Search results for: steel fibres
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1831

Search results for: steel fibres

901 A Novel Alginate/Tea Waste Complex for Restoration and Conservation of Historical Textiles Using Immobilized Enzymes

Authors: Mohamed E. Hassan

Abstract:

Through numerous chemical linkages, historical textiles in burial contexts or in museums are exposed to many different forms of stains and filth. The cleaning procedure must be carried out carefully without causing any irreparable harm, and sediments must be removed without damaging the surface's original material. Science and technology continue to develop novel methods for cleaning historical textiles and artistic surfaces biologically (using enzymes). Lipase and α-amylase were immobilized on nanoparticles of alginate/tea waste nanoparticle complex and used in historical textile cleaning. The preparation of nanoparticles, activation, and enzyme immobilization were characterized. Optimization of loading times and units of the two enzymes was done. It was found that the optimum time and units of amylase were 3 hours and 30 U, respectively. While the optimum time and units of lipase were 2.5 hours and 20 U, respectively, FT-IR and TGA instruments were used in proving the preparation of nanoparticles and the immobilization process. SEM was used to examine the fibres before and after treatment. In conclusion, a new carrier was prepared from alginate/Tea waste and optimized to be used in the restoration and conservation of historical textiles using immobilized lipase and α-amylase.

Keywords: alginate/tea waste, nanoparticles, immobilized enzymes, historical textiles

Procedia PDF Downloads 69
900 Frictional Behavior of Glass Epoxy and Aluminium Particulate Glass Epoxy Composites Sliding against Smooth Stainless Steel Counterface

Authors: Pujan Sarkar

Abstract:

Frictional behavior of glass epoxy and Al particulate glass-epoxy composites sliding against mild steel are investigated experimentally at normal atmospheric condition. Glass epoxy (0 wt% Al) and 5, 10 and 15 wt% Al particulate filled glass-epoxy composites are fabricated in conventional hand lay-up technique followed by light compression moulding process. A pin on disc type friction apparatus is used under dry sliding conditions. Experiments are carried out at a normal load of 5-50 N, and sliding speeds of 0.5-5.0 m/s for a fixed duration. Variations of friction coefficient with sliding time at different loads and speeds for all the samples are considered. Results show that the friction coefficient is influenced by sliding time, normal loads, sliding speeds, and wt% of Al content. In general, with respect to time, friction coefficient increases initially with a lot of fluctuations for a certain duration. After that, it becomes stable for the rest of the experimental time. With the increase of normal load, friction coefficient decreases at all speed levels and for all the samples whereas, friction coefficient increases with the increase of sliding speed at all normal loads for glass epoxy and 5 wt% Al content glass-epoxy composites. But for 10 and 15 wt%, Al content composites at all loads, reverse trend of friction coefficient has been recorded. Under different tribological conditions, the suitability of composites in respect of wt% of Al content is noted, and 5 wt% Al content glass-epoxy composite reports as the lowest frictional material at all loads compared to other samples.

Keywords: Al powder, composite, epoxy, friction, glass fiber

Procedia PDF Downloads 108
899 Preparation and Characterization of Phosphate-Nickel-Titanium Composite Coating Obtained by Sol Gel Process for Corrosion Protection

Authors: Khalidou Ba, Abdelkrim Chahine, Mohamed Ebn Touhami

Abstract:

A strong industrial interest is focused on the development of coatings for anticorrosion protection. In this context, phosphate composite materials are expanding strongly due to their chemical characteristics and their interesting physicochemical properties. Sol-gel coatings offer high homogeneity and purity that may lead to obtain coating presenting good adhesion to metal surface. The goal behind this work is to develop efficient coatings for corrosion protection of steel to extend its life. In this context, a sol gel process allowing to obtain thin film coatings on carbon steel with high resistance to corrosion has been developed. The optimization of several experimental parameters such as the hydrolysis time, the temperature, the coating technique, the molar ratio between precursors, the number of layers and the drying mode has been realized in order to obtain a coating showing the best anti-corrosion properties. The effect of these parameters on the microstructure and anticorrosion performance of the films sol gel coating has been investigated using different characterization methods (FTIR, XRD, Raman, XPS, SEM, Profilometer, Salt Spray Test, etc.). An optimized coating presenting good adhesion and very stable anticorrosion properties in salt spray test, which consists of a corrosive attack accelerated by an artificial salt spray consisting of a solution of 5% NaCl, pH neutral, under precise conditions of temperature (35 °C) and pressure has been obtained.

Keywords: sol gel, coating, corrosion, XPS

Procedia PDF Downloads 113
898 Blister Formation Mechanisms in Hot Rolling

Authors: Rebecca Dewfall, Mark Coleman, Vladimir Basabe

Abstract:

Oxide scale growth is an inevitable byproduct of the high temperature processing of steel. Blister is a phenomenon that occurs due to oxide growth, where high temperatures result in the swelling of surface scale, producing a bubble-like feature. Blisters can subsequently become embedded in the steel substrate during hot rolling in the finishing mill. This rolled in scale defect causes havoc within industry, not only with wear on machinery but loss of customer satisfaction, poor surface finish, loss of material, and profit. Even though blister is a highly prevalent issue, there is still much that is not known or understood. The classic iron oxidation system is a complex multiphase system formed of wustite, magnetite, and hematite, producing multi-layered scales. Each phase will have independent properties such as thermal coefficients, growth rate, and mechanical properties, etc. Furthermore, each additional alloying element will have different affinities for oxygen and different mobilities in the oxide phases so that oxide morphologies are specific to alloy chemistry. Therefore, blister regimes can be unique to each steel grade resulting in a diverse range of formation mechanisms. Laboratory conditions were selected to simulate industrial hot rolling with temperature ranges approximate to the formation of secondary and tertiary scales in the finishing mills. Samples with composition: 0.15Wt% C, 0.1Wt% Si, 0.86Wt% Mn, 0.036Wt% Al, and 0.028Wt% Cr, were oxidised in a thermo-gravimetric analyser (TGA), with an air velocity of 10litresmin-1, at temperaturesof 800°C, 850°C, 900°C, 1000°C, 1100°C, and 1200°C respectively. Samples were held at temperature in an argon atmosphere for 10minutes, then oxidised in air for 600s, 60s, 30s, 15s, and 4s, respectively. Oxide morphology and Blisters were characterised using EBSD, WDX, nanoindentation, FIB, and FEG-SEM imaging. Blister was found to have both a nucleation and growth process. During nucleation, the scale detaches from the substrate and blisters after a very short period, roughly 10s. The steel substrate is then exposed inside of the blister and further oxidised in the reducing atmosphere of the blister, however, the atmosphere within the blister is highly dependent upon the porosity of the blister crown. The blister crown was found to be consistently between 35-40um for all heating regimes, which supports the theory that the blister inflates, and the oxide then subsequently grows underneath. Upon heating, two modes of blistering were identified. In Mode 1 it was ascertained that the stresses produced by oxide growth will increase with increasing oxide thickness. Therefore, in Mode 1 the incubation time for blister formation is shortened by increasing temperature. In Mode 2 increase in temperature will result in oxide with a high ductility and high oxide porosity. The high oxide ductility and/or porosity accommodates for the intrinsic stresses from oxide growth. Thus Mode 2 is the inverse of Mode 1, and incubation time is increased with temperature. A new phenomenon was reported whereby blister formed exclusively through cooling at elevated temperatures above mode 2.

