Search results for: seismic isolation device
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3587

Search results for: seismic isolation device

2657 Preparation and Evaluation of Herbal Extracts for Washing of Vegetables and Fruits

Authors: Pareshkumar Umedbhai Patel

Abstract:

Variety of microbes were isolated from surface of fruit and vegetables to get idea about normal flora of their surface. The process of isolation of microbes involved use of sterilized cotton swabs to wipe the surface of the samples. For isolation of Bacteria, yeast and fungi microbiological media used were nutrient agar medium, GYE agar medium and MRBA agar medium respectively. The microscopical and macroscopical characteristics of all the isolates were studied. Different plants with known antimicrobial activity were selected for obtaining samples for extraction e.g. Ficus (Ficus religosa) stem, Amla (Phyllanthus emblica) fruit, Tulsi (Ocimum tenuiflorum) leaves and Lemon grass (Cymbopogon citratus) oil. Antimicrobial activity of these samples was tested initially against known bacteria followed by study against microbes isolated from surface of vegetables and fruits. During the studies carried out throughout the work, lemongrass oil and Amla extract were found superior. Lemongrass oil and Amla extract respectively inhibited growth of 65% and 42% microbes isolated from fruit and vegetable surfaces. Rest two studied plant extracts showed only 11% of inhibition against the studied isolates. The results of isolate inhibition show the antibacterial effect of lemongrass oil better than the rest of the studied plant extracts.

Keywords: herbal extracts, vegetables, fruits, antimicrobial activity

Procedia PDF Downloads 135
2656 Design, Construction, Technical and Economic Evaluation of a Solar Water Desalination Device with Two Heat Exchangers and a Photovoltaic System

Authors: Mehdi Bakhtiarzadeh, Reza Efatnejad, Kambiz Rezapour Rezapour

Abstract:

Due to the limited resources of fossil fuels and their harmful effects on the environment and human health, research on renewable energy applications in industrial and scientific communities has become particularly important. Only one percent of freshwater resources are available for use in the domestic, agricultural, and industrial sectors. On the other hand, the rapid growth of industry and the increase of population in most countries of the world, including Iran, have led to an increase in demand for freshwater. Among renewable energies, there is the potential of solar energy in Iran. As a result, solar distillation systems can be used as a solution to supply fresh water in remote rural areas. Therefore, in the present study, a solar water desalination device was designed and manufactured using two heat exchangers and a photovoltaic system. Its evaluation was done during September and October of 2020. During the evaluation of the device, environmental variables such as total solar radiation, ambient temperature and cooling tower temperature were recorded at intervals of one hour from 9 am to 5 pm. The effect of these variables on solar concentrator performance, heat exchanger, and daily freshwater production was evaluated. The results showed that using two heat exchangers and a photovoltaic system has led to the daily production of 5 liters of fresh water and 46% economic efficiency.

Keywords: solar water desalination, heat exchanger, photovoltaic system, technical and economic evaluation

Procedia PDF Downloads 149
2655 A Versatile Standing Cum Sitting Device for Rehabilitation and Standing Aid for Paraplegic Patients

Authors: Sasibhushan Yengala, Nelson Muthu, Subramani Kanagaraj

Abstract:

The abstract reports on the design related to a modular and affordable standing cum sitting device to meet the requirements of paraplegic patients of the different physiques. Paraplegic patients need the assistance of an external arrangement to the lower limbs and trunk to help patients adopt the correct posture while standing abreast gravity. This support can be from a tilt table or a standing frame which the patient can use to stay in a vertical posture. Standing frames are devices fitting to support a person in a weight-bearing posture. Commonly, these devices support and lift the end-user in shifting from a sitting position to a standing position. The merits of standing for a paraplegic patient with a spinal injury are numerous. Even when there is limited control on muscles that ordinarily support the user using the standing frame in a vertical position, the standing stance improves the blood pressure, increases bone density, improves resilience and scope of motion, and improves the user's feelings of well-being by letting the patient stand. One limitation with standing frames is that these devices are typically function definitely; cannot be used for different purposes. Therefore, users are often compelled to purchase more than one of these devices, each being purposefully built for definite activities. Another concern frequent in standing frames is manoeuvrability; it is crucial to provide a convenient adjustment scope for all users. Thus, there is a need to provide a standing frame with multiple uses that can be economical for a larger population. There is also a need to equip added readjustment means in a standing frame to lessen the shear and to accommodate a broad range of users. The proposed Versatile Standing cum Sitting Device (VSD) is designed to change from standing to a comfortable sitting position using a series of mechanisms. First, a locking mechanism is provided to lock the VSD in a standing stance. Second, a dampening mechanism is provided to make sure that the VSD shifts from a standing to a sitting position gradually when the lock mechanism gets disengaged. An adjustment option is offered for the height of the headrest via the use of lock knobs. This device can be used in clinics for rehabilitation purposes irrespective of patient's anthropometric data due to its modular adjustments. It can facilitate the patient's daily life routine while in therapy and giving the patient the comfort to sit when tired. The device also provides the availability of rehabilitation to a common person.

