggers so called condensation wave that appears downstream the nozzle throat. If the solid particles are considered, with increasing number of them, the condensation triggers upwind the nozzle throat, decreasing the condensation wave strength. Due to the release of latent heat during condensation, the fluid temperature and pressure increase, leading to the shift of normal shock upstream the flow. Owing relatively large diameters of the droplets created during heterogeneous condensation, they evaporate partially on the shock and continues to evaporate downstream the nozzle. If the liquid water particles are considered, due to their larger radius, their do not affect the expanding flow significantly, however might be in major importance while considering the compression phenomena as they will tend to evaporate on the shock wave. This research proves the need of further study of phase change phenomena in supersonic flow especially considering the interaction of droplets with the aerodynamic waves in the flow.

Keywords: aerodynamics, computational fluid dynamics, condensation, moist air, multi-phase flows

Procedia PDF Downloads 119
451 Placement Characteristics of Major Stream Vehicular Traffic at Median Openings

Authors: Tathagatha Khan, Smruti Sourava Mohapatra

Abstract:

Median openings are provided in raised median of multilane roads to facilitate U-turn movement. The U-turn movement is a highly complex and risky maneuver because U-turning vehicle (minor stream) makes 180° turns at median openings and merge with the approaching through traffic (major stream). A U-turning vehicle requires a suitable gap in the major stream to merge, and during this process, the possibility of merging conflict develops. Therefore, these median openings are potential hot spot of conflict and posses concern pertaining to safety. The traffic at the median openings could be managed efficiently with enhanced safety when the capacity of a traffic facility has been estimated correctly. The capacity of U-turns at median openings is estimated by Harder’s formula, which requires three basic parameters namely critical gap, follow up time and conflict flow rate. The estimation of conflicting flow rate under mixed traffic condition is very much complicated due to absence of lane discipline and discourteous behavior of the drivers. The understanding of placement of major stream vehicles at median opening is very much important for the estimation of conflicting traffic faced by U-turning movement. The placement data of major stream vehicles at different section in 4-lane and 6-lane divided multilane roads were collected. All the test sections were free from the effect of intersection, bus stop, parked vehicles, curvature, pedestrian movements or any other side friction. For the purpose of analysis, all the vehicles were divided into 6 categories such as motorized 2W, autorickshaw (3-W), small car, big car, light commercial vehicle, and heavy vehicle. For the collection of placement data of major stream vehicles, the entire road width was divided into sections of 25 cm each and these were numbered seriatim from the pavement edge (curbside) to the end of the road. The placement major stream vehicle crossing the reference line was recorded by video graphic technique on various weekdays. The collected data for individual category of vehicles at all the test sections were converted into a frequency table with a class interval of 25 cm each and the placement frequency curve. Separate distribution fittings were tried for 4- lane and 6-lane divided roads. The variation of major stream traffic volume on the placement characteristics of major stream vehicles has also been explored. The findings of this study will be helpful to determine the conflict volume at the median openings. So, the present work holds significance in traffic planning, operation and design to alleviate the bottleneck, prospect of collision and delay at median opening in general and at median opening in developing countries in particular.

Keywords: median opening, U-turn, conflicting traffic, placement, mixed traffic

Procedia PDF Downloads 139
450 Analytical Model of Locomotion of a Thin-Film Piezoelectric 2D Soft Robot Including Gravity Effects

Authors: Zhiwu Zheng, Prakhar Kumar, Sigurd Wagner, Naveen Verma, James C. Sturm

Abstract:

Soft robots have drawn great interest recently due to a rich range of possible shapes and motions they can take on to address new applications, compared to traditional rigid robots. Large-area electronics (LAE) provides a unique platform for creating soft robots by leveraging thin-film technology to enable the integration of a large number of actuators, sensors, and control circuits on flexible sheets. However, the rich shapes and motions possible, especially when interacting with complex environments, pose significant challenges to forming well-generalized and robust models necessary for robot design and control. In this work, we describe an analytical model for predicting the shape and locomotion of a flexible (steel-foil-based) piezoelectric-actuated 2D robot based on Euler-Bernoulli beam theory. It is nominally (unpowered) lying flat on the ground, and when powered, its shape is controlled by an array of piezoelectric thin-film actuators. Key features of the models are its ability to incorporate the significant effects of gravity on the shape and to precisely predict the spatial distribution of friction against the contacting surfaces, necessary for determining inchworm-type motion. We verified the model by developing a distributed discrete element representation of a continuous piezoelectric actuator and by comparing its analytical predictions to discrete-element robot simulations using PyBullet. Without gravity, predicting the shape of a sheet with a linear array of piezoelectric actuators at arbitrary voltages is straightforward. However, gravity significantly distorts the shape of the sheet, causing some segments to flatten against the ground. Our work includes the following contributions: (i) A self-consistent approach was developed to exactly determine which parts of the soft robot are lifted off the ground, and the exact shape of these sections, for an arbitrary array of piezoelectric voltages and configurations. (ii) Inchworm-type motion relies on controlling the relative friction with the ground surface in different sections of the robot. By adding torque-balance to our model and analyzing shear forces, the model can then determine the exact spatial distribution of the vertical force that the ground is exerting on the soft robot. Through this, the spatial distribution of friction forces between ground and robot can be determined. (iii) By combining this spatial friction distribution with the shape of the soft robot, in the function of time as piezoelectric actuator voltages are changed, the inchworm-type locomotion of the robot can be determined. As a practical example, we calculated the performance of a 5-actuator system on a 50-µm thick steel foil. Piezoelectric properties of commercially available thin-film piezoelectric actuators were assumed. The model predicted inchworm motion of up to 200 µm per step. For independent verification, we also modelled the system using PyBullet, a discrete-element robot simulator. To model a continuous thin-film piezoelectric actuator, we broke each actuator into multiple segments, each of which consisted of two rigid arms with appropriate mass connected with a 'motor' whose torque was set by the applied actuator voltage. Excellent agreement between our analytical model and the discrete-element simulator was shown for both for the full deformation shape and motion of the robot.

Keywords: analytical modeling, piezoelectric actuators, soft robot locomotion, thin-film technology

Procedia PDF Downloads 181
449 The Strategic Role of Accommodation Providers in Encouraging Travelers to Adopt Environmentally-Friendly Modes of Transportation: An Experiment from France

Authors: Luc Beal

Abstract:

Introduction. Among the stakeholders involved in the tourist decision-making process, the accommodation provider has the potential to play a crucial role in raising awareness, disseminating information, and thus influencing the tourists’ choice of transportation. Since the early days of tourism, the accommodation provider has consistently served as the primary point of contact with the destination, and consequently, as the primary source of information for visitors. By offering accommodation and hospitality, the accommodation provider has evolved into a trusted third party, functioning as an 'ambassador' capable of recommending the finest attractions and activities available at the destination. In contemporary times, when tourists plan their trips, they make a series of consecutive decisions, with the most important decision being to lock-in the accommodation reservation for the earliest days, so as to secure a safe arrival. Consequently, tourists place their trust in the accommodation provider not only for lodging but also for recommendations regarding restaurants, activities, and more. Thus, the latter has the opportunity to inform and influence tourists well in advance of their arrival, particularly during the booking phase, namely when it comes to selecting their mode of transportation. The pressing need to reduce greenhouse gas emissions within the tourism sector presents an opportunity to underscore the influence that accommodation providers have historically exerted on tourist decision-making . Methodology A participatory research, currently ongoing in south-western France, in collaboration with a nationwide hotel group and several destination management organizations, aims at examining the factors that determine the ability of accommodation providers to influence tourist transportation choices. Additionally, the research seeks to identify the conditions that motivate accommodation providers to assume a proactive role, such as fostering customer loyalty, reduced distribution costs, and financial compensation mechanisms. A panel of hotels participated in a series of focus group sessions with tourists, with the objective of modeling the decision-making process of tourists regarding their choice of transportation mode and to identify and quantify the types and levels of incentives liable to encourage environmentally responsible choices. Individual interviews were also conducted with hotel staff, including receptionists and guest relations officers, to develop a framework for interactions with tourists during crucial decision-making moments related to transportation choices. The primary finding of this research indicates that financial incentives significantly outweigh symbolic incentives in motivating tourists to opt for eco-friendly modes of transportation. Another noteworthy result underscores the crucial impact of organizational conditions governing interactions with tourists both before and during their stay. These conditions greatly influence the ability to raise awareness at key decision-making moments and the possibility of gathering data about the chosen transportation mode during the stay. In conclusion, this research has led to the formulation of practical recommendations for accommodation providers and Destination Marketing Organizations (DMOs). These recommendations pertain to communication protocols with tourists, the collection of evidences confirming chosen transportation modes, and the implementation of necessary incentives. Through these measures, accommodation provider can assume a central role in guiding tourists towards making responsible choices in terms of transportation.