Keywords: FEG-SEM, nucleation, oxide morphology, surface defect

Procedia PDF Downloads 120
897 Study on Properties of Carbon-based Layer for Proton Exchange Membrane Fuel Cell Application

Authors: Pei-Jung Wu, Ching-Ying Huang, Chih-Chia Lin, Chun-Han Li, Chien-Yuan Wang

Abstract:

The fuel cell market has considerable development potential, but the cost is still less competitive. Replacing the traditional graphite plate with a stainless steel plate as a bipolar plate can greatly reduce the weight and volume of the stack, and has more cost advantages. However, the passivation layer on the surface of stainless steel makes the contact resistance reach the ohmic level and reduces the performance of the fuel cell. Therefore, it is necessary to reduce the interfacial contact resistance through the surface treatment. In this research, the thickness, uniformity, interfacial contact resistance (ICR), and adhesion of the carbon-based layer was analyzed. On the other hand, the effect of coating properties on the performance of the fuel cell was verified through I-V tests. The results show that after coating the contact resistance is greatly reduced by three stages to the microohm level, and as the film thickness is reduced, the contact resistance is reduced from 229~118 mΩ-cm² to 135~73 mΩ-cm² at a general assembly pressure of 1 to 2 MPa., and the current density at 0.6 V increased from 485.7 mA/cm² to 575.7 mA/cm². This study verifies the importance of the uniformity and ICR of the coating on proton exchange membrane fuel cell (PEMFC), and the surface coating technology is the key to affecting the characteristics of the coating.

Keywords: contact resistance, proton exchange membrane fuel cell, PEMFC, SS bipolar plate, spray coating process

Procedia PDF Downloads 187
896 A Study on the Failure Modes of Steel Moment Frame in Post-Earthquake Fire Using Coupled Mechanical-Thermal Analysis

Authors: Ehsan Asgari, Meisam Afazeli, Nezhla Attarchian

Abstract:

Post-earthquake fire is considered as a major threat in seismic areas. After an earthquake, fire is possible in structures. In this research, the effect of post-earthquake fire on steel moment frames with and without fireproofing coating is investigated. For this purpose, finite element method is employed. For the verification of finite element results, the results of an experimental study carried out by previous researchers are used, and the predicted FE results are compared with the test results, and good agreement is observed. After ensuring the accuracy of the predictions of finite element models, the effect of post-earthquake fire on the frames is investigated taking into account the parameters including the presence or absence of fire protection, frame design assumptions, earthquake type and different fire scenario. Ordinary fire and post-earthquake fire effect on the frames is also studied. The plastic hinges induced by earthquake in the structure are determined in the beam to the column connection and in panel zone. These areas should be accurately considered when providing fireproofing coatings. The results of the study show that the occurrence of fire beside corner columns is the most damaging scenario that results in progressive collapse of structure. It was also concluded that the behavior of structure in fire after a strong ground motion is significantly different from that in a normal fire.

Keywords: post earthquake fire, moment frame, finite element simulation, coupled temperature-displacement analysis, fire scenario

Procedia PDF Downloads 131
895 Studies of the Corrosion Kinetics of Metal Alloys in Stagnant Simulated Seawater Environment

Authors: G. Kabir, A. M. Mohammed, M. A. Bawa

Abstract:

The paper presents corrosion behaviors of Naval Brass, aluminum alloy and carbon steel in simulated seawater under stagnant conditions. The behaviors were characterized on the variation of chloride ions concentration in the range of 3.0wt% and 3.5wt% and exposure time. The weight loss coupon-method immersion technique was employed. The weight loss for the various alloys was measured. Based on the obtained results, the corrosion rate was determined. It was found that the corrosion rates of the various alloys are related to the chloride ions concentrations, exposure time and kinetics of passive film formation of the various alloys. Carbon steel, suffers corrosion many folds more than Naval Brass. This indicated that the alloy exhibited relatively strong resistance to corrosion in the exposure environment of the seawater. Whereas, the aluminum alloy exhibited an excellent and beneficial resistance to corrosion more than the Naval Brass studied. Despite the prohibitive cost, Naval Brass and aluminum alloy, indicated to have beneficial corrosion behavior that can offer wide range of application in seashore operations. The corrosion kinetics parameters indicated that the corrosion reaction is limited by diffusion mass transfer of the corrosion reaction elements and not by reaction controlled.

Keywords: alloys, chloride ions concentration, corrosion kinetics, corrosion rate, diffusion mass transfer, exposure time, seawater, weight loss

Procedia PDF Downloads 280
894 Synthesis and Characterisation of Different Blends of Virgin Polyethylene Modified by Naturel Fibres Alfa

Authors: Benalia Kouini

Abstract:

The basic idea of this study is to promote a polyethylene recycle and local vegetable fiber (alfa) in the development and characterization of a new composite material. In this work, different sizes of fiber alfa (<63 microns, between 63 and 125 microns, 125 and 250 microns) were incorporated into the blends (HDPE / recycled HDPE) with different methods elaboration (extruder twin-screw and twin-cylinder mixer). The fiber was modified by sodium hydroxide in order to evaluate the effect of alkaline treatment on the interfacial adhesion and therefore the properties of composites prepared. These were characterized by various techniques: mechanical (tensile and Charpy impact test), Rheological (melt flow), morphological (SEM). The demonstration of the effect of alkali treatment on alfa fiber was examined by FTIR spectroscopy and morphological analysis. The introduction of alfa treated fiber in the (HDPE/recycled HDPE) increased stress, impact strength and Young's modulus on the contrary, the elongation at break decreased. The results of the mechanical properties showed an improvement is better in extrusion twin-screw mixer than two cylinders.