Keywords: paraplegic, rehabilitation, spinal cord injury, standing frame

Procedia PDF Downloads 187
2654 Study of Composite Materials for Aisha Containment Chamber

Authors: G. Costa, F. Noto, L. Celona, F. Chines, G. Ciavola, G. Cuttone, S. Gammino, O. Leonardi, S. Marletta, G. Torrisi

Abstract:

The ion sources for accelerators devoted to medical applications must provide intense ion beams, with high reproducibility, stability and brightness. AISHa (Advanced Ion Source for Hadron-therapy) is a compact ECRIS whose hybrid magnetic system consists of a permanent Halbach-type hexapole magnet and a set of independently energized superconducting coils. These coils will be enclosed in a compact cryostat with two cryocoolers for LHe-free operation. The AISHa ion source has been designed by taking into account the typical requirements of hospital-based facilities, where the minimization of the mean time between failures (MTBF) is a key point together with the maintenance operations which should be fast and easy. It is intended to be a multipurpose device, operating at 18 GHz, in order to achieve higher plasma densities. It should provide enough versatility for future needs of the hadron therapy, including the ability to run at larger microwave power to produce different species and highly charged ion beams. The source is potentially interesting for any hadrontherapy center using heavy ions. In the paper, we designed an innovative solution for the plasma containment chamber that allows us to solve our isolation and structural problems. We analyzed the materials chosen for our aim (glass fibers and carbon fibers) and we illustrated the all process (spinning, curing and machining) of the assembly of our chamber. The glass fibers and carbon fibers are used to reinforce polymer matrices and give rise to structural composites and composites by molding.

Keywords: hadron-therapy, carbon fiber, glass fiber, vacuum-bag, ECR, ion source

Procedia PDF Downloads 189
2653 Performance of Reinforced Concrete Wall with Opening Using Analytical Model

Authors: Alaa Morsy, Youssef Ibrahim

Abstract:

Earthquake is one of the most catastrophic events, which makes enormous harm to properties and human lives. As a piece of a safe building configuration, reinforced concrete walls are given in structures to decrease horizontal displacements under seismic load. Shear walls are additionally used to oppose the horizontal loads that might be incited by the impact of wind. Reinforced concrete walls in residential buildings might have openings that are required for windows in outside walls or for doors in inside walls or different states of openings due to architectural purposes. The size, position, and area of openings may fluctuate from an engineering perspective. Shear walls can encounter harm around corners of entryways and windows because of advancement of stress concentration under the impact of vertical or horizontal loads. The openings cause a diminishing in shear wall capacity. It might have an unfavorable impact on the stiffness of reinforced concrete wall and on the seismic reaction of structures. Finite Element Method using software package ‘ANSYS ver. 12’ becomes an essential approach in analyzing civil engineering problems numerically. Now we can make various models with different parameters in short time by using ANSYS instead of doing it experimentally, which consumes a lot of time and money. Finite element modeling approach has been conducted to study the effect of opening shape, size and position in RC wall with different thicknesses under axial and lateral static loads. The proposed finite element approach has been verified with experimental programme conducted by the researchers and validated by their variables. A very good correlation has been observed between the model and experimental results including load capacity, failure mode, and lateral displacement. A parametric study is applied to investigate the effect of opening size, shape, position on different reinforced concrete wall thicknesses. The results may be useful for improving existing design models and to be applied in practice, as it satisfies both the architectural and the structural requirements.

Keywords: Ansys, concrete walls, openings, out of plane behavior, seismic, shear wall

Procedia PDF Downloads 143
2652 A Fast Calculation Approach for Position Identification in a Distance Space

Authors: Dawei Cai, Yuya Tokuda

Abstract:

The market of localization based service (LBS) is expanding. The acquisition of physical location is the fundamental basis for LBS. GPS, the de facto standard for outdoor localization, does not work well in indoor environment due to the blocking of signals by walls and ceiling. To acquire high accurate localization in an indoor environment, many techniques have been developed. Triangulation approach is often used for identifying the location, but a heavy and complex computation is necessary to calculate the location of the distances between the object and several source points. This computation is also time and power consumption, and not favorable to a mobile device that needs a long action life with battery. To provide a low power consumption approach for a mobile device, this paper presents a fast calculation approach to identify the location of the object without online solving solutions to simultaneous quadratic equations. In our approach, we divide the location identification into two parts, one is offline, and other is online. In offline mode, we make a mapping process that maps the location area to distance space and find a simple formula that can be used to identify the location of the object online with very light computation. The characteristic of the approach is a good tradeoff between the accuracy and computational amount. Therefore, this approach can be used in smartphone and other mobile devices that need a long work time. To show the performance, some simulation experimental results are provided also in the paper.

Keywords: indoor localization, location based service, triangulation, fast calculation, mobile device

Procedia PDF Downloads 150
2651 Design and Implementation of a Cross-Network Security Management System

Authors: Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai

Abstract:

In recent years, the emerging network worms and attacks have distributive characteristics, which can spread globally in a very short time. Security management crossing networks to co-defense network-wide attacks and improve the efficiency of security administration is urgently needed. We propose a hierarchical distributed network security management system (HD-NSMS), which can integrate security management across multiple networks. First, we describe the system in macrostructure and microstructure; then discuss three key problems when building HD-NSMS: device model, alert mechanism, and emergency response mechanism; lastly, we describe the implementation of HD-NSMS. The paper is valuable for implementing NSMS in that it derives from a practical network security management system (NSMS).

Keywords: network security management, device organization, emergency response, cross-network

Procedia PDF Downloads 137
2650 Numerical Analysis of Cold-Formed Steel Shear Wall Panels Subjected to Cyclic Loading

Authors: H. Meddah, M. Berediaf-Bourahla, B. El-Djouzi, N. Bourahla

Abstract:

Shear walls made of cold formed steel are used as lateral force resisting components in residential and low-rise commercial and industrial constructions. The seismic design analysis of such structures is often complex due to the slenderness of members and their instability prevalence. In this context, a simplified modeling technique across the panel is proposed by using the finite element method. The approach is based on idealizing the whole panel by a nonlinear shear link element which reflects its shear behavior connected to rigid body elements which transmit the forces to the end elements (studs) that resist the tension and the compression. The numerical model of the shear wall panel was subjected to cyclic loads in order to evaluate the seismic performance of the structure in terms of lateral displacement and energy dissipation capacity. In order to validate this model, the numerical results were compared with those from literature tests. This modeling technique is particularly useful for the design of cold formed steel structures where the shear forces in each panel and the axial forces in the studs can be obtained using spectrum analysis.