Keywords: accommodation provider, trusted third party, environmentally-friendly transportation, green house gas, tourist decision-making process

Procedia PDF Downloads 58
448 Creative Radio Advertising in Turkey

Authors: Mehmet Sinan Erguven

Abstract:

A number of authorities argue that radio is an outdated medium for advertising and does not have the same impact on consumers as it did in the past. This grim outlook on the future of radio has its basis in the audio-visual world that consumers now live in and the popularity of Internet-based marketing tools among advertising professionals. Nonetheless, consumers still appear to overwhelmingly prefer radio as an entertainment tool. Today, in Canada, 90% of all adults (18+) tune into the radio on a weekly basis, and they listen for 17 hours. Teens are the most challenging group for radio to capture as an audience, but still, almost 75% tune in weekly. One online radio station reaches more than 250 million registered listeners worldwide, and revenues from radio advertising in Australia are expected to grow at an annual rate of 3% for the foreseeable future. Radio is also starting to become popular again in Turkey, with a 5% increase in the listening rates compared to 2014. A major matter of concern always affecting radio advertising is creativity. As radio generally serves as a background medium for listeners, the creativity of the radio commercials is important in terms of attracting the attention of the listener and directing their focus on the advertising message. This cannot simply be done by using audio tools like sound effects and jingles. This study aims to identify the creative elements (execution formats appeals and approaches) and creativity factors of radio commercials in Turkey. As part of the study, all of the award winning radio commercials produced throughout the history of the Kristal Elma Advertising Festival were analyzed using the content analysis technique. Two judges (an advertising agency copywriter and an academic) coded the commercials. The reliability was measured according to the proportional agreement. The results showed that sound effects, jingles, testimonials, slices of life and announcements were the most common execution formats in creative Turkish radio ads. Humor and excitement were the most commonly used creative appeals while award-winning ads featured various approaches, such as surprise musical performances, audio wallpaper, product voice, and theater of the mind. Some ads, however, were found to not contain any creativity factors. In order to be accepted as creative, an ad must have at least one divergence factor, such as originality, flexibility, unusual/empathic perspective, and provocative questions. These findings, as well as others from the study, hold great value for the history of creative radio advertising in Turkey. Today, the nature of radio and its listeners is changing. As more and more people are tuning into online radio channels, brands will need to focus more on this relatively cheap advertising medium in the very near future. This new development will require that advertising agencies focus their attention on creativity in order to produce radio commercials for their customers that will differentiate them from their competitors.

Keywords: advertising, creativity, radio, Turkey

Procedia PDF Downloads 396
447 Exploration of the Psychological Aspect of Empowerment of Marginalized Women Working in the Unorganized Sector of Metropolis City

Authors: Sharmistha Chanda, Anindita Chaudhuri

Abstract:

This exploratory study highlights the psychological aspects of women's empowerment to find the importance of the psychological dimension of empowerment, such as; meaning, competence, self-determination, impact, and assumption, especially in the weaker marginalized section of women. A large proportion of rural, suburban, and urban poor survive by working in unorganized sectors of metropolitan cities. Relative Poverty and lack of employment in rural areas and small towns drive many people to the metropolitan city for work and livelihood. Women working in that field remain unrecognized as people of low socio-economic status. They are usually willing to do domestic work as daily wage workers, single wage earners, street vendors, family businesses like agricultural activities, domestic workers, and self-employed. Usually, these women accept such jobs because they do not have such an opportunity as they lack the basic level of education that is required for better-paid jobs. The unorganized sector, on the other hand, has no such clear-cut employer-employee relationships and lacks most forms of social protection. Having no fixed employer, these workers are casual, contractual, migrant, home-based, own-account workers who attempt to earn a living from whatever meager assets and skills they possess. Women have become more empowered both financially and individually through small-scale business ownership or entrepreneurship development and in household-based work. In-depth interviews have been done with 10 participants in order to understand their living styles, habits, self-identity, and empowerment in their society in order to evaluate the key challenges that they may face following by qualitative research approach. Transcription has been done from the collected data. The three-layer coding technique guides the data analysis process, encompassing – open coding, axial coding, and selective coding. Women’s Entrepreneurship is one of the foremost concerns as the Government, and non-government institutions are readily serving this domain with the primary objectives of promoting self-employment opportunities in general and empowering women in specific. Thus, despite hardship and unrecognition unorganized sector provides a huge array of opportunities for rural and sub-urban poor to earn. Also, the upper section of society tends to depend on this working force. This study gave an idea about the well-being, and meaning in life, life satisfaction on the basis of their lived experience.

Keywords: marginalized women, psychological empowerment, relative poverty, and unorganized sector.

Procedia PDF Downloads 59
446 Home Environment and Peer Pressure as Predictors of Disruptive Behaviour and Risky Sexual Behaviour of Secondary School Class Two Adolescents in Enugu State, Nigeria

Authors: Dorothy Ebere Adimora

Abstract:

The study investigated the predictive power of home environment and peer pressure on disruptive behaviour and risky sexual behaviour of Secondary School Class Two Adolescents in Enugu State, Nigeria. The design of the study is a cross sectional survey of correlational study. The study was carried out in the six Education zones in Enugu state, Nigeria. Enugu State is divided into six education zones, namely Agbani, Awgu, Enugu, Nsukka, Obollo-Afor and Udi. The population for the study was all the 31,680 senior secondary class two adolescents in 285 secondary schools in Enugu State, Nigeria in 2014/2015 academic session. The target population was students in SSS.2 senior secondary class two. They constitute one-sixth of the entire student population in the state. The sample of the study was 528, a multi stage sampling technique was employed to draw the sample. Four research questions and four null hypotheses guided the study. The instruments for data collection were an interview session and a structured questionnaire of four clusters, they are; home environment, peer pressure, risky sexual behaviour and disruptive behaviour disorder questionnaires. The instruments were validated by 3 experts, two in psychology and one in measurement and Evaluation in Faculty of Education, University of Nigeria, Nsukka. The reliability coefficient of the instruments was ascertained by subjection to field trial. The adolescents were asked to complete the questionnaire on their home environment, peer pressure, disruptive behaviour disorder and risky sexual behaviours. The risky sexual behaviours were ascertained based on interview conducted on their actual sexual practice within the past 12 months. The research questions were analyzed using Pearson r and R-square, while the hypotheses were tested using ANOVA and multiple regression analysis at 0.05 level of significance. The results of this survey revealed that the adolescents are sexually active in very young ages. The mean age at sexual debut for the adolescents covered in this survey is a pointer to the fact that some of them started engaging in sexual activities long ago. It was also found that the adolescents engage in disruptive behaviour as a result of their poor home environment factors and association with negative peers. Based on the findings, it was recommended that the adolescents should be exposed to enhanced home environment such as parents’ responsiveness, organization of the environment, availability of appropriate learning materials, opportunities for daily stimulation and to offer a proper guidance to these adolescents to avoid negative peer influence which could result in risky sexual behaviour and disruptive behaviour disorder.