Keywords: naturel fiber, alfa, recycling, blends, polyethylene

Procedia PDF Downloads 123
893 Reducing the Chemical Activity of Ceramic Casting Molds for Producing Decorated Glass Moulds

Authors: Nilgun Kuskonmaz

Abstract:

Ceramic molding can produce castings with fine detail, smooth surface and high degree of dimensional accuracy. All these features are the key factors for producing decorated glass moulds. In the ceramic mold casting process, the fundamental parameters affecting the mold-metal reactions are the composition and the properties of the refractory materials used in the production of ceramic mold. As a result of the reactions taking place between the liquid metal and mold surface, it is not possible to achieve a perfect surface quality, a fine surface detail and maintain a high standard dimensional tolerances. The present research examines the effects of the binder composition on the structural and physical properties of the zircon ceramic mold. In the experiment, the ceramic slurry was prepared by mixing the refractory powders (zircon(ZrSiO4), mullit(3Al2O32SiO2) and alumina (Al2O3)) with the low alkaline silica (ethyl silicate (C8H20O4Si)) and acidic type gelling material suitable binder and gelling agent. This was followed by pouring that ceramic slurry on to a silicon pattern. After being gelled, the mold was removed from the silicon pattern and dried. Then, the ceramic mold was subjected to the reaction sintering at 1600°C for 2 hours in the furnace. The stainless steel (SS) was cast into the sintered ceramic mold. At the end of this process it was observed that the surface quality of decorated glass mold.

Keywords: ceramic mold, stainless steel casting, decorated glass mold

Procedia PDF Downloads 249
892 Effects of Fermentation Techniques on the Quality of Cocoa Beans

Authors: Monday O. Ale, Adebukola A. Akintade, Olasunbo O. Orungbemi

Abstract:

Fermentation as an important operation in the processing of cocoa beans is now affected by the recent climate change across the globe. The major requirement for effective fermentation is the ability of the material used to retain sufficient heat for the required microbial activities. Apart from the effects of climate on the rate of heat retention, the materials used for fermentation plays an important role. Most Farmers still restrict fermentation activities to the use of traditional methods. Improving on cocoa fermentation in this era of climate change makes it necessary to work on other materials that can be suitable for cocoa fermentation. Therefore, the objective of this study was to determine the effects of fermentation techniques on the quality of cocoa beans. The materials used in this fermentation research were heap-leaves (traditional), stainless steel, plastic tin, plastic basket and wooden box. The period of fermentation varies from zero days to 10 days. Physical and chemical tests were carried out for variables in quality determination in the samples. The weight per bean varied from 1.0-1.2 g after drying across the samples and the major color of the dry beans observed was brown except with the samples from stainless steel. The moisture content varied from 5.5-7%. The mineral content and the heavy metals decreased with increase in the fermentation period. A wooden box can conclusively be used as an alternative to heap-leaves as there was no significant difference in the physical features of the samples fermented with the two methods. The use of a wooden box as an alternative for cocoa fermentation is therefore recommended for cocoa farmers.

Keywords: fermentation, effects, fermentation materials, period, quality

Procedia PDF Downloads 181
891 Pushover Analysis of Reinforced Concrete Buildings Using Full Jacket Technics: A Case Study on an Existing Old Building in Madinah

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

The retrofitting of existing buildings to resist the seismic loads is very important to avoid losing lives or financial disasters. The aim at retrofitting processes is increasing total structure strength by increasing stiffness or ductility ratio. In addition, the response modification factors (R) have to satisfy the code requirements for suggested retrofitting types. In this study, two types of jackets are used, i.e. full reinforced concrete jackets and surrounding steel plate jackets. The study is carried out on an existing building in Madinah by performing static pushover analysis before and after retrofitting the columns. The selected model building represents nearly all-typical structure lacks structure built before 30 years ago in Madina City, KSA. The comparison of the results indicates a good enhancement of the structure respect to the applied seismic forces. Also, the response modification factor of the RC building is evaluated for the studied cases before and after retrofitting. The design of all vertical elements (columns) is given. The results show that the design of retrofitted columns satisfied the code's design stress requirements. However, for some retrofitting types, the ductility requirements represented by response modification factor do not satisfy KSA design code (SBC- 301).

Keywords: concrete jackets, steel jackets, RC buildings, pushover analysis, non-Linear analysis

Procedia PDF Downloads 347
890 Behavior of Composite Construction Precast Reactive Powder RC Girder and Ordinary RC Deck Slab

Authors: Nameer A. Alwash, Dunia A. Abd AlRadha, Arshed M. Aljanaby

Abstract:

This study present an experimental investigation of composite behavior for hybrid reinforced concrete slab on girder from locale material in Iraq, ordinary concrete, NC, in slab and reactive powder concrete in girder ,RPC, with steel fibers of different types(straight, hook, and mix between its), tested as simply supported span subjected under two point loading, also study effects on overall behavior such as the ultimate load, crack width and deflection. The result shows that the most suitable for production girder from RPC by using 2% micro straight steel fiber, in terms of ultimate strength and min crack width. Also the results shows that using RPC in girder of composite section increased ultimate load by 79% when compared with same section made of NC, and increased the shear strength which erased the effect of changing reinforcement in shear, and using RPC in girder and epoxy (in shear transfer between composite section) (meaning no stirrups) equivalent presence of shear reinforcement by 90% when compared with same section using Φ8@100 as shear reinforcement. And the result shows that changing the cross section girder shape of the composite section to inverted T, with same section area, increased the ultimate load by 5% when compared with same section of rectangular shape girder.

Keywords: reactive powder concrete, RPC, hybrid concrete, composite section, RC girder, RC slab, shear connecters, inverted T section, shear reinforcment, shear span over effective depth

Procedia PDF Downloads 335
889 The Influence of Different Flux Patterns on Magnetic Losses in Electric Machine Cores

Authors: Natheer Alatawneh

Abstract:

The finite element analysis of magnetic fields in electromagnetic devices shows that the machine cores experience different flux patterns including alternating and rotating fields. The rotating fields are generated in different configurations range between circular and elliptical with different ratios between the major and minor axis of the flux locus. Experimental measurements on electrical steel exposed to different flux patterns disclose different magnetic losses in the samples under test. Consequently, electric machines require special attention during the cores loss calculation process to consider the flux patterns. In this study, a circular rotational single sheet tester is employed to measure the core losses in electric steel sample of M36G29. The sample was exposed to alternating field, circular field, and elliptical fields with axis ratios of 0.2, 0.4, 0.6 and 0.8. The measured data was implemented on 6-4 switched reluctance motor at three different frequencies of interest to the industry as 60 Hz, 400 Hz, and 1 kHz. The results disclose a high margin of error that may occur during the loss calculations if the flux patterns issue is neglected. The error in different parts of the machine associated with considering the flux patterns can be around 50%, 10%, and 2% at 60Hz, 400Hz, and 1 kHz, respectively. The future work will focus on the optimization of machine geometrical shape which has a primary effect on the flux pattern in order to minimize the magnetic losses in machine cores.