Keywords: cold-formed steel, cyclic loading, modeling technique, nonlinear analysis, shear wall panel

Procedia PDF Downloads 269
2649 X-Glove: Case Study of Soft Robotic Hand Exoskeleton

Authors: Pim Terachinda, Witaya Wannasuphoprasit, Wasuwat Kitisomprayoonkul, Anan Srikiatkhachorn

Abstract:

Restoration of hand function and dexterity remain challenges in rehabilitation after stroke. We have developed soft exoskeleton hand robot in which using tendon-driven mechanism. Finger flexion and extension can be triggered by a foot switch and force can be adjusted manually depending on patient’s grip strength. The objective of this study is to investigate feasibility and safety of this device. The study was done in 2 stroke patients with the strength of the finger flexors/extensors grade 1/0 and 3/1 on Medical Research Council scale, respectively. Grasp and release training was performed for 30 minutes. No complication was observed. Results demonstrated that the device is safe, and therapy can be tailored to individual patient’s need. However, further study is required to determine recovery and rehabilitation outcomes after training in patients after nervous system injury.

Keywords: hand, rehabilitation, robot, stroke

Procedia PDF Downloads 261
2648 Design and Implementation of a 94 GHz CMOS Double-Balanced Up-Conversion Mixer for 94 GHz Imaging Radar Sensors

Authors: Yo-Sheng Lin, Run-Chi Liu, Chien-Chu Ji, Chih-Chung Chen, Chien-Chin Wang

Abstract:

A W-band double-balanced mixer for direct up-conversion using standard 90 nm CMOS technology is reported. The mixer comprises an enhanced double-balanced Gilbert cell with PMOS negative resistance compensation for conversion gain (CG) enhancement and current injection for power consumption reduction and linearity improvement, a Marchand balun for converting the single LO input signal to differential signal, another Marchand balun for converting the differential RF output signal to single signal, and an output buffer amplifier for loading effect suppression, power consumption reduction and CG enhancement. The mixer consumes low power of 6.9 mW and achieves LO-port input reflection coefficient of -17.8~ -38.7 dB and RF-port input reflection coefficient of -16.8~ -27.9 dB for frequencies of 90~100 GHz. The mixer achieves maximum CG of 3.6 dB at 95 GHz, and CG of 2.1±1.5 dB for frequencies of 91.9~99.4 GHz. That is, the corresponding 3 dB CG bandwidth is 7.5 GHz. In addition, the mixer achieves LO-RF isolation of 36.8 dB at 94 GHz. To the authors’ knowledge, the CG, LO-RF isolation and power dissipation results are the best data ever reported for a 94 GHz CMOS/BiCMOS up-conversion mixer.

Keywords: CMOS, W-band, up-conversion mixer, conversion gain, negative resistance compensation, output buffer amplifier

Procedia PDF Downloads 513
2647 Comparison of Two Strategies in Thoracoscopic Ablation of Atrial Fibrillation

Authors: Alexander Zotov, Ilkin Osmanov, Emil Sakharov, Oleg Shelest, Aleksander Troitskiy, Robert Khabazov

Abstract:

Objective: Thoracoscopic surgical ablation of atrial fibrillation (AF) includes two technologies in performing of operation. 1st strategy used is the AtriCure device (bipolar, nonirrigated, non clamping), 2nd strategy is- the Medtronic device (bipolar, irrigated, clamping). The study presents a comparative analysis of clinical outcomes of two strategies in thoracoscopic ablation of AF using AtriCure vs. Medtronic devices. Methods: In 2 center study, 123 patients underwent thoracoscopic ablation of AF for the period from 2016 to 2020. Patients were divided into two groups. The first group is represented by patients who applied the AtriCure device (N=63), and the second group is - the Medtronic device (N=60), respectively. Patients were comparable in age, gender, and initial severity of the condition. Among the patients, in group 1 were 65% males with a median age of 57 years, while in group 2 – 75% and 60 years, respectively. Group 1 included patients with paroxysmal form -14,3%, persistent form - 68,3%, long-standing persistent form – 17,5%, group 2 – 13,3%, 13,3% and 73,3% respectively. Median ejection fraction and indexed left atrial volume amounted in group 1 – 63% and 40,6 ml/m2, in group 2 - 56% and 40,5 ml/m2. In addition, group 1 consisted of 39,7% patients with chronic heart failure (NYHA Class II) and 4,8% with chronic heart failure (NYHA Class III), when in group 2 – 45% and 6,7%, respectively. Follow-up consisted of laboratory tests, chest Х-ray, ECG, 24-hour Holter monitor, and cardiopulmonary exercise test. Duration of freedom from AF, distant mortality rate, and prevalence of cerebrovascular events were compared between the two groups. Results: Exit block was achieved in all patients. According to the Clavien-Dindo classification of surgical complications fraction of adverse events was 14,3% and 16,7% (1st group and 2nd group, respectively). Mean follow-up period in the 1st group was 50,4 (31,8; 64,8) months, in 2nd group - 30,5 (14,1; 37,5) months (P=0,0001). In group 1 - total freedom of AF was in 73,3% of patients, among which 25% had additional antiarrhythmic drugs (AADs) therapy or catheter ablation (CA), in group 2 – 90% and 18,3%, respectively (for total freedom of AF P<0,02). At follow-up, the distant mortality rate in the 1st group was – 4,8%, and in the 2nd – no fatal events. Prevalence of cerebrovascular events was higher in the 1st group than in the 2nd (6,7% vs. 1,7% respectively). Conclusions: Despite the relatively shorter follow-up of the 2nd group in the study, applying the strategy using the Medtronic device showed quite encouraging results. Further research is needed to evaluate the effectiveness of this strategy in the long-term period.