Keywords: parenting, peer group, adolescents, sexuality, conduct disorder

Procedia PDF Downloads 482
445 Planning Railway Assets Renewal with a Multiobjective Approach

Authors: João Coutinho-Rodrigues, Nuno Sousa, Luís Alçada-Almeida

Abstract:

Transportation infrastructure systems are fundamental in modern society and economy. However, they need modernizing, maintaining, and reinforcing interventions which require large investments. In many countries, accumulated intervention delays arise from aging and intense use, being magnified by financial constraints of the past. The decision problem of managing the renewal of large backlogs is common to several types of important transportation infrastructures (e.g., railways, roads). This problem requires considering financial aspects as well as operational constraints under a multidimensional framework. The present research introduces a linear programming multiobjective model for managing railway infrastructure asset renewal. The model aims at minimizing three objectives: (i) yearly investment peak, by evenly spreading investment throughout multiple years; (ii) total cost, which includes extra maintenance costs incurred from renewal backlogs; (iii) priority delays related to work start postponements on the higher priority railway sections. Operational constraints ensure that passenger and freight services are not excessively delayed from having railway line sections under intervention. Achieving a balanced annual investment plan, without compromising the total financial effort or excessively postponing the execution of the priority works, was the motivation for pursuing the research which is now presented. The methodology, inspired by a real case study and tested with real data, reflects aspects of the practice of an infrastructure management company and is generalizable to different types of infrastructure (e.g., railways, highways). It was conceived for treating renewal interventions in infrastructure assets, which is a railway network may be rails, ballasts, sleepers, etc.; while a section is under intervention, trains must run at reduced speed, causing delays in services. The model cannot, therefore, allow for an accumulation of works on the same line, which may cause excessively large delays. Similarly, the lines do not all have the same socio-economic importance or service intensity, making it is necessary to prioritize the sections to be renewed. The model takes these issues into account, and its output is an optimized works schedule for the renewal project translatable in Gantt charts The infrastructure management company provided all the data for the first test case study and validated the parameterization. This case consists of several sections to be renewed, over 5 years and belonging to 17 lines. A large instance was also generated, reflecting a problem of a size similar to the USA railway network (considered the largest one in the world), so it is not expected that considerably larger problems appear in real life; an average of 25 years backlog and ten years of project horizon was considered. Despite the very large increase in the number of decision variables (200 times as large), the computational time cost did not increase very significantly. It is thus expectable that just about any real-life problem can be treated in a modern computer, regardless of size. The trade-off analysis shows that if the decision maker allows some increase in max yearly investment (i.e., degradation of objective ii), solutions improve considerably in the remaining two objectives.

Keywords: transport infrastructure, asset renewal, railway maintenance, multiobjective modeling

Procedia PDF Downloads 146
444 ChatGPT 4.0 Demonstrates Strong Performance in Standardised Medical Licensing Examinations: Insights and Implications for Medical Educators

Authors: K. O'Malley

Abstract:

Background: The emergence and rapid evolution of large language models (LLMs) (i.e., models of generative artificial intelligence, or AI) has been unprecedented. ChatGPT is one of the most widely used LLM platforms. Using natural language processing technology, it generates customized responses to user prompts, enabling it to mimic human conversation. Responses are generated using predictive modeling of vast internet text and data swathes and are further refined and reinforced through user feedback. The popularity of LLMs is increasing, with a growing number of students utilizing these platforms for study and revision purposes. Notwithstanding its many novel applications, LLM technology is inherently susceptible to bias and error. This poses a significant challenge in the educational setting, where academic integrity may be undermined. This study aims to evaluate the performance of the latest iteration of ChatGPT (ChatGPT4.0) in standardized state medical licensing examinations. Methods: A considered search strategy was used to interrogate the PubMed electronic database. The keywords ‘ChatGPT’ AND ‘medical education’ OR ‘medical school’ OR ‘medical licensing exam’ were used to identify relevant literature. The search included all peer-reviewed literature published in the past five years. The search was limited to publications in the English language only. Eligibility was ascertained based on the study title and abstract and confirmed by consulting the full-text document. Data was extracted into a Microsoft Excel document for analysis. Results: The search yielded 345 publications that were screened. 225 original articles were identified, of which 11 met the pre-determined criteria for inclusion in a narrative synthesis. These studies included performance assessments in national medical licensing examinations from the United States, United Kingdom, Saudi Arabia, Poland, Taiwan, Japan and Germany. ChatGPT 4.0 achieved scores ranging from 67.1 to 88.6 percent. The mean score across all studies was 82.49 percent (SD= 5.95). In all studies, ChatGPT exceeded the threshold for a passing grade in the corresponding exam. Conclusion: The capabilities of ChatGPT in standardized academic assessment in medicine are robust. While this technology can potentially revolutionize higher education, it also presents several challenges with which educators have not had to contend before. The overall strong performance of ChatGPT, as outlined above, may lend itself to unfair use (such as the plagiarism of deliverable coursework) and pose unforeseen ethical challenges (arising from algorithmic bias). Conversely, it highlights potential pitfalls if users assume LLM-generated content to be entirely accurate. In the aforementioned studies, ChatGPT exhibits a margin of error between 11.4 and 32.9 percent, which resonates strongly with concerns regarding the quality and veracity of LLM-generated content. It is imperative to highlight these limitations, particularly to students in the early stages of their education who are less likely to possess the requisite insight or knowledge to recognize errors, inaccuracies or false information. Educators must inform themselves of these emerging challenges to effectively address them and mitigate potential disruption in academic fora.

Keywords: artificial intelligence, ChatGPT, generative ai, large language models, licensing exam, medical education, medicine, university

Procedia PDF Downloads 34
443 Genetic Structuring of Four Tectona grandis L. F. Seed Production Areas in Southern India

Authors: P. M. Sreekanth

Abstract:

Teak (Tectona grandis L. f.) is a tree species indigenous to India and other Southeastern countries. It produces high-value timber and is easily established in plantations. Reforestation requires a constant supply of high quality seeds. Seed Production Areas (SPA) of teak are improved stands used for collection of open-pollinated quality seeds in large quantities. Information on the genetic diversity of major teak SPAs in India is scanty. The genetic structure of four important seed production areas of Kerala State in Southern India was analyzed employing amplified fragment length polymorphism markers using ten selective primer combinations on 80 samples (4 populations X 20 trees). The study revealed that the gene diversity of the SPAs varied from 0.169 (Konni SPA) to 0.203 (Wayanad SPA). The percentage of polymorphic loci ranged from 74.42 (Parambikulam SPA) to 84.06 (Konni SPA). The mean total gene diversity index (HT) of all the four SPAs was 0.2296 ±0.02. A high proportion of genetic diversity was observed within the populations (83%) while diversity between populations was lower (17%) (GST = 0.17). Principal coordinate analysis and STRUCTURE analysis of the genotypes indicated that the pattern of clustering was in accordance with the origin and geographic location of SPAs, indicating specific identity of each population. A UPGMA dendrogram was prepared and showed that all the twenty samples from each of Konni and Parambikulam SPAs clustered into two separate groups, respectively. However, five Nilambur genotypes and one Wayanad genotype intruded into the Konni cluster. The higher gene flow estimated (Nm = 2.4) reflected the inclusion of Konni origin planting stock in the Nilambur and Wayanad plantations. Evidence for population structure investigated using 3D Principal Coordinate Analysis of FAMD software 1.30 indicated that the pattern of clustering was in accordance with the origin of SPAs. The present study showed that assessment of genetic diversity in seed production plantations can be achieved using AFLP markers. The AFLP fingerprinting was also capable of identifying the geographical origin of planting stock and there by revealing the occurrence of the errors in genotype labeling. Molecular marker-based selective culling of genetically similar trees from a stand so as to increase the genetic base of seed production areas could be a new proposition to improve quality of seeds required for raising commercial plantations of teak. The technique can also be used to assess the genetic diversity status of plus trees within provenances during their selection for raising clonal seed orchards for assuring the quality of seeds available for raising future plantations.