Keywords: alternating core losses, electric machines, finite element analysis, rotational core losses

Procedia PDF Downloads 236
888 The Ductile Fracture of Armor Steel Targets Subjected to Ballistic Impact and Perforation: Calibration of Four Damage Criteria

Authors: Imen Asma Mbarek, Alexis Rusinek, Etienne Petit, Guy Sutter, Gautier List

Abstract:

Over the past two decades, the automotive, aerospace and army industries have been paying an increasing attention to Finite Elements (FE) numerical simulations of the fracture process of their structures. Thanks to the numerical simulations, it is nowadays possible to analyze several problems involving costly and dangerous extreme loadings safely and at a reduced cost such as blast or ballistic impact problems. The present paper is concerned with ballistic impact and perforation problems involving ductile fracture of thin armor steel targets. The target fracture process depends usually on various parameters: the projectile nose shape, the target thickness and its mechanical properties as well as the impact conditions (friction, oblique/normal impact...). In this work, the investigations are concerned with the normal impact of a conical head-shaped projectile on thin armor steel targets. The main aim is to establish a comparative study of four fracture criteria that are commonly used in the fracture process simulations of structures subjected to extreme loadings such as ballistic impact and perforation. Usually, the damage initiation results from a complex physical process that occurs at the micromechanical scale. On a macro scale and according to the following fracture models, the variables on which the fracture depends are mainly the stress triaxiality ƞ, the strain rate, temperature T, and eventually the Lode angle parameter Ɵ. The four failure criteria are: the critical strain to failure model, the Johnson-Cook model, the Wierzbicki model and the Modified Hosford-Coulomb model MHC. Using the SEM, the observations of the fracture facies of tension specimen and of armor steel targets impacted at low and high incident velocities show that the fracture of the specimens is a ductile fracture. The failure mode of the targets is petalling with crack propagation and the fracture facies are covered with micro-cavities. The parameters of each ductile fracture model have been identified for three armor steels and the applicability of each criterion was evaluated using experimental investigations coupled to numerical simulations. Two loading paths were investigated in this study, under a wide range of strain rates. Namely, quasi-static and intermediate uniaxial tension and quasi-static and dynamic double shear testing allow covering various values of stress triaxiality ƞ and of the Lode angle parameter Ɵ. All experiments were conducted on three different armor steel specimen under quasi-static strain rates ranging from 10-4 to 10-1 1/s and at three different temperatures ranging from 297K to 500K, allowing drawing the influence of temperature on the fracture process. Intermediate tension testing was coupled to dynamic double shear experiments conducted on the Hopkinson tube device, allowing to spot the effect of high strain rate on the damage evolution and the crack propagation. The aforementioned fracture criteria are implemented into the FE code ABAQUS via VUMAT subroutine and they were coupled to suitable constitutive relations allow having reliable results of ballistic impact problems simulation. The calibration of the four damage criteria as well as a concise evaluation of the applicability of each criterion are detailed in this work.

Keywords: armor steels, ballistic impact, damage criteria, ductile fracture, SEM

Procedia PDF Downloads 295
887 Finite Element Modeling of Two-Phase Microstructure during Metal Cutting

Authors: Junior Nomani

Abstract:

This paper presents a novel approach to modelling the metal cutting of duplex stainless steels, a two-phase alloy regarded as a difficult-to-machine material. Calculation and control of shear strain and stresses during cutting are essential to achievement of ideal cutting conditions. Too low or too high leads to higher required cutting force or excessive heat generation causing premature tool wear failure. A 2D finite element cutting model was created based on electron backscatter diffraction (EBSD) data imagery of duplex microstructure. A mesh was generated using ‘object-oriented’ software OOF2 version V2.1.11, converting microstructural images to quadrilateral elements. A virtual workpiece was created on ABAQUS modelling software where a rigid body toolpiece advanced towards workpiece simulating chip formation, generating serrated edge chip formation cutting. Model results found calculated stress strain contour plots correlated well with similar finite element models tied with austenite stainless steel alloys. Virtual chip form profile is also similar compared experimental frozen machining chip samples. The output model data provides new insight description of strain behavior of two phase material on how it transitions from workpiece into the chip.

Keywords: Duplex stainless steel, ABAQUS, OOF2, Chip formation

Procedia PDF Downloads 85
886 Frequency Domain Decomposition, Stochastic Subspace Identification and Continuous Wavelet Transform for Operational Modal Analysis of Three Story Steel Frame

Authors: Ardalan Sabamehr, Ashutosh Bagchi

Abstract:

Recently, Structural Health Monitoring (SHM) based on the vibration of structures has attracted the attention of researchers in different fields such as: civil, aeronautical and mechanical engineering. Operational Modal Analysis (OMA) have been developed to identify modal properties of infrastructure such as bridge, building and so on. Frequency Domain Decomposition (FDD), Stochastic Subspace Identification (SSI) and Continuous Wavelet Transform (CWT) are the three most common methods in output only modal identification. FDD, SSI, and CWT operate based on the frequency domain, time domain, and time-frequency plane respectively. So, FDD and SSI are not able to display time and frequency at the same time. By the way, FDD and SSI have some difficulties in a noisy environment and finding the closed modes. CWT technique which is currently developed works on time-frequency plane and a reasonable performance in such condition. The other advantage of wavelet transform rather than other current techniques is that it can be applied for the non-stationary signal as well. The aim of this paper is to compare three most common modal identification techniques to find modal properties (such as natural frequency, mode shape, and damping ratio) of three story steel frame which was built in Concordia University Lab by use of ambient vibration. The frame has made of Galvanized steel with 60 cm length, 27 cm width and 133 cm height with no brace along the long span and short space. Three uniaxial wired accelerations (MicroStarin with 100mv/g accuracy) have been attached to the middle of each floor and gateway receives the data and send to the PC by use of Node Commander Software. The real-time monitoring has been performed for 20 seconds with 512 Hz sampling rate. The test is repeated for 5 times in each direction by hand shaking and impact hammer. CWT is able to detect instantaneous frequency by used of ridge detection method. In this paper, partial derivative ridge detection technique has been applied to the local maxima of time-frequency plane to detect the instantaneous frequency. The extracted result from all three methods have been compared, and it demonstrated that CWT has the better performance in term of its accuracy in noisy environment. The modal parameters such as natural frequency, damping ratio and mode shapes are identified from all three methods.