Keywords: atrial fibrillation, clamping, ablation, thoracoscopic surgery

Procedia PDF Downloads 88
2646 Interactive Image Search for Mobile Devices

Authors: Komal V. Aher, Sanjay B. Waykar

Abstract:

Nowadays every individual having mobile device with them. In both computer vision and information retrieval Image search is currently hot topic with many applications. The proposed intelligent image search system is fully utilizing multimodal and multi-touch functionalities of smart phones which allows search with Image, Voice, and Text on mobile phones. The system will be more useful for users who already have pictures in their minds but have no proper descriptions or names to address them. The paper gives system with ability to form composite visual query to express user’s intention more clearly which helps to give more precise or appropriate results to user. The proposed algorithm will considerably get better in different aspects. System also uses Context based Image retrieval scheme to give significant outcomes. So system is able to achieve gain in terms of search performance, accuracy and user satisfaction.

Keywords: color space, histogram, mobile device, mobile visual search, multimodal search

Procedia PDF Downloads 346
2645 Managers’ Mobile Information Behavior in an Openness Paradigm Era

Authors: Abd Latif Abdul Rahman, Zuraidah Arif, Muhammad Faizal Iylia, Mohd Ghazali, Asmadi Mohammed Ghazali

Abstract:

Mobile information is a significant access point for human information activities. Theories and models of human information behavior have developed over several decades but have not yet considered the role of the user’s computing device in digital information interactions. This paper reviews the literature that leads to developing a conceptual framework of a study on the managers mobile information behavior. Based on the literature review, dimensions of mobile information behavior are identified, namely, dimension information needs, dimension information access, information retrieval and dimension of information use. The study is significant to understand the nature of librarians’ behavior in searching, retrieving and using information via the mobile device. Secondly, the study would provide suggestions about various kinds of mobile applications which organization can provide for their staff to improve their services.

Keywords: mobile information behavior, information behavior, mobile information, mobile devices

Procedia PDF Downloads 322
2644 Spatial Emission of Ions Produced by the APF Plasma Focus Device

Authors: M. Habibi

Abstract:

The angular distribution of ion beam emission from the APF plasma focus device (15kV, 40μf, 115nH) filled with nitrogen gas has been examined through investigating the effect of ion beams on aluminum thin foils in different angular positions. The samples are studied in different distances from the anode end with different shots. The optimum pressure that would be obtained at the applied voltages of 12kV was 0.7 torr. The ions flux declined as the pressure inclined and the maximum ion density at 0.7 torr was about 10.26 × 1022 ions/steradian. The irradiated foils were analyzed with SEM method in order to study their surface and morphological changes. The results of the analysis showed melting and surface evaporation effects and generation of some cracks in the specimens. The result of ion patterns on the samples obtained in this study can be useful in determining ion spatial distributions on the top of anode.

Keywords: plasma focus, spatial distribution, high energy ions, ion angular distribution

Procedia PDF Downloads 431
2643 An Ontological Approach to Existentialist Theatre and Theatre of the Absurd in the Works of Jean-Paul Sartre and Samuel Beckett

Authors: Gülten Silindir Keretli

Abstract:

The aim of this study is to analyse the works of playwrights within the framework of existential philosophy. It is to observe the ontological existence in the plays of No Exit and Endgame. Literary works will be discussed separately in each section of this study. The despair of post-war generation of Europe problematized the ‘human condition’ in every field of literature which is the very product of social upheaval. With this concern in his mind, Sartre’s creative works portrayed man as a lonely being, burdened with terrifying freedom to choose and create his own meaning in an apparently meaningless world. The traces of the existential thought are to be found throughout the history of philosophy and literature. On the other hand, the theatre of the absurd is a form of drama showing the absurdity of the human condition and it is heavily influenced by the existential philosophy. Beckett is the most influential playwright of the theatre of the absurd. The themes and thoughts in his plays share many tenets of the existential philosophy. The existential philosophy posits the meaninglessness of existence and it regards man as being thrown into the universe and into desolate isolation. To overcome loneliness and isolation, the human ego needs recognition from the other people. Sartre calls this need of recognition as the need for ‘the Look’ (Le regard) from the Other. In this paper, existentialist philosophy and existentialist angst will be elaborated and then the works of existentialist theatre and theatre of absurd will be discussed within the framework of existential philosophy.

Keywords: consciousness, existentialism, the notion of the absurd, the other

Procedia PDF Downloads 135
2642 Performance of Rapid Impact Compaction as a Middle-Deep Ground Improvement Technique

Authors: Bashar Tarawneh, Yasser Hakam

Abstract:

Rapid Impact Compaction (RIC) is a modern dynamic compaction device mainly used to compact sandy soils, where silt and clay contents are low. The device uses the piling hammer technology to increase the bearing capacity of soils through controlled impacts. The RIC device uses "controlled impact compaction" of the ground using a 9-ton hammer dropped from the height between 0.3 m to 1.2 m onto a 1.5 m diameter steel patent foot. The delivered energy is about 26,487 to 105,948 Joules per drop. To evaluate the performance of this technique, three project sites in the United Arab Emirates were improved using RIC. In those sites, a loose to very loose fine to medium sand was encountered at a depth ranging from 1.0m to 4.0m below the ground level. To evaluate the performance of the RIC, Cone Penetration Tests (CPT) were carried out before and after improvement. Also, load tests were carried out post-RIC work to assess the settlements and bearing capacity. The soil was improved to a depth of about 5.0m below the ground level depending on the CPT friction ratio (the ratio between sleeve friction and tip resistance). CPT tip resistance was significantly increased post ground improvement work. Load tests showed enhancement in the soil bearing capacity and reduction in the potential settlements. This study demonstrates the successful application of the RIC for middle-deep improvement and compaction of the ground. Foundation design criteria were achieved in all site post-RIC work.