Keywords: AFLP, genetic structure, spa, teak

Procedia PDF Downloads 308
442 Analytical Solutions of Josephson Junctions Dynamics in a Resonant Cavity for Extended Dicke Model

Authors: S.I.Mukhin, S. Seidov, A. Mukherjee

Abstract:

The Dicke model is a key tool for the description of correlated states of quantum atomic systems, excited by resonant photon absorption and subsequently emitting spontaneous coherent radiation in the superradiant state. The Dicke Hamiltonian (DH) is successfully used for the description of the dynamics of the Josephson Junction (JJ) array in a resonant cavity under applied current. In this work, we have investigated a generalized model, which is described by DH with a frustrating interaction term. This frustrating interaction term is explicitly the infinite coordinated interaction between all the spin half in the system. In this work, we consider an array of N superconducting islands, each divided into two sub-islands by a Josephson Junction, taken in a charged qubit / Cooper Pair Box (CPB) condition. The array is placed inside the resonant cavity. One important aspect of the problem lies in the dynamical nature of the physical observables involved in the system, such as condensed electric field and dipole moment. It is important to understand how these quantities behave with time to define the quantum phase of the system. The Dicke model without frustrating term is solved to find the dynamical solutions of the physical observables in analytic form. We have used Heisenberg’s dynamical equations for the operators and on applying newly developed Rotating Holstein Primakoff (HP) transformation and DH we have arrived at the four coupled nonlinear dynamical differential equations for the momentum and spin component operators. It is possible to solve the system analytically using two-time scales. The analytical solutions are expressed in terms of Jacobi's elliptic functions for the metastable ‘bound luminosity’ dynamic state with the periodic coherent beating of the dipoles that connect the two double degenerate dipolar ordered phases discovered previously. In this work, we have proceeded the analysis with the extended DH with a frustrating interaction term. Inclusion of the frustrating term involves complexity in the system of differential equations and it gets difficult to solve analytically. We have solved semi-classical dynamic equations using the perturbation technique for small values of Josephson energy EJ. Because the Hamiltonian contains parity symmetry, thus phase transition can be found if this symmetry is broken. Introducing spontaneous symmetry breaking term in the DH, we have derived the solutions which show the occurrence of finite condensate, showing quantum phase transition. Our obtained result matches with the existing results in this scientific field.

Keywords: Dicke Model, nonlinear dynamics, perturbation theory, superconductivity

Procedia PDF Downloads 135
441 Exploring Instructional Designs on the Socio-Scientific Issues-Based Learning Method in Respect to STEM Education for Measuring Reasonable Ethics on Electromagnetic Wave through Science Attitudes toward Physics

Authors: Adisorn Banhan, Toansakul Santiboon, Prasong Saihong

Abstract:

Using the Socio-Scientific Issues-Based Learning Method is to compare of the blended instruction of STEM education with a sample consisted of 84 students in 2 classes at the 11th grade level in Sarakham Pittayakhom School. The 2-instructional models were managed of five instructional lesson plans in the context of electronic wave issue. These research procedures were designed of each instructional method through two groups, the 40-experimental student group was designed for the instructional STEM education (STEMe) and 40-controlling student group was administered with the Socio-Scientific Issues-Based Learning (SSIBL) methods. Associations between students’ learning achievements of each instructional method and their science attitudes of their predictions to their exploring activities toward physics with the STEMe and SSIBL methods were compared. The Measuring Reasonable Ethics Test (MRET) was assessed students’ reasonable ethics with the STEMe and SSIBL instructional design methods on two each group. Using the pretest and posttest technique to monitor and evaluate students’ performances of their reasonable ethics on electromagnetic wave issue in the STEMe and SSIBL instructional classes were examined. Students were observed and gained experience with the phenomena being studied with the Socio-Scientific Issues-Based Learning method Model. To support with the STEM that it was not just teaching about Science, Technology, Engineering, and Mathematics; it is a culture that needs to be cultivated to help create a problem solving, creative, critical thinking workforce for tomorrow in physics. Students’ attitudes were assessed with the Test Of Physics-Related Attitude (TOPRA) modified from the original Test Of Science-Related Attitude (TOSRA). Comparisons between students’ learning achievements of their different instructional methods on the STEMe and SSIBL were analyzed. Associations between students’ performances the STEMe and SSIBL instructional design methods of their reasonable ethics and their science attitudes toward physics were associated. These findings have found that the efficiency of the SSIBL and the STEMe innovations were based on criteria of the IOC value higher than evidence as 80/80 standard level. Statistically significant of students’ learning achievements to their later outcomes on the controlling and experimental groups with the SSIBL and STEMe were differentiated between students’ learning achievements at the .05 level. To compare between students’ reasonable ethics with the SSIBL and STEMe of students’ responses to their instructional activities in the STEMe is higher than the SSIBL instructional methods. Associations between students’ later learning achievements with the SSIBL and STEMe, the predictive efficiency values of the R2 indicate that 67% and 75% for the SSIBL, and indicate that 74% and 81% for the STEMe of the variances were attributable to their developing reasonable ethics and science attitudes toward physics, consequently.

Keywords: socio-scientific issues-based learning method, STEM education, science attitudes, measurement, reasonable ethics, physics classes

Procedia PDF Downloads 294
440 An Investigation on MgAl₂O₄ Based Mould System in Investment Casting Titanium Alloy

Authors: Chen Yuan, Nick Green, Stuart Blackburn

Abstract:

The investment casting process offers a great freedom of design combined with the economic advantage of near net shape manufacturing. It is widely used for the production of high value precision cast parts in particularly in the aerospace sector. Various combinations of materials have been used to produce the ceramic moulds, but most investment foundries use a silica based binder system in conjunction with fused silica, zircon, and alumino-silicate refractories as both filler and coarse stucco materials. However, in the context of advancing alloy technologies, silica based systems are struggling to keep pace, especially when net-shape casting titanium alloys. Study has shown that the casting of titanium based alloys presents considerable problems, including the extensive interactions between the metal and refractory, and the majority of metal-mould interaction is due to reduction of silica, present as binder and filler phases, by titanium in the molten state. Cleaner, more refractory systems are being devised to accommodate these changes. Although yttria has excellent chemical inertness to titanium alloy, it is not very practical in a production environment combining high material cost, short slurry life, and poor sintering properties. There needs to be a cost effective solution to these issues. With limited options for using pure oxides, in this work, a silica-free magnesia spinel MgAl₂O₄ was used as a primary coat filler and alumina as a binder material to produce facecoat in the investment casting mould. A comparison system was also studied with a fraction of the rare earth oxide Y₂O₃ adding into the filler to increase the inertness. The stability of the MgAl₂O₄/Al₂O₃ and MgAl₂O₄/Y₂O₃/Al₂O₃ slurries was assessed by tests, including pH, viscosity, zeta-potential and plate weight measurement, and mould properties such as friability were also measured. The interaction between the face coat and titanium alloy was studied by both a flash re-melting technique and a centrifugal investment casting method. The interaction products between metal and mould were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). The depth of the oxygen hardened layer was evaluated by micro hardness measurement. Results reveal that introducing a fraction of Y₂O₃ into magnesia spinel can significantly increase the slurry life and reduce the thickness of hardened layer during centrifugal casting.