Keywords: ambient vibration, frequency domain decomposition, stochastic subspace identification, continuous wavelet transform

Procedia PDF Downloads 273
885 Effect of Upper Face Sheet Material on Flexural Strength of Polyurethane Foam Hybrid Sandwich Material

Authors: M. Atef Gabr, M. H. Abdel Latif, Ramadan El Gamsy

Abstract:

Sandwich panels comprise a thick, light-weight plastic foam such as polyurethane (PU) sandwiched between two relatively thin faces. One or both faces may be flat, lightly profiled or fully profiled. Until recently sandwich panel construction in Egypt has been widely used in cold-storage buildings, cold trucks, prefabricated buildings and insulation in construction. Recently new techniques are used in mass production of Sandwich Materials such as Reaction Injection Molding (RIM) and Vacuum bagging technique. However, in recent times their use has increased significantly due to their widespread structural applications in building systems. Structural sandwich panels generally used in Egypt comprise polyurethane foam core and thinner (0.42 mm) and high strength about 550 MPa (yield strength) flat steel faces bonded together using separate adhesives and By RIM technique. In this paper, we will use a new technique in sandwich panel preparation by using different face sheet materials in combination with polyurethane foam to form sandwich panel structures. Previously, PU Foam core with same thin 2 faces material was used, but in this work, we use different face materials and thicknesses for the upper face sheet such as Galvanized steel sheets (G.S),Aluminum sheets (Al),Fiberglass sheets (F.G) and Aluminum-Rubber composite sheets (Al/R) with polyurethane foam core 10 mm thickness and 45 Kg/m3 Density and Galvanized steel as lower face sheet. Using Aluminum-Rubber composite sheets as face sheet is considered a hybrid composite sandwich panel which is built by Hand-Layup technique by using PU glue as adhesive. This modification increases the benefits of the face sheet that will withstand different working environments with relatively small increase in its weight and will be useful in several applications. In this work, a 3-point bending test is used assistant professor to measure the most important factor in sandwich materials that is strength to weight ratio(STW) for different combinations of sandwich structures and make a comparison to study the effect of changing the face sheet material on the mechanical behavior of PU sandwich material. Also, the density of the different prepared sandwich materials will be measured to obtain the specific bending strength.

Keywords: hybrid sandwich panel, mechanical behavior, PU foam, sandwich panel, 3-point bending, flexural strength

Procedia PDF Downloads 288
884 Bond Strength of Nano Silica Concrete Subjected to Corrosive Environments

Authors: Muhammad S. El-Feky, Mohamed I. Serag, Ahmed M. Yasien, Hala Elkady

Abstract:

Reinforced concrete requires steel bars in order to provide the tensile strength that is needed in structural concrete. However, when steel bars corrode, a loss in bond between the concrete and the steel bars occurs due to the formation of rust on the bars surface. Permeability of concrete is a fundamental property in perspective of the durability of concrete as it represents the ease with which water or other fluids can move through concrete, subsequently transporting corrosive agents. Nanotechnology is a standout amongst active research zones that envelops varies disciplines including construction materials. The application of nanotechnology in the corrosion protection of metal has lately gained momentum as nano scale particles have ultimate physical, chemical and physicochemical properties, which may enhance the corrosion protection in comparison to large size materials. The presented research aims to study the bond performance of concrete containing relatively high volume nano silica (up to 4.5%) exposed to corrosive conditions. This was extensively studied through tensile, bond strengths as well as the permeability of nano silica concrete. In addition micro-structural analysis was performed in order to evaluate the effect of nano silica on the properties of concrete at both; the micro and nano levels. The results revealed that by the addition of nano silica, the permeability of concrete mixes decreased significantly to reach about 50% of the control mix by the addition of 4.5% nano silica. As for the corrosion resistance, the nano silica concrete is comparatively higher resistance than ordinary concrete. Increasing Nano Silica percentage increased significantly the critical time corresponding to a metal loss (equal to 50 ϻm) which usually corresponding to the first concrete cracking due to the corrosion of reinforcement to reach about 49 years instead of 40 years as for the normal concrete. Finally, increasing nano Silica percentage increased significantly the residual bond strength of concrete after being subjected to corrosive environment. After being subjected to corrosive environment, the pullout behavior was observed for the bars embedded in all of the mixes instead of the splitting behavior that was observed before being corroded. Adding 4.5% nano silica in concrete increased the residual bond strength to reach 79% instead of 27% only as compared to control mix (0%W) before the subjection of the corrosive environment. From the conducted study we can conclude that the Nano silica proved to be a significant pore blocker material.

Keywords: bond strength, concrete, corrosion resistance, nano silica, permeability

Procedia PDF Downloads 288
883 Effect of Filler Metal Diameter on Weld Joint of Carbon Steel SA516 Gr 70 and Filler Metal SFA 5.17 in Submerged Arc Welding SAW

Authors: A. Nait Salah, M. Kaddami

Abstract:

This work describes an investigation on the effect of filler metals diameter to weld joint, and low alloy carbon steel A516 Grade 70 is the base metal. Commercially SA516 Grade70 is frequently used for the manufacturing of pressure vessels, boilers and storage tank, etc. In fabrication industry, the hardness of the weld joint is between the important parameters to check, after heat treatment of the weld. Submerged arc welding (SAW) is used with two filler metal diameters, and this solid wire electrode is used for SAW non-alloy and for fine grain steels (SFA 5.17). The different diameters were selected (Ø = 2.4 mm and Ø = 4 mm) to weld two specimens. Both specimens were subjected to the same preparation conditions, heat treatment, macrograph, metallurgy micrograph, and micro-hardness test. Samples show almost similar structure with highest hardness. It is important to indicate that the thickness used in the base metal is 22 mm, and all specifications, preparation and controls were according to the ASME section IX. It was observed that two different filler metal diameters performed on two similar specimens demonstrated that the mechanical property (hardness) increases with decreasing diameter. It means that even the heat treatment has the same effect with the same conditions, the filler metal diameter insures a depth weld penetration and better homogenization. Hence, the SAW welding technique mentioned in the present study is favorable to implicate for the industry using the small filler metal diameter.

Keywords: ASME, base metal, micro-hardness test, submerged arc welding

Procedia PDF Downloads 132
882 Angiopermissive Foamed and Fibrillar Scaffolds for Vascular Graft Applications

Authors: Deon Bezuidenhout

Abstract:

Pre-seeding with autologous endothelial cells improves the long-term patency of synthetic vascular grafts levels obtained with autografts, but is limited to a single centre due to resource, time and other constraints. Spontaneous in vivo endothelialization would obviate the need for pre-seeding, but has been shown to be absent in man due to limited transanastomotic and fallout healing, and the lack of transmural ingrowth due to insufficient porosity. Two types of graft scaffolds with increased interconnected porosity for improved tissue ingrowth and healing are thus proposed and described. Foam-type polyurethane (PU) scaffolds with small, medium and large, interconnected pores were made by phase inversion and spherical porogen extraction, with and without additional surface modification with covalently attached heparin and subsequent loading with and delivery of growth factors. Fibrillar scaffolds were made either by standard electrospinning using degradable PU (Degrapol®), or by dual electrospinning using non-degradable PU. The latter process involves sacrificial fibres that are co-spun with structural fibres and subsequently removed to increased porosity and pore size. Degrapol samples were subjected to in vitro degradation, and all scaffold types were evaluated in vivo for tissue ingrowth and vascularization using rat subcutaneous model. The foam scaffolds were additionally evaluated in a circulatory (rat infrarenal aortic interposition) model that allows for the grafts to be anastomotically and/or ablumenally isolated to discern and determine endothelialization mode. Foam-type grafts with large (150 µm) pores showed improved subcutaneous healing in terms of vascularization and inflammatory response over smaller pore sizes (60 and 90µm), and vascularization of the large porosity scaffolds was significantly increased by more than 70% by heparin modification alone, and by 150% to 400% when combined with growth factors. In the circulatory model, extensive transmural endothelialization (95±10% at 12 w) was achieved. Fallout healing was shown to be sporadic and limited in groups that were ablumenally isolated to prevent transmural ingrowth (16±30% wrapped vs. 80±20% control; p<0.002). Heparinization and GF delivery improved both mural vascularization and lumenal endothelialization. Degrapol electrospun scaffolds showed decrease in molecular mass and corresponding tensile strength over the first 2 weeks, but very little decrease in mass over the 4w test period. Studies on the effect of tissue ingrowth with and without concomitant degradation of the scaffolds, are being used to develop material models for the finite element modelling. In the case of the dual-spun scaffolds, the PU fibre fraction could be controlled shown to vary linearly with porosity (P = −0.18FF +93.5, r2=0.91), which in turn showed inverse linear correlation with tensile strength and elastic modulus (r2 > 0.96). Calculated compliance and burst pressures of the scaffolds increased with fibre fraction, and compliances matching the human popliteal artery (5-10 %/100 mmHg), and high burst pressures (> 2000 mmHg) could be achieved. Increasing porosity (76 to 82 and 90%) resulted in increased tissue ingrowth from 33±7 to 77±20 and 98±1% after 28d. Transmural endothelialization of highly porous foamed grafts is achievable in a circulatory model, and the enhancement of porosity and tissue ingrowth may hold the key the development of spontaneously endothelializing electrospun grafts.

Keywords: electrospinning, endothelialization, porosity, scaffold, vascular graft

Procedia PDF Downloads 277
881 Fracture Toughness Characterizations of Single Edge Notch (SENB) Testing Using DIC System

Authors: Amr Mohamadien, Ali Imanpour, Sylvester Agbo, Nader Yoosef-Ghodsi, Samer Adeeb

Abstract:

The fracture toughness resistance curve (e.g., J-R curve and crack tip opening displacement (CTOD) or δ-R curve) is important in facilitating strain-based design and integrity assessment of oil and gas pipelines. This paper aims to present laboratory experimental data to characterize the fracture behavior of pipeline steel. The influential parameters associated with the fracture of API 5L X52 pipeline steel, including different initial crack sizes, were experimentally investigated for a single notch edge bend (SENB). A total of 9 small-scale specimens with different crack length to specimen depth ratios were conducted and tested using single edge notch bending (SENB). ASTM E1820 and BS7448 provide testing procedures to construct the fracture resistance curve (Load-CTOD, CTOD-R, or J-R) from test results. However, these procedures are limited by standard specimens’ dimensions, displacement gauges, and calibration curves. To overcome these limitations, this paper presents the use of small-scale specimens and a 3D-digital image correlation (DIC) system to extract the parameters required for fracture toughness estimation. Fracture resistance curve parameters in terms of crack mouth open displacement (CMOD), crack tip opening displacement (CTOD), and crack growth length (∆a) were carried out from test results by utilizing the DIC system, and an improved regression fitting resistance function (CTOD Vs. crack growth), or (J-integral Vs. crack growth) that is dependent on a variety of initial crack sizes was constructed and presented. The obtained results were compared to the available results of the classical physical measurement techniques, and acceptable matchings were observed. Moreover, a case study was implemented to estimate the maximum strain value that initiates the stable crack growth. This might be of interest to developing more accurate strain-based damage models. The results of laboratory testing in this study offer a valuable database to develop and validate damage models that are able to predict crack propagation of pipeline steel, accounting for the influential parameters associated with fracture toughness.

Keywords: fracture toughness, crack propagation in pipeline steels, CTOD-R, strain-based damage model

Procedia PDF Downloads 46
880 Analysis of Artificial Hip Joint Using Finite Element Method

Authors: Syed Zameer, Mohamed Haneef

Abstract:

Hip joint plays very important role in human beings as it takes up the whole body forces generated due to various activities. These loads are repetitive and fluctuating depending on the activities such as standing, sitting, jogging, stair casing, climbing, etc. which may lead to failure of Hip joint. Hip joint modification and replacement are common in old aged persons as well as younger persons. In this research study static and Fatigue analysis of Hip joint model was carried out using finite element software ANSYS. Stress distribution obtained from result of static analysis, material properties and S-N curve data of fabricated Ultra High molecular weight polyethylene / 50 wt% short E glass fibres + 40 wt% TiO2 Polymer matrix composites specimens were used to estimate fatigue life of Hip joint using stiffness Degradation model for polymer matrix composites. The stress distribution obtained from static analysis was found to be within the acceptable range.The factor of safety calculated from linear Palmgren linear damage rule is less than one, which indicates the component is safe under the design.

Keywords: hip joint, polymer matrix composite, static analysis, fatigue analysis, stress life approach

Procedia PDF Downloads 338
879 Mechanical Performance of Sandwich Square Honeycomb Structure from Sugar Palm Fibre

Authors: Z. Ansari, M. R. M. Rejab, D. Bachtiar, J. P. Siregar

Abstract:

This study focus on the compression and tensile properties of new and recycle square honeycombs structure from sugar palm fibre (SPF) and polylactic acid (PLA) composite. The end data will determine the failure strength and energy absorption for both new and recycle composite. The control SPF specimens were fabricated from short fibre co-mingled with PLA by using a bra-blender set at 180°C and 50 rpm consecutively. The mixture of 30% fibre and 70% PLA were later on the hot press at 180°C into sheets with thickness 3mm consecutively before being assembled into a sandwich honeycomb structure. An INSTRON tensile machine and Abaqus 6.13 software were used for mechanical test and finite element simulation. The percentage of error from the simulation and experiment data was 9.20% and 9.17% for both new and recycled product. The small error of percentages was acceptable due to the nature of the simulation model to be assumed as a perfect model with no imperfect geometries. The energy absorption value from new to recycled product decrease from 312.86kJ to 282.10kJ. With this small decrements, it is still possible to implement a recycle SPF/PLA composite into everyday usages such as a car's interior or a small size furniture.