Keywords: compaction, RIC, ground improvement, CPT

Procedia PDF Downloads 346
2641 Evolution of Plio/Pleistocene Sedimentary Processes in Patraikos Gulf, Offshore Western Greece

Authors: E. K. Tripsanas, D. Spanos, I. Oikonomopoulos, K. Stathopoulou, A. S. Abdelsamad, A. Pagoulatos

Abstract:

Patraikos Gulf is located offshore western Greece, and it is limited to the west by the Zante, Cephalonia, and Lefkas islands. The Plio/Pleistocene sequence is characterized by two depocenters, the east and west Patraikos basins separated from each other by a prominent sill. This study is based on the Plio/Pleistocene seismic stratigraphy analysis of a newly acquired 3D PSDM (Pre-Stack depth migration) seismic survey in the west Patraikos Basin and few 2D seismic profiles throughout the entire Patraikos Gulf. The eastern Patraikos Basin, although completely buried today with water depths less than 100 m, it was a deep basin during Pliocene ( > 2 km of Pliocene-Pleistocene sediments) and appears to have gathered most of Achelous River discharges. The west Patraikos Gulf was shallower ( < 1300 m of Pliocene-Pleistocene sediments) and characterized by a hummocky relief due to thrust-belt tectonics and Miocene to Pleistocene halokinetic processes. The transition from Pliocene to Miocene is expressed by a widespread erosional unconformity with evidence of fluvial drainage patterns. This indicates that west Patraikos Basin was aerially exposed during the Messinian Salinity Crisis. Continuous to semi-continuous, parallel reflections in the lower, early- to mid-Pliocene seismic packet provides evidence that the re-connection of the Mediterranean Sea with the Atlantic Ocean during Zanclean resulted in the flooding of the west Patraikos basin and the domination of hemipelagic sedimentation interrupted by occasional gravity flows. This is evident in amplitude and semblance horizon slices, which clearly show the presence of long-running, meandering submarine channels sourced from the southeast (northwest Peloponnese) and north. The long-running nature of the submarine channels suggests mobile efficient turbidity currents, probably due to the participation of a sufficient amount of clay minerals in their suspended load. The upper seismic section in the study area mainly consists of several successions of clinoforms, interpreted as progradational delta complexes of Achelous River. This sudden change from marine to shallow marine sedimentary processes is attributed to climatic changes and eustatic perturbations since late Pliocene onwards (~ 2.6 Ma) and/or a switch of Achelous River from the east Patraikos Basin to the west Patraikos Basin. The deltaic seismic unit consists of four delta complexes. The first two complexes result in the infill of topographic depressions and smoothing of an initial hummocky bathymetry. The distribution of the upper two delta complexes is controlled by compensational stacking. Amplitude and semblance horizon slices depict the development of several almost straight and short (a few km long) distributary submarine channels at the delta slopes and proximal prodeltaic plains with lobate sand-sheet deposits at their mouths. Such channels are interpreted to result from low-efficiency turbidity currents with low content in clay minerals. Such a differentiation in the nature of the gravity flows is attributed to the switch of the sediment supply from clay-rich sediments derived from the draining of flysch formations of the Ionian and Gavrovo zones, to the draining of poor in clay minerals carbonate formations of Gavrovo zone through the Achelous River.

Keywords: sequence stratigraphy, basin analysis, river deltas, submarine channels

Procedia PDF Downloads 302
2640 Barrier Characteristics of Molecular Semiconductor-Based Organic/Inorganic Au/C₄₂H₂₈/n-InP Hybrid Junctions

Authors: Bahattin Abay

Abstract:

Thin film of polycyclic aromatic hydrocarbon rubrene, C₄₂H₂₈ (5,6,11,12-tetraphenyltetracene), has been surfaced on Moderately Doped (MD) n-InP substrate as an interfacial layer by means of spin coating technique for the electronic modification of Au/MD n-InP structure. Ex situ annealing has been carried out at 150 °C for three minutes under a brisk flow of nitrogen for the better adhesion of the deposited film with the substrate surface. Room temperature electrical characterization has been performed on the C₄₂H₂₈/MD n-InP hybrid junctions by current-voltage (I-V) and capacitance-voltage (C-V) measurement in the dark. It has been seen that the C₄₂H₂₈/MD n-InP structure demonstrated extraordinary rectifying behavior. An effective barrier height (BH) as high as 0.743 eV, along with an ideality factor very close to unity (n=1.203), has been achieved for C₄₂H₂₈/n-InP organic/inorganic device. A thin C₄₂H₂₈ interfacial layer between Au and MD n-InP also reduce the reverse leakage current by almost four orders of magnitude and enhance the BH about 0.278 eV. This good performance of the device is ascribed to the passivation effect of organic interfacial layer between Au and n-InP. By using C-V measurement, in addition, the value of BH of the C₄₂H₂₈/n-InP organic/inorganic hybrid junctions have been obtained as 0.796 eV. It has been seen that both of the BH value (0.743 and 0.796 eV) for the organic/inorganic hybrid junction obtained I-V and C-V measurement, respectively are significantly larger than that of the conventional Au/n-InP structure (0.465 and 0.503 eV). It was also seen that the device had good sensitivity to the light under 100 mW/cm² illumination conditions. The obtained results indicated that modification of the interfacial potential barrier for Metal/n-InP junctions might be attained using polycyclic aromatic hydrocarbon thin interlayer C₄₂H₂₈.