Keywords: titanium alloy, mould, MgAl₂O₄, Y₂O₃, interaction, investment casting

Procedia PDF Downloads 113
439 (Re)Processing of ND-Fe-B Permanent Magnets Using Electrochemical and Physical Approaches

Authors: Kristina Zuzek, Xuan Xu, Awais Ikram, Richard Sheridan, Allan Walton, Saso Sturm

Abstract:

Recycling of end-of-life REEs based Nd-Fe-B magnets is an important strategy for reducing the environmental dangers associated with rare-earth mining and overcoming the well-documented supply risks related to the REEs. However, challenges on their reprocessing still remain. We report on the possibility of direct electrochemical recycling and reprocessing of Nd-Fe(B)-based magnets. In this investigation, we were able first to electrochemically leach the end-of-life NdFeB magnet and to electrodeposit Nd–Fe using a 1-ethyl-3-methyl imidazolium dicyanamide ([EMIM][DCA]) ionic liquid-based electrolyte. We observed that Nd(III) could not be reduced independently. However, it can be co-deposited on a substrate with the addition of Fe(II). Using advanced TEM techniques of electron-energy-loss spectroscopy (EELS) it was shown that Nd(III) is reduced to Nd(0) during the electrodeposition process. This gave a new insight into determining the Nd oxidation state, as X-ray photoelectron spectroscopy (XPS) has certain limitations. This is because the binding energies of metallic Nd (Nd0) and neodymium oxide (Nd₂O₃) are very close, i. e., 980.5-981.5 eV and 981.7-982.3 eV, respectively, making it almost impossible to differentiate between the two states. These new insights into the electrodeposition process represent an important step closer to efficient recycling of rare piles of earth in metallic form at mild temperatures, thus providing an alternative to high-temperature molten-salt electrolysis and a step closer to deposit Nd-Fe-based magnetic materials. Further, we propose a new concept of recycling the sintered Nd-Fe-B magnets by direct recovering the 2:14:1 matrix phase. Via an electrochemical etching method, we are able to recover pure individual 2:14:1 grains that can be re-used for new types of magnet production. In the frame of physical reprocessing, we have successfully synthesized new magnets out of hydrogen (HDDR)-recycled stocks with a contemporary technique of pulsed electric current sintering (PECS). The optimal PECS conditions yielded fully dense Nd-Fe-B magnets with the coercivity Hc = 1060 kA/m, which was boosted to 1160 kA/m after the post-PECS thermal treatment. The Br and Hc were tackled further and increased applied pressures of 100 – 150 MPa resulted in Br = 1.01 T. We showed that with a fine tune of the PECS and post-annealing it is possible to revitalize the Nd-Fe-B end-of-life magnets. By applying advanced TEM, i.e. atomic-scale Z-contrast STEM combined with EDXS and EELS, the resulting magnetic properties were critically assessed against various types of structural and compositional discontinuities down to atomic-scale, which we believe control the microstructure evolution during the PECS processing route.

Keywords: electrochemistry, Nd-Fe-B, pulsed electric current sintering, recycling, reprocessing

Procedia PDF Downloads 158
438 Development of High-Efficiency Down-Conversion Fluoride Phosphors to Increase the Efficiency of Solar Panels

Authors: S. V. Kuznetsov, M. N. Mayakova, V. Yu. Proydakova, V. V. Pavlov, A. S. Nizamutdinov, O. A. Morozov, V. V. Voronov, P. P. Fedorov

Abstract:

Increase in the share of electricity received by conversion of solar energy results in the reduction of the industrial impact on the environment from the use of the hydrocarbon energy sources. One way to increase said share is to improve the efficiency of solar energy conversion in silicon-based solar panels. Such efficiency increase can be achieved by transferring energy from sunlight-insensitive areas of work of silicon solar panels to the area of their photoresistivity. To achieve this goal, a transition to new luminescent materials with the high quantum yield of luminescence is necessary. Improvement in the quantum yield can be achieved by quantum cutting, which allows obtaining a quantum yield of down conversion of more than 150% due to the splitting of high-energy photons of the UV spectral range into lower-energy photons of the visible and near infrared spectral ranges. The goal of present work is to test approach of excitation through sensibilization of 4f-4f fluorescence of Yb3+ by various RE ions absorbing in UV and Vis spectral ranges. One of promising materials for quantum cutting luminophores are fluorides. In our investigation we have developed synthesis of nano- and submicron powders of calcium fluoride and strontium doped with rare-earth elements (Yb: Ce, Yb: Pr, Yb: Eu) of controlled dimensions and shape by co-precipitation from water solution technique. We have used Ca(NO3)2*4H2O, Sr(NO3)2, HF, NH4F as precursors. After initial solutions of nitrates were prepared they have been mixed with fluorine containing solution by dropwise manner. According to XRD data, the synthesis resulted in single phase samples with fluorite structure. By means of SEM measurements, we have confirmed spherical morphology and have determined sizes of particles (50-100 nm after synthesis and 150-300 nm after calcination). Temperature of calcination appeared to be 600°C. We have investigated the spectral-kinetic characteristics of above mentioned compounds. Here the diffuse reflection and laser induced fluorescence spectra of Yb3+ ions excited at around 4f-4f and 4f-5d transitions of Pr3+, Eu3+ and Ce3+ ions in the synthesized powders are reported. The investigation of down conversion luminescence capability of synthesized compounds included measurements of fluorescence decays and quantum yield of 2F5/2-2F7/2 fluorescence of Yb3+ ions as function of Yb3+ and sensitizer contents. An optimal chemical composition of CaF2-YbF3- LnF3 (Ln=Ce, Eu, Pr), SrF2-YbF3-LnF3 (Ln=Ce, Eu, Pr) micro- and nano- powders according to criteria of maximal IR fluorescence yield is proposed. We suppose that investigated materials are prospective in solar panels improvement applications. Work was supported by Russian Science Foundation grant #17-73- 20352.

Keywords: solar cell, fluorides, down-conversion luminescence, maximum quantum yield

Procedia PDF Downloads 272
437 Ultrasonic Irradiation Synthesis of High-Performance Pd@Copper Nanowires/MultiWalled Carbon Nanotubes-Chitosan Electrocatalyst by Galvanic Replacement toward Ethanol Oxidation in Alkaline Media

Authors: Majid Farsadrouh Rashti, Amir Shafiee Kisomi, Parisa Jahani

Abstract:

The direct ethanol fuel cells (DEFCs) are contemplated as a promising energy source because, In addition to being used in portable electronic devices, it is also used for electric vehicles. The synthesis of bimetallic nanostructures due to their novel optical, catalytic and electronic characteristic which is precisely in contrast to their monometallic counterparts is attracting extensive attention. Galvanic replacement (sometimes is named to as cementation or immersion plating) is an uncomplicated and effective technique for making nanostructures (such as core-shell) of different metals, semiconductors, and their application in DEFCs. The replacement of galvanic does not need any external power supply compared to electrodeposition. In addition, it is different from electroless deposition because there is no need for a reducing agent to replace galvanizing. In this paper, a fast method for the palladium (Pd) wire nanostructures synthesis with the great surface area through galvanic replacement reaction utilizing copper nanowires (CuNWS) as a template by the assistance of ultrasound under room temperature condition is proposed. To evaluate the morphology and composition of Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan, emission scanning electron microscopy, energy dispersive X-ray spectroscopy were applied. In order to measure the phase structure of the electrocatalysts were performed via room temperature X-ray powder diffraction (XRD) applying an X-ray diffractometer. Various electrochemical techniques including chronoamperometry and cyclic voltammetry were utilized for the electrocatalytic activity of ethanol electrooxidation and durability in basic solution. Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst demonstrated substantially enhanced performance and long-term stability for ethanol electrooxidation in the basic solution in comparison to commercial Pd/C that demonstrated the potential in utilizing Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan as efficient catalysts towards ethanol oxidation. Noticeably, the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan presented excellent catalytic activities with a peak current density of 320.73 mAcm² which was 9.5 times more than in comparison to Pd/C (34.2133 mAcm²). Additionally, activation energy thermodynamic and kinetic evaluations revealed that the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst has lower compared to Pd/C which leads to a lower energy barrier and an excellent charge transfer rate towards ethanol oxidation.