Keywords: failure modes, numerical modelling, polylactic acid, sugar palm fibres

Procedia PDF Downloads 280
878 Study of 'Rolled in Scale' and 'Rolled in Scum' in Automotive Grade Cold-Rolled Annealed Steel Sheet

Authors: Soumendu Monia, Vaibhav Jain, Hrishikesh Jugade, Manashi Adhikary, Goutam Mukhopadhyay

Abstract:

'Rolled in scale' (RIS) and 'Rolled in Scum' (RISc) are two superficial surface defects on cold rolled and annealed steel sheets which affect the aesthetics of surface and thereby that of the end-product. Both the defects are believed to be originating from distinctly different sources having different mechanisms of formation. However, due to their similar physical appearance, RIS and RISc are generally confused with each other and hence attaining the exact root cause for elimination of the defect becomes difficult. RIS appears irregular in shape, sometimes scattered, and always oriented in rolling direction. RISc is generally oval shaped, having identifiable pointed edges and mostly oriented in rolling direction. Visually, RIS appears to be greyish in colour whereas RISc is whitish in colour. Both the defects have quite random occurrence and do not leave any imprints on the reverse-side of the sheet. In the current study, an attempt has been made to differentiate these two similar looking surface defects using various metallographic and characterization techniques. Systematic experiments have been carried out to identify possible mechanisms of formation of these defects. Detailed characterization revealed basic differences between RIS and RISc with respect to their surface morphology. To summarize, RIS was observed as a residue of an otherwise under-pickled scale patch on surface, after it has been subjected to cold rolling and annealing in a batch/continuous furnace. Whereas RISc was found to be a localized rubbing of the surface, at the time of cold rolling itself, resulting in a rough surface texture.

Keywords: annealing, rolled in scale, rolled in scum, skin panel

Procedia PDF Downloads 156
877 Regenerated Cotton/Feather Keratin Composite Materials Prepared Using Ionic Liquids

Authors: Rasike De Silva, Xungai Wang, Nolene Byrne

Abstract:

We report on the blending of cotton and duck feather towards developing a new textile fibre. The cotton and duck feather were blended together by dissolving both components in an ionic liquid. Ionic liquids are designer solvents consisting entirely of ions with a melting point below 100˚C. Ionic liquids can be designed to have numerous and varied properties which include the ability to dissolve bio polymers. The dissolution of bio polymers such as cotton or wool generally requires very harsh acid or alkaline conditions and high temperatures. The ionic liquids which can dissolve bio polymers can be considered environmentally benign since they have negligible vapor pressure and can be recycled and reused. We have selected the cellulose dissolving and recyclable ionic liquid 1-allyl-3-methylimidazolium chloride (AMIMCl) as the dissolving and blending solvent for the cotton and duck feather materials. We have casted films and wet spun fibres at varying cotton and duck feather compositions and characterized the material properties of these. We find that the addition of duck feather enhances the elasticity of regenerated cotton. The strain% at breakage of the regenerated film was increased from 4.2% to 11.63% with a 10% duck feather loading, while the corresponding stress at breakage reduced from 54.89 MPa to 47.16 MPa.

Keywords: textile materials, bio polymers, ionic liquids, duck feather

Procedia PDF Downloads 456
876 A Comparative Study on Behavior Among Different Types of Shear Connectors using Finite Element Analysis

Authors: Mohd Tahseen Islam Talukder, Sheikh Adnan Enam, Latifa Akter Lithi, Soebur Rahman

Abstract:

Composite structures have made significant advances in construction applications during the last few decades. Composite structures are composed of structural steel shapes and reinforced concrete combined with shear connectors, which benefit each material's unique properties. Significant research has been conducted on different types of connectors’ behavior and shear capacity. Moreover, the AISC 360-16 “Specification for Steel Structural Buildings” consists of a formula for channel shear connectors' shear capacity. This research compares the behavior of C type and L type shear connectors using Finite Element Analysis. Experimental results from published literature are used to validate the finite element models. The 3-D Finite Element Model (FEM) was built using ABAQUS 2017 to investigate non-linear capabilities and the ultimate load-carrying potential of the connectors using push-out tests. The changes in connector dimensions were analyzed using this non-linear model in parametric investigations. The parametric study shows that by increasing the length of the shear connector by 10 mm, its shear strength increases by 21%. Shear capacity increased by 13% as the height was increased by 10 mm. The thickness of the specimen was raised by 1 mm, resulting in a 2% increase in shear capacity. However, the shear capacity of channel connectors was reduced by 21% due to an increase of thickness by 2 mm.

Keywords: finite element method, channel shear connector, angle shear connector, ABAQUS, composite structure, shear connector, parametric study, ultimate shear capacity, push-out test

Procedia PDF Downloads 99
875 Elimination of Mixed-Culture Biofilms Using Biological Agents

Authors: Anita Vidacs, Csaba Vagvolgyi, Judit Krisch

Abstract:

The attachment of microorganisms to different surfaces and the development of biofilms can lead to outbreaks of food-borne diseases and economic losses due to perished food. In food processing environments, bacterial communities are generally formed by mixed cultures of different species. Plants are sources of several antimicrobial substances that may be potential candidates for the development of new disinfectants. We aimed to investigate cinnamon (Cinnamomum zeylanicum), marjoram (Origanum majorana), and thyme (Thymus vulgaris). Essential oils and their major components (cinnamaldehyde, terpinene-4-ol, and thymol) on four-species biofilms of E. coli, L. monocytogenes, P. putida, and S. aureus. Experiments had three parts: (i) determination of minimum bactericide concentration and the killing time with microdilution methods; (ii) elimination of the four-species 24– and 168-hours old biofilm from stainless steel, polypropylene, tile and wood surfaces; and (iii) comparing the disinfectant effect with industrial used per-acetic based sanitizer (HC-DPE). E. coli and P. putida were more resistant to investigated essential oils and their main components in biofilm, than L. monocytogenes and S. aureus. These Gram-negative bacteria were detected on the surfaces, where the natural based disinfectant had not total biofilm elimination effect. Most promoted solutions were the cinnamon essential oil and the terpinene-4-ol that could eradicate the biofilm from stainless steel, polypropylene and even from tile, too. They have a better disinfectant effect than HC-DPE. These natural agents can be used as alternative solutions in the battle against bacterial biofilms.