Keywords: I-V and C-V measurements, heterojunction, n-InP, rubrene, surface passivation

Procedia PDF Downloads 143
2639 Relationships Between the Petrophysical and Mechanical Properties of Rocks and Shear Wave Velocity

Authors: Anamika Sahu

Abstract:

The Himalayas, like many mountainous regions, is susceptible to multiple hazards. In recent times, the frequency of such disasters is continuously increasing due to extreme weather phenomena. These natural hazards are responsible for irreparable human and economic loss. The Indian Himalayas has repeatedly been ruptured by great earthquakes in the past and has the potential for a future large seismic event as it falls under the seismic gap. Damages caused by earthquakes are different in different localities. It is well known that, during earthquakes, damage to the structure is associated with the subsurface conditions and the quality of construction materials. So, for sustainable mountain development, prior estimation of site characterization will be valuable for designing and constructing the space area and for efficient mitigation of the seismic risk. Both geotechnical and geophysical investigation of the subsurface is required to describe the subsurface complexity. In mountainous regions, geophysical methods are gaining popularity as areas can be studied without disturbing the ground surface, and also these methods are time and cost-effective. The MASW method is used to calculate the Vs30. Vs30 is the average shear wave velocity for the top 30m of soil. Shear wave velocity is considered the best stiffness indicator, and the average of shear wave velocity up to 30 m is used in National Earthquake Hazards Reduction Program (NEHRP) provisions (BSSC,1994) and Uniform Building Code (UBC), 1997 classification. Parameters obtained through geotechnical investigation have been integrated with findings obtained through the subsurface geophysical survey. Joint interpretation has been used to establish inter-relationships among mineral constituents, various textural parameters, and unconfined compressive strength (UCS) with shear wave velocity. It is found that results obtained through the MASW method fitted well with the laboratory test. In both conditions, mineral constituents and textural parameters (grain size, grain shape, grain orientation, and degree of interlocking) control the petrophysical and mechanical properties of rocks and the behavior of shear wave velocity.

Keywords: MASW, mechanical, petrophysical, site characterization

Procedia PDF Downloads 69
2638 Device for Mechanical Fragmentation of Organic Substrates Before Methane Fermentation

Authors: Marcin Zieliński, Marcin Dębowski, Mirosław Krzemieniewski

Abstract:

This publication presents a device designed for mechanical fragmentation of plant substrate before methane fermentation. The device is equipped with a perforated rotary cylindrical drum coated with a thermal layer, connected to a substrate feeder and driven by a motoreducer. The drum contains ball- or cylinder-shaped weights of different diameters, while its interior is mounted with lateral permanent magnets with an attractive force ranging from 100 kg to 2 tonnes per m2 of the surface. Over the perforated rotary drum, an infrared radiation generator is mounted, producing 0.2 kW to 1 kW of infrared radiation per 1 m2 of the perforated drum surface. This design reduces the energy consumption required for the biomass destruction process by 10-30% in comparison to the conventional ball mill. The magnetic field generated by the permanent magnets situated within the perforated rotary drum promotes this process through generation of free radicals that act as powerful oxidants, accelerating the decomposition rate. Plant substrate shows increased susceptibility to biodegradation when subjected to magnetic conditioning, reducing the time required for biomethanation by 25%. Additionally, the electromagnetic radiation generated by the radiator improves substrate destruction by 10% and the efficiency of the process. The magnetic field and the infrared radiation contribute synergically to the increased efficiency of destruction and conversion of the substrate.

Keywords: biomass pretreatment, mechanical fragmentation, biomass, methane fermentation

Procedia PDF Downloads 555
2637 Force Feedback Enabled Syringe for Aspiration and Biopsy

Authors: Pelin Su Firat, Sohyung Cho

Abstract:

Biopsy or aspiration procedures are known to be complicated as they involve the penetration of a needle through human tissues, including vital organs. This research presents the design of a force sensor-guided device to be used with syringes and needles for aspiration and biopsy. The development of the device was aimed to help accomplish accurate needle placement and increase the performance of the surgeon in navigating the tool and tracking the target. Specifically, a prototype for a force-sensor embedded syringe has been created using 3D (3-Dimensional) modeling and printing techniques in which two different force sensors were used to provide significant force feedback to users during the operations when needles pernitrate different tissues. From the extensive tests using synthetic tissues, it is shown that the proposed syringe design has accomplished the desired accuracy, efficiency, repeatability, and effectiveness. Further development is desirable through usability tests.