Keywords: core-shell structure, electrocatalyst, ethanol oxidation, galvanic replacement reaction

Procedia PDF Downloads 148
436 Forest Degradation and Implications for Rural Livelihood in Kaimur Reserve Forest of Bihar, India

Authors: Shashi Bhushan, Sucharita Sen

Abstract:

In India, forest and people are inextricably linked since millions of people live adjacent to or within protected areas and harvest forest products. Indian forest has their own legacy to sustain by its own climatic nature with several social, economic and cultural activities. People surrounding forest areas are not only dependent on this resource for their livelihoods but also for the other source, like religious ceremonies, social customs and herbal medicines, which are determined by the forest like agricultural land, groundwater level, and soil fertility. The assumption that fuelwood and fodder extraction, which is the part of local livelihood leads to deforestation, has so far been the dominant mainstream views in deforestation discourses. Given the occupational division across social groups in Kaimur reserve forest, the differential nature of dependence of forest resources is important to understand. This paper attempts to assess the nature of dependence and impact of forest degradation on rural households across various social groups. Also, an additional element that is added to the enquiry is the way degradation of forests leading to scarcity of forest-based resources impacts the patterns of dependence across various social groups. Change in forest area calculated through land use land cover analysis using remote sensing technique and examination of different economic activities carried out by the households that are forest-based was collected by primary survey in Kaimur reserve forest of state of Bihar in India. The general finding indicates that the Scheduled Tribe and Scheduled Caste communities, the most socially and economically deprived sections of the rural society are involved in a significant way in collection of fuelwood, fodder, and fruits, both for self-consumption and sale in the market while other groups of society uses fuelwood, fruit, and fodder for self-use only. Depending on the local forest resources for fuelwood consumption was the primary need for all social groups due to easy accessibility and lack of alternative energy source. In last four decades, degradation of forest made a direct impact on rural community mediated through the socio-economic structure, resulting in a shift from forest-based occupations to cultivation and manual labour in agricultural and non-agricultural activities. Thus there is a need to review the policies with respect to the ‘community forest management’ since this study clearly throws up the fact that engagement with and dependence on forest resources is socially differentiated. Thus tying the degree of dependence and forest management becomes extremely important from the view of ‘sustainable’ forest resource management. The statization of forest resources also has to keep in view the intrinsic way in which the forest-dependent population interacts with the forest.

Keywords: forest degradation, livelihood, social groups, tribal community

Procedia PDF Downloads 175
435 A Dynamic Mechanical Thermal T-Peel Test Approach to Characterize Interfacial Behavior of Polymeric Textile Composites

Authors: J. R. Büttler, T. Pham

Abstract:

Basic understanding of interfacial mechanisms is of importance for the development of polymer composites. For this purpose, we need techniques to analyze the quality of interphases, their chemical and physical interactions and their strength and fracture resistance. In order to investigate the interfacial phenomena in detail, advanced characterization techniques are favorable. Dynamic mechanical thermal analysis (DMTA) using a rheological system is a sensitive tool. T-peel tests were performed with this system, to investigate the temperature-dependent peel behavior of woven textile composites. A model system was made of polyamide (PA) woven fabric laminated with films of polypropylene (PP) or PP modified by grafting with maleic anhydride (PP-g-MAH). Firstly, control measurements were performed with solely PP matrixes. Polymer melt investigations, as well as the extensional stress, extensional viscosity and extensional relaxation modulus at -10°C, 100 °C and 170 °C, demonstrate similar viscoelastic behavior for films made of PP-g-MAH and its non-modified PP-control. Frequency sweeps have shown that PP-g-MAH has a zero phase viscosity of around 1600 Pa·s and PP-control has a similar zero phase viscosity of 1345 Pa·s. Also, the gelation points are similar at 2.42*104 Pa (118 rad/s) and 2.81*104 Pa (161 rad/s) for PP-control and PP-g-MAH, respectively. Secondly, the textile composite was analyzed. The extensional stress of PA66 fabric laminated with either PP-control or PP-g-MAH at -10 °C, 25 °C and 170 °C for strain rates of 0.001 – 1 s-1 was investigated. The laminates containing the modified PP need more stress for T-peeling. However, the strengthening effect due to the modification decreases by increasing temperature and at 170 °C, just above the melting temperature of the matrix, the difference disappears. Independent of the matrix used in the textile composite, there is a decrease of extensional stress by increasing temperature. It appears that the more viscous is the matrix, the weaker the laminar adhesion. Possibly, the measurement is influenced by the fact that the laminate becomes stiffer at lower temperatures. Adhesive lap-shear testing at room temperature supports the findings obtained with the T-peel test. Additional analysis of the textile composite at the microscopic level ensures that the fibers are well embedded in the matrix. Atomic force microscopy (AFM) imaging of a cross section of the composite shows no gaps between the fibers and matrix. Measurements of the water contact angle show that the MAH grafted PP is more polar than the virgin-PP, and that suggests a more favorable chemical interaction of PP-g-MAH with PA, compared to the non-modified PP. In fact, this study indicates that T-peel testing by DMTA is a technique to achieve more insights into polymeric textile composites.

Keywords: dynamic mechanical thermal analysis, interphase, polyamide, polypropylene, textile composite

Procedia PDF Downloads 129
434 Fuzzy Multi-Objective Approach for Emergency Location Transportation Problem

Authors: Bidzina Matsaberidze, Anna Sikharulidze, Gia Sirbiladze, Bezhan Ghvaberidze

Abstract:

In the modern world emergency management decision support systems are actively used by state organizations, which are interested in extreme and abnormal processes and provide optimal and safe management of supply needed for the civil and military facilities in geographical areas, affected by disasters, earthquakes, fires and other accidents, weapons of mass destruction, terrorist attacks, etc. Obviously, these kinds of extreme events cause significant losses and damages to the infrastructure. In such cases, usage of intelligent support technologies is very important for quick and optimal location-transportation of emergency service in order to avoid new losses caused by these events. Timely servicing from emergency service centers to the affected disaster regions (response phase) is a key task of the emergency management system. Scientific research of this field takes the important place in decision-making problems. Our goal was to create an expert knowledge-based intelligent support system, which will serve as an assistant tool to provide optimal solutions for the above-mentioned problem. The inputs to the mathematical model of the system are objective data, as well as expert evaluations. The outputs of the system are solutions for Fuzzy Multi-Objective Emergency Location-Transportation Problem (FMOELTP) for disasters’ regions. The development and testing of the Intelligent Support System were done on the example of an experimental disaster region (for some geographical zone of Georgia) which was generated using a simulation modeling. Four objectives are considered in our model. The first objective is to minimize an expectation of total transportation duration of needed products. The second objective is to minimize the total selection unreliability index of opened humanitarian aid distribution centers (HADCs). The third objective minimizes the number of agents needed to operate the opened HADCs. The fourth objective minimizes the non-covered demand for all demand points. Possibility chance constraints and objective constraints were constructed based on objective-subjective data. The FMOELTP was constructed in a static and fuzzy environment since the decisions to be made are taken immediately after the disaster (during few hours) with the information available at that moment. It is assumed that the requests for products are estimated by homeland security organizations, or their experts, based upon their experience and their evaluation of the disaster’s seriousness. Estimated transportation times are considered to take into account routing access difficulty of the region and the infrastructure conditions. We propose an epsilon-constraint method for finding the exact solutions for the problem. It is proved that this approach generates the exact Pareto front of the multi-objective location-transportation problem addressed. Sometimes for large dimensions of the problem, the exact method requires long computing times. Thus, we propose an approximate method that imposes a number of stopping criteria on the exact method. For large dimensions of the FMOELTP the Estimation of Distribution Algorithm’s (EDA) approach is developed.