Keywords: biofilm, essential oils, surfaces, terpinene-4-ol

Procedia PDF Downloads 83
874 Case Study: Geomat Installation against Slope Erosion

Authors: Serap Kaymakci, Dogan Gundogdu, M. Bugra Yagcioglu

Abstract:

Erosion (soil erosion) is a phenomenon in which the soil on the slope surface is exposed to natural influences such as wind, rainfall, etc. in open areas. The most natural solution to prevent erosion is to plant surfaces exposed to erosion. However, proper ground and natural conditions must be provided in order for planting to occur. Erosion is prevented in a fast and natural way and the loss of soil is reduced mostly. Lead to allowing plants to hold onto the soil with its three-dimensional and hollow structure are as follows: The types of geomat called MacMat that is used in a case study in Turkey in order to prevent water carry over due to rainfall. The geosynthetic combined with double twisted steel wire mesh. That consists of 95% Zn–5% Al alloy coated double twisted steel wire based that is a reinforced MacMat (geosynthetic three-dimensional erosion control mat) obtained by a polypropylene consisted (mesh type 8x10-Wire diam. 2.70 mm–95% Zn–5% Al alloy coated). That is developed by the progress of the technology. When using reinforced MacMat on top clay liners, fixing pins should not be used as they will rupture the mats. Mats are simply anchored (J Type) in the top trench and, if necessary, in intermediate berm trenches. If the slope angle greater than 20°, it is necessary to use additional rebar depending soil properties also. These applications may have specific technical and installation requirements. In that project, the main purpose is erosion control after that is greening. There is a slope area around the factory which is located in Gebze, İstanbul.

Keywords: erosion, GeoMat, geosynthetic, slope

Procedia PDF Downloads 160
873 Plastic Behavior of Steel Frames Using Different Concentric Bracing Configurations

Authors: Madan Chandra Maurya, A. R. Dar

Abstract:

Among the entire natural calamities earthquake is the one which is most devastating. If the losses due to all other calamities are added still it will be very less than the losses due to earthquakes. So it means we must be ready to face such a situation, which is only possible if we make our structures earthquake resistant. A review of structural damages to the braced frame systems after several major earthquakes—including recent earthquakes—has identified some anticipated and unanticipated damage. This damage has prompted many engineers and researchers around the world to consider new approaches to improve the behavior of braced frame systems. Extensive experimental studies over the last fourty years of conventional buckling brace components and several braced frame specimens have been briefly reviewed, highlighting that the number of studies on the full-scale concentric braced frames is still limited. So for this reason the study surrounds the words plastic behavior, steel structure, brace frame system. In this study, there are two different analytical approaches which have been used to predict the behavior and strength of an un-braced frame. The first is referred as incremental elasto-plastic analysis a plastic approach. This method gives a complete load-deflection history of the structure until collapse. It is based on the plastic hinge concept for fully plastic cross sections in a structure under increasing proportional loading. In this, the incremental elasto-plastic analysis- hinge by hinge method is used in this study because of its simplicity to know the complete load- deformation history of two storey un-braced scaled model. After that the experiments were conducted on two storey scaled building model with and without bracing system to know the true or experimental load deformation curve of scaled model. Only way, is to understand and analyze these techniques and adopt these techniques in our structures. The study named as Plastic Behavior of Steel Frames using Different Concentric Bracing Configurations deals with all this. This study aimed at improving the already practiced traditional systems and to check the behavior and its usefulness with respect to X-braced system as reference model i.e. is how plastically it is different from X-braced. Laboratory tests involved determination of plastic behavior of these models (with and without brace) in terms of load-deformation curve. Thus, the aim of this study is to improve the lateral displacement resistance capacity by using new configuration of brace member in concentric manner which is different from conventional concentric brace. Once the experimental and manual results (using plastic approach) compared, simultaneously the results from both approach were also compared with nonlinear static analysis (pushover analysis) approach using ETABS i.e how both the previous results closely depicts the behavior in pushover curve and upto what limit. Tests results shows that all the three approaches behaves somewhat in similar manner upto yield point and also the applicability of elasto-plastic analysis (hinge by hinge method) to know the plastic behavior. Finally the outcome from three approaches shows that the newer one configuration which is chosen for study behaves in-between the plane frame (without brace or reference frame) and the conventional X-brace frame.

Keywords: elasto-plastic analysis, concentric steel braced frame, pushover analysis, ETABS

Procedia PDF Downloads 210
872 Tensile and Direct Shear Responses of Basalt-Fibre Reinforced Composite Using Alkali Activate Binder

Authors: S. Candamano, A. Iorfida, L. Pagnotta, F. Crea

Abstract:

Basalt fabric reinforced cementitious composites (FRCM) have attracted great attention because they result in being effective in structural strengthening and eco-efficient. In this study, authors investigate their mechanical behavior when an alkali-activated binder, with tuned properties and containing high amounts of industrial by-products, such as ground granulated blast furnace slag, is used. Reinforcement is made up of a balanced, coated bidirectional fabric made out of basalt fibres and stainless steel micro-wire, with a mesh size of 8x8 mm and an equivalent design thickness equal to 0.064 mm. Mortars mixes have been prepared by maintaining constant the water/(reactive powders) and sand/(reactive powders) ratios at 0.53 and 2.7 respectively. Tensile tests were carried out on composite specimens of nominal dimensions equal to 500 mm x 50 mm x 10 mm, with 6 embedded rovings in the loading direction. Direct shear tests (DST), aimed to the stress-transfer mechanism and failure modes of basalt-FRCM composites, were carried out on brickwork substrate using an externally bonded basalt-FRCM composite strip 10 mm thick, 50 mm wide and a bonded length of 300 mm. Mortars exhibit, after 28 days of curing, a compressive strength of 32 MPa and a flexural strength of 5.5 MPa. Main hydration product is a poorly crystalline CASH gel. The constitutive behavior of the composite has been identified by means of direct tensile tests, with response curves showing a tri-linear behavior. The first linear phase represents the uncracked (I) stage, the second (II) is identified by crack development and the third (III) corresponds to cracked stage, completely developed up to failure. All specimens exhibit a crack pattern throughout the gauge length and failure occurred as a result of sequential tensile failure of the fibre bundles, after reaching the ultimate tensile strength. The behavior is mainly governed by cracks development (II) and widening (III) up to failure. The main average values related to the stages are σI= 173 MPa and εI= 0.026% that are the stress and strain of the transition point between stages I and II, corresponding to the first mortar cracking; σu = 456 MPa and εu= 2.20% that are the ultimate tensile strength and strain, respectively. The tensile modulus of elasticity in stage III is EIII= 41 GPa. All single-lap shear test specimens failed due to composite debonding. It occurred at the internal fabric-to-matrix interface, and it was the result of fracture of the matrix between the fibre bundles. For all specimens, transversal cracks were visible on the external surface of the composite and involved only the external matrix layer. This cracking appears when the interfacial shear stresses increase and slippage of the fabric at the internal matrix layer interface occurs. Since the external matrix layer is bonded to the reinforcement fabric, it translates with the slipped fabric. Average peak load around 945 N, peak stress around 308 MPa, and global slip around 6 mm were measured. The preliminary test results allow affirming that Alkali Activated Binders can be considered a potentially valid alternative to traditional mortars in designing FRCM composites.

Keywords: alkali activated binders, basalt-FRCM composites, direct shear tests, structural strengthening

Procedia PDF Downloads 102