Keywords: biopsy, syringe, force sensors, haptic feedback

Procedia PDF Downloads 36
2636 A High Reliable Space-Borne File System with Applications of Device Partition and Intra-Channel Pipeline in Nand Flash

Authors: Xin Li, Ji-Yang Yu, Yue-Hua Niu, Lu-Yuan Wang

Abstract:

As an inevitable chain of the space data acquirement system, space-borne storage system based on Nand Flash has gradually been implemented in spacecraft. In face of massive, parallel and varied data on board, efficient data management become an important issue of storage research. Face to the requirements of high-performance and reliability in Nand Flash storage system, a combination of hardware and file system design can drastically increase system dependability, even for missions with a very long duration. More sophisticated flash storage concepts with advanced operating systems have been researched to improve the reliability of Nand Flash storage system on satellites. In this paper, architecture of file system with multi-channel data acquisition and storage on board is proposed, which obtains large-capacity and high-performance with the combine of intra-channel pipeline and device partition in Nand Flash. Multi-channel data in different rate are stored as independent files with parallel-storage system in device partition, which assures the high-effective and reliable throughput of file treatments. For massive and high-speed data storage, an efficiency assessment model is established to calculate the bandwidth formula of intra-channel pipeline. Information tables designed in Magnetoresistive RAM (MRAM) hold the management of bad block in Nand Flash and the arrangement of file system address for the high-reliability of data storage. During the full-load test, the throughput of 3D PLUS Module 160Gb Nand Flash can reach 120Mbps for store and reach 120Mbps for playback, which efficiently satisfies the requirement of multi-channel data acquisition in Satellite. Compared with previous literature, the results of experiments verify the advantages of the proposed system.

Keywords: device partition architecture, intra-channel pipelining, nand flash, parallel storage

Procedia PDF Downloads 272
2635 Isolation, Characterization and Application of Bacteriophages on the Biocontrol of Listeria monocytogenes in Soft Cheese

Authors: Vinicius Buccelli Ribeiro, Maria Teresa Destro, Mariza Landgraf

Abstract:

Bacteriophages are one of the most abundant replicating entities on Earth and can be found everywhere in which their hosts live and there are reports regarding isolation from different niches such as soil and foods. Since studies are moving forward with regard to biotechnology area, different research projects are being performed focusing on the phage technology and its use by the food industry. This study aimed to evaluate a cocktail (LP501) of phages isolated in Brazil for its lytic potential against Listeria monocytogenes. Three bacteriophages (LP05, LP12 and LP20) were isolated from soil samples and all of them showed 100% lysis against a panel of 10 L. monocytogenes strains representing different serotypes of this pathogen. A mix of L. monocytogenes 1/2a and 4b were inoculated in soft cheeses (approximately 105 cfu/cm2) with the phage cocktail added thereafter (1 x 109 PFU/cm2). Samples were analyzed immediately and then stored at 10°C for ten days. At 30 min post-infection, the cocktail reduced L. monocytogenes counts approximately 1.5 logs, compared to controls without bacteriophage. The treatment produced a statistically significant decrease in the counts of viable cells (p < 0.05) and in all assays performed we observed a decrease of up to 4 logs of L. monocytogenes. This study will make available to the international community behavioral and molecular data regarding bacteriophages present in soil samples in Brazil. Furthermore, there is the possibility to apply this new cocktail of phages in different food products to combat L. monocytogenes.

Keywords: bacteriophages, biocontrol, listeria monocytogenes, soft cheese

Procedia PDF Downloads 339
2634 Finite Element Modeling and Analysis of Reinforced Concrete Coupled Shear Walls Strengthened with Externally Bonded Carbon Fiber Reinforced Polymer Composites

Authors: Sara Honarparast, Omar Chaallal

Abstract:

Reinforced concrete (RC) coupled shear walls (CSWs) are very effective structural systems in resisting lateral loads due to winds and earthquakes and are particularly used in medium- to high-rise RC buildings. However, most of existing old RC structures were designed for gravity loads or lateral loads well below the loads specified in the current modern seismic international codes. These structures may behave in non-ductile manner due to poorly designed joints, insufficient shear reinforcement and inadequate anchorage length of the reinforcing bars. This has been the main impetus to investigate an appropriate strengthening method to address or attenuate the deficiencies of these structures. The objective of this paper is to twofold: (i) evaluate the seismic performance of existing reinforced concrete coupled shear walls under reversed cyclic loading; and (ii) investigate the seismic performance of RC CSWs strengthened with externally bonded (EB) carbon fiber reinforced polymer (CFRP) sheets. To this end, two CSWs were considered as follows: (a) the first one is representative of old CSWs and therefore was designed according to the 1941 National Building Code of Canada (NBCC, 1941) with conventionally reinforced coupling beams; and (b) the second one, representative of new CSWs, was designed according to modern NBCC 2015 and CSA/A23.3 2014 requirements with diagonally reinforced coupling beam. Both CSWs were simulated using ANSYS software. Nonlinear behavior of concrete is modeled using multilinear isotropic hardening through a multilinear stress strain curve. The elastic-perfectly plastic stress-strain curve is used to simulate the steel material. Bond stress–slip is modeled between concrete and steel reinforcement in conventional coupling beam rather than considering perfect bond to better represent the slip of the steel bars observed in the coupling beams of these CSWs. The old-designed CSW was strengthened using CFRP sheets bonded to the concrete substrate and the interface was modeled using an adhesive layer. The behavior of CFRP material is considered linear elastic up to failure. After simulating the loading and boundary conditions, the specimens are analyzed under reversed cyclic loading. The comparison of results obtained for the two unstrengthened CSWs and the one retrofitted with EB CFRP sheets reveals that the strengthening method improves the seismic performance in terms of strength, ductility, and energy dissipation capacity.

Keywords: carbon fiber reinforced polymer, coupled shear wall, coupling beam, finite element analysis, modern code, old code, strengthening

Procedia PDF Downloads 174
2633 Linac Quality Controls Using An Electronic Portal Imaging Device

Authors: Domingo Planes Meseguer, Raffaele Danilo Esposito, Maria Del Pilar Dorado Rodriguez

Abstract:

Monthly quality control checks for a Radiation Therapy Linac may be performed is a simple and efficient way once they have been standardized and protocolized. On the other hand this checks, in spite of being imperatives, require a not negligible execution times in terms of machine time and operators time. Besides it must be taken into account the amount of disposable material which may be needed together with the use of commercial software for their performing. With the aim of optimizing and standardizing mechanical-geometric checks and multi leaves collimator checks, we decided to implement a protocol which makes use of the Electronic Portal Imaging Device (EPID) available on our Linacs. The user is step by step guided by the software during the whole procedure. Acquired images are automatically analyzed by our programs all of them written using only free software.

Keywords: quality control checks, linac, radiation oncology, medical physics, free software

Procedia PDF Downloads 179
2632 Fatigue Test and Stress-Life Analysis of Nanocomposite-Based Bone Fixation Device

Authors: Jisoo Kim, Min Su Lee, Sunmook Lee

Abstract:

Durability assessment of nanocomposite-based bone fixation device was performed by flexural fatigue tests, for which the changes in the life cycles of nanocomposite samples synthesized by blending bioabsorbable polymer (PLGA) and ceramic nanoparticles (β-TCP) with different ratios were monitored. The nanocomposite samples were kept in a constant temperature/humidity chamber at 37°C/50%RH for varied incubation periods for the degradation of nanocomposite samples under the temperature/humidity stress. It was found that the life cycles were increasing as the incubation time in the chamber were increasing in the initial stage irrespective of sample compositions, which was due to the annealing effect of the polymer. However, the life cycle was getting shorter as the incubation time increased afterward, which was due to the overall degradation of nanocomposites. It was found that the life cycle of the nanocomposite sample with high ceramic content was shorter than the one with low ceramic content, which was attributed to the increased brittleness of the composite with high ceramic content. The changes in chemical properties were also monitored by FT-IR, which indicated that the degradation of the biodegradable polymer could be confirmed by the increased intensities of carboxyl groups and hydroxyl groups since the hydrolysis of ester bonds connecting two successive monomers yielded carboxyl end groups and hydroxyl groups.

Keywords: bioabsorbable polymer, bone fixation device, ceramic nanoparticles, durability assessment, fatigue test

Procedia PDF Downloads 377
2631 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry

Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard

Abstract:

Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.

Keywords: wetting, acoustic reflectometry, gigahertz, semiconductor

Procedia PDF Downloads 312
2630 Signaling Using Phase Shifting in Wi-Fi Backscatter System

Authors: Chang-Bin Ha, Young-Min Ko, Seongjoo Lee, Hyoung-Kyu Song

Abstract:

In this paper, the signaling scheme using phase shifting is proposed for the improved performance of the Wi-Fi backscatter system. Because the communication in the Wi-Fi backscatter system is based on on-off modulation and impedance modulation by unit of packet, the data rate is very low compared to the conventional wireless systems. Also, because the Wi-Fi backscatter system is based on the RF-powered device, the achievement of high reliability is difficult. In order to increase the low data rate, the proposed scheme transmits information of multiple bits during one packet period. Also, in order to increase the reliability, the proposed scheme shifts the phase of signal in according to the transmitting information. The simulation result shows that the proposed scheme has the improved throughput performance.

Keywords: phase shifting, RF-powered device, Wi-Fi backscatter system, IoT

Procedia PDF Downloads 416
2629 Genotyping of Salmonella enterica Collected from Poultry Farms Located in Riyadh, KSA by Multiplex-PCR

Authors: Moussa I. Mohamed, Turki, K. A. Al-Faraj, Abdullah A. Al-Arfaj, Ashgan M. Hessain

Abstract:

The objective of the present study is to detect the incidences of Salmonella enterica from different poultry farms located in Egypt on molecular basis. During the summer of 2012, a total of 1800 cloacal swabs were collected from poultry farms located I Cairo, Egypt to be subjected for isolation of Salmonella enteric. Moreover, a total of 300 samples of poultry and poultry products were collected from different retail establishment markets in Cairo, Egypt including, 150 local whole frozen chickens, 50 imported whole frozen chickens, 100 local chicken cut samples. The highest rate of isolation 8% was obtained from imported frozen chickens and local chicken cuts, followed by local frozen chickens 6.66% and finally rectal swabs from apparently health chickens 6.4 %. Salmonella Typhimurium and Salmonella Enteritidis were most frequent among the total Salmonella isolates. Multiplex-PCR for the rapid detection of Salmonella Typhimurium and Salmonella Enteritidis from field samples especially after pre-enrichment on Rappaport-Vassiliadis (RV) selective broth (PCR-RV), revealed the same positive samples. Therefore PCR-RV technique is rabid, time saving and applicable to detect Salmonella serovars directly from chicken samples. Moreover, detecting Salmonella Typhimurium and Salmonella Enteritidis by this assay was carried out within 2 days opposed to 5–6 d by the bacteriological and serological methods.

Keywords: Salmonella enterica, Salmonella typhimurium, Salmonella enteritidis enrichment, multiplex-PCR

Procedia PDF Downloads 347
2628 Seismic Active Earth Pressure on Retaining Walls with Reinforced Backfill

Authors: Jagdish Prasad Sahoo

Abstract:

The increase in active earth pressure during the event of an earthquake results sliding, overturning and tilting of earth retaining structures. In order to improve upon the stability of structures, the soil mass is often reinforced with various types of reinforcements such as metal strips, geotextiles, and geogrids etc. The stresses generated in the soil mass are transferred to the reinforcements through the interface friction between the earth and the reinforcement, which in turn reduces the lateral earth pressure on the retaining walls. Hence, the evaluation of earth pressure in the presence of seismic forces with an inclusion of reinforcements is important for the design retaining walls in the seismically active zones. In the present analysis, the effect of reinforcing horizontal layers of reinforcements in