Keywords: epsilon-constraint method, estimation of distribution algorithm, fuzzy multi-objective combinatorial programming problem, fuzzy multi-objective emergency location/transportation problem

Procedia PDF Downloads 322
433 The Invaluable Contributions of Radiography and Radiotherapy in Modern Medicine

Authors: Sahar Heidary

Abstract:

Radiography and radiotherapy have emerged as crucial pillars of modern medical practice, revolutionizing diagnostics and treatment for a myriad of health conditions. This abstract highlights the pivotal role of radiography and radiotherapy in favor of healthcare and society. Radiography, a non-invasive imaging technique, has significantly advanced medical diagnostics by enabling the visualization of internal structures and abnormalities within the human body. With the advent of digital radiography, clinicians can obtain high-resolution images promptly, leading to faster diagnoses and informed treatment decisions. Radiography plays a pivotal role in detecting fractures, tumors, infections, and various other conditions, allowing for timely interventions and improved patient outcomes. Moreover, its widespread accessibility and cost-effectiveness make it an indispensable tool in healthcare settings worldwide. On the other hand, radiotherapy, a branch of medical science that utilizes high-energy radiation, has become an integral component of cancer treatment and management. By precisely targeting and damaging cancerous cells, radiotherapy offers a potent strategy to control tumor growth and, in many cases, leads to cancer eradication. Additionally, radiotherapy is often used in combination with surgery and chemotherapy, providing a multifaceted approach to combat cancer comprehensively. The continuous advancements in radiotherapy techniques, such as intensity-modulated radiotherapy and stereotactic radiosurgery, have further improved treatment precision while minimizing damage to surrounding healthy tissues. Furthermore, radiography and radiotherapy have demonstrated their worth beyond oncology. Radiography is instrumental in guiding various medical procedures, including catheter placement, joint injections, and dental evaluations, reducing complications and enhancing procedural accuracy. On the other hand, radiotherapy finds applications in non-cancerous conditions like benign tumors, vascular malformations, and certain neurological disorders, offering therapeutic options for patients who may not benefit from traditional surgical interventions. In conclusion, radiography and radiotherapy stand as indispensable tools in modern medicine, driving transformative improvements in patient care and treatment outcomes. Their ability to diagnose, treat, and manage a wide array of medical conditions underscores their favor in medical practice. As technology continues to advance, radiography and radiotherapy will undoubtedly play an ever more significant role in shaping the future of healthcare, ultimately saving lives and enhancing the quality of life for countless individuals worldwide.

Keywords: radiology, radiotherapy, medical imaging, cancer treatment

Procedia PDF Downloads 70
432 Assessment of Serum Osteopontin, Osteoprotegerin and Bone-Specific Alp as Markers of Bone Turnover in Patients with Disorders of Thyroid Function in Nigeria, Sub-Saharan Africa

Authors: Oluwabori Emmanuel Olukoyejo, Ogra Victor Ogra, Bosede Amodu, Tewogbade Adeoye Adedeji

Abstract:

Background: Disorders of thyroid function are the second most common endocrine disorders worldwide, with a direct relationship with metabolic bone diseases. These metabolic bone complications are often subtle but manifest as bone pains and an increased risk of fractures. The gold standard for diagnosis, Dual Energy X-ray Absorptiometry (DEXA), is limited in this environment due to unavailability, cumbersomeness and cost. However, bone biomarkers have shown prospects in assessing alterations in bone remodeling, which has not been studied in this environment. Aim: This study evaluates serum levels of bone-specific alkaline phosphatase (bone-specific ALP), osteopontin and osteoprotegerin biomarkers of bone turnover in patients with disorders of thyroid function. Methods: This is a cross-sectional study carried out over a period of one and a half years. Forty patients with thyroid dysfunctions, aged 20 to 50 years, and thirty-eight age and sex-matched healthy euthyroid controls were included in this study. Patients were further stratified into hyperthyroid and hypothyroid groups. Bone-specific ALP, osteopontin, and osteoprotegerin, alongside serum total calcium, ionized calcium and inorganic phosphate, were assayed for all patients and controls. A self-administered questionnaire was used to obtain data on sociodemographic and medical history. Then, 5 ml of blood was collected in a plain bottle and serum was harvested following clotting and centrifugation. Serum samples were assayed for B-ALP, osteopontin, and osteoprotegerin using the ELISA technique. Total calcium and ionized calcium were assayed using an ion-selective electrode, while the inorganic phosphate was assayed with automated photometry. Results: The hyperthyroid and hypothyroid patient groups had significantly increased median serum B-ALP (30.40 and 26.50) ng/ml and significantly lower median OPG (0.80 and 0.80) ng/ml than the controls (10.81 and 1.30) ng/ml respectively, p < 0.05. However, serum osteopontin in the hyperthyroid group was significantly higher and significantly lower in the hypothyroid group when compared with the controls (11.00 and 2.10 vs 3.70) ng/ml, respectively, p < 0.05. Both hyperthyroid and hypothyroid groups had significantly higher mean serum total calcium, ionized calcium and inorganic phosphate than the controls (2.49 ± 0.28, 1.27 ± 0.14 and 1.33 ± 0.33) mmol/l and (2.41 ± 0.04, 1.20 ± 0.04 and 1.15 ± 0.16) mmol/l vs (2.27 ± 0.11, 1.17 ± 0.06 and 1.08 ± 0.16) mmol/l respectively, p < 0.05. Conclusion: Patients with disorders of thyroid function have metabolic imbalances of all the studied bone markers, suggesting a higher bone turnover. The routine bone markers will be an invaluable tool for monitoring bone health in patients with thyroid dysfunctions, while the less readily available markers can be introduced as supplementary tools. Moreover, bone-specific ALP, osteopontin and osteoprotegerin were found to be the strongest independent predictors of metabolic bone markers’ derangements in patients with thyroid dysfunctions.

Keywords: metabolic bone diseases, biomarker, bone turnover, hyperthyroid, hypothyroid, euthyroid

Procedia PDF Downloads 38
431 Mapping Iron Content in the Brain with Magnetic Resonance Imaging and Machine Learning

Authors: Gabrielle Robertson, Matthew Downs, Joseph Dagher

Abstract:

Iron deposition in the brain has been linked with a host of neurological disorders such as Alzheimer’s, Parkinson’s, and Multiple Sclerosis. While some treatment options exist, there are no objective measurement tools that allow for the monitoring of iron levels in the brain in vivo. An emerging Magnetic Resonance Imaging (MRI) method has been recently proposed to deduce iron concentration through quantitative measurement of magnetic susceptibility. This is a multi-step process that involves repeated modeling of physical processes via approximate numerical solutions. For example, the last two steps of this Quantitative Susceptibility Mapping (QSM) method involve I) mapping magnetic field into magnetic susceptibility and II) mapping magnetic susceptibility into iron concentration. Process I involves solving an ill-posed inverse problem by using regularization via injection of prior belief. The end result from Process II highly depends on the model used to describe the molecular content of each voxel (type of iron, water fraction, etc.) Due to these factors, the accuracy and repeatability of QSM have been an active area of research in the MRI and medical imaging community. This work aims to estimate iron concentration in the brain via a single step. A synthetic numerical model of the human head was created by automatically and manually segmenting the human head on a high-resolution grid (640x640x640, 0.4mm³) yielding detailed structures such as microvasculature and subcortical regions as well as bone, soft tissue, Cerebral Spinal Fluid, sinuses, arteries, and eyes. Each segmented region was then assigned tissue properties such as relaxation rates, proton density, electromagnetic tissue properties and iron concentration. These tissue property values were randomly selected from a Probability Distribution Function derived from a thorough literature review. In addition to having unique tissue property values, different synthetic head realizations also possess unique structural geometry created by morphing the boundary regions of different areas within normal physical constraints. This model of the human brain is then used to create synthetic MRI measurements. This is repeated thousands of times, for different head shapes, volume, tissue properties and noise realizations. Collectively, this constitutes a training-set that is similar to in vivo data, but larger than datasets available from clinical measurements. This 3D convolutional U-Net neural network architecture was used to train data-driven Deep Learning models to solve for iron concentrations from raw MRI measurements. The performance was then tested on both synthetic data not used in training as well as real in vivo data. Results showed that the model trained on synthetic MRI measurements is able to directly learn iron concentrations in areas of interest more effectively than other existing QSM reconstruction methods. For comparison, models trained on random geometric shapes (as proposed in the Deep QSM method) are less effective than models trained on realistic synthetic head models. Such an accurate method for the quantitative measurement of iron deposits in the brain would be of important value in clinical studies aiming to understand the role of iron in neurological disease.

Keywords: magnetic resonance imaging, MRI, iron deposition, machine learning, quantitative susceptibility mapping

Procedia PDF Downloads 138
430 Housing Recovery in Heavily Damaged Communities in New Jersey after Hurricane Sandy

Authors: Chenyi Ma

Abstract:

Background: The second costliest hurricane in U.S. history, Sandy landed in southern New Jersey on October 29, 2012, and struck the entire state with high winds and torrential rains. The disaster killed more than 100 people, left more than 8.5 million households without power, and damaged or destroyed more than 200,000 homes across the state. Immediately after the disaster, public policy support was provided in nine coastal counties that constituted 98% of the major and severely damaged housing units in NJ overall. The programs include Individuals and Households Assistance Program, Small Business Loan Program, National Flood Insurance Program, and the Federal Emergency Management Administration (FEMA) Public Assistance Grant Program. In the most severely affected counties, additional funding was provided through Community Development Block Grant: Reconstruction, Rehabilitation, Elevation, and Mitigation Program, and Homeowner Resettlement Program. How these policies individually and as a whole impacted housing recovery across communities with different socioeconomic and demographic profiles has not yet been studied, particularly in relation to damage levels. The concept of community social vulnerability has been widely used to explain many aspects of natural disasters. Nevertheless, how communities are vulnerable has been less fully examined. Community resilience has been conceptualized as a protective factor against negative impacts from disasters, however, how community resilience buffers the effects of vulnerability is not yet known. Because housing recovery is a dynamic social and economic process that varies according to context, this study examined the path from community vulnerability and resilience to housing recovery looking at both community characteristics and policy interventions. Sample/Methods: This retrospective longitudinal case study compared a literature-identified set of pre-disaster community characteristics, the effects of multiple public policy programs, and a set of time-variant community resilience indicators to changes in housing stock (operationally defined by percent of building permits to total occupied housing units/households) between 2010 and 2014, two years before and after Hurricane Sandy. The sample consisted of 51 municipalities in the nine counties in which between 4% and 58% of housing units suffered either major or severe damage. Structural equation modeling (SEM) was used to determine the path from vulnerability to the housing recovery, via multiple public programs, separately and as a whole, and via the community resilience indicators. The spatial analytical tool ArcGIS 10.2 was used to show the spatial relations between housing recovery patterns and community vulnerability and resilience. Findings: Holding damage levels constant, communities with higher proportions of Hispanic households had significantly lower levels of housing recovery while communities with households with an adult >age 65 had significantly higher levels of the housing recovery. The contrast was partly due to the different levels of total public support the two types of the community received. Further, while the public policy programs individually mediated the negative associations between African American and female-headed households and housing recovery, communities with larger proportions of African American, female-headed and Hispanic households were “vulnerable” to lower levels of housing recovery because they lacked sufficient public program support. Even so, higher employment rates and incomes buffered vulnerability to lower housing recovery. Because housing is the "wobbly pillar" of the welfare state, the housing needs of these particular groups should be more fully addressed by disaster policy.

Keywords: community social vulnerability, community resilience, hurricane, public policy

Procedia PDF Downloads 373
429 Determinants of Unmet Need for Contraception among Currently Married Women in Rural and Urban Communities of Osun State, South-West Nigeria

Authors: Abiola O. Temitayo-Oboh, Olugbenga L. Abodunrin, Wasiu O. Adebimpe, Micheal C. Asuzu

Abstract:

Introduction: Many women who are sexually active would prefer to avoid becoming pregnant but are not using any method of contraception. These women are considered to have an unmet need for contraception. In an ideal situation, all women who want to space or limit their births and are exposed to the risk of conception would use some kind of conception; in practice, however, some women fail to use contraception which put them at risk of having mistimed or unwanted births, induced abortion, or maternal death. This study, therefore, aimed to assess the determinants of unmet need for contraception among currently married women in rural and urban communities of Osun State, South-West Nigeria. Methods: This was an analytical cross-sectional comparative study, which was carried out among currently married women. Three hundred and twenty respondents each were selected for the rural and urban groups from four Local Government Areas using multi-stage sampling technique. Data were collected using a pre-tested semi-structured interviewer-administered questionnaire and focus group discussion (FGD) guide; data analysis was done with Statistical Package for Social Sciences (SPSS) version 17.0 and detailed content analysis method respectively. Statistical analysis of the difference between proportions was done by the use of the Chi-square test and T-test was used to compare the means of the continuous variables. The study also utilized descriptive, bivariate and multivariate analytical techniques to examine the effect of some variables on unmet need. Level of statistical significance was set at p-value < 0.05 for all values. Results: Two hundred and ninety-six (92.5%) of the rural and 306 (95.6%) of the urban study population had heard of contraception, 365 (57.0 %) of the total respondents had good knowledge [162 (50.6 %) for rural respondents and 203 (63.4 %) for urban respondents]. This difference was statistically significant (p < 0.001). Five hundred and twenty-one (81.4%) respondents had a positive attitude towards contraception [243 (75.9%) in the rural and 278 (86.9%) in the urban area], and the difference was also statistically significant (p < 0.001). Only 47 (14.7%) and 59 (18.4%) of rural and urban women were current contraceptive users respectively. The total unmet need for contraception among rural women was 138 (43.1%) of which 82 (25.6%) was for spacing and 56 (17.5%), for limiting. While the total unmet need for contraception among urban women was 145 (45.3%) of which 96 (30.0%) was for spacing and 49 (15.3%) for limiting. Number of living children, knowledge of contraceptive methods, discussion with health workers about family planning, couples discussion about family planning and availability of family planning services were found to be predictors of women’s unmet need for contraception (p < 0.05). Conclusion: It is, therefore, recommended that there is need to intensify reproductive health education in bridging the knowledge gap, improving attitude and modifying practices regarding use of contraception in Nigeria. Hence, this will help to enhance the utilization of family planning services among Nigerian women.

Keywords: contraception, married women, Nigeria, rural, urban, unmet need

Procedia PDF Downloads 200
428 Biodegradable Self-Supporting Nanofiber Membranes Prepared by Centrifugal Spinning

Authors: Milos Beran, Josef Drahorad, Ondrej Vltavsky, Martin Fronek, Jiri Sova

Abstract:

While most nanofibers are produced using electrospinning, this technique suffers from several drawbacks, such as the requirement for specialized equipment, high electrical potential, and electrically conductive targets. Consequently, recent years have seen the increasing emergence of novel strategies in generating nanofibers in a larger scale and higher throughput manner. The centrifugal spinning is simple, cheap and highly productive technology for nanofiber production. In principle, the drawing of solution filament into nanofibers using centrifugal spinning is achieved through the controlled manipulation of centrifugal force, viscoelasticity, and mass transfer characteristics of the spinning solutions. Engineering efforts of researches of the Food research institute Prague and the Czech Technical University in the field the centrifugal nozzleless spinning led to introduction of a pilot plant demonstrator NANOCENT. The main advantages of the demonstrator are lower investment cost - thanks to simpler construction compared to widely used electrospinning equipments, higher production speed, new application possibilities and easy maintenance. The centrifugal nozzleless spinning is especially suitable to produce submicron fibers from polymeric solutions in highly volatile solvents, such as chloroform, DCM, THF, or acetone. To date, submicron fibers have been prepared from PS, PUR and biodegradable polyesters, such as PHB, PLA, PCL, or PBS. The products are in form of 3D structures or nanofiber membranes. Unique self-supporting nanofiber membranes were prepared from the biodegradable polyesters in different mixtures. The nanofiber membranes have been tested for different applications. Filtration efficiencies for water solutions and aerosols in air were evaluated. Different active inserts were added to the solutions before the spinning process, such as inorganic nanoparticles, organic precursors of metal oxides, antimicrobial and wound healing compounds or photocatalytic phthalocyanines. Sintering can be subsequently carried out to remove the polymeric material and transfer the organic precursors to metal oxides, such as Si02, or photocatalytic Zn02 and Ti02, to obtain inorganic nanofibers. Electrospinning is more suitable technology to produce membranes for the filtration applications than the centrifugal nozzleless spinning, because of the formation of more homogenous nanofiber layers and fibers with smaller diameters. The self-supporting nanofiber membranes prepared from the biodegradable polyesters are especially suitable for medical applications, such as wound or burn healing dressings or tissue engineering scaffolds. This work was supported by the research grants TH03020466 of the Technology Agency of the Czech Republic.

Keywords: polymeric nanofibers, self-supporting nanofiber membranes, biodegradable polyesters, active inserts

Procedia PDF Downloads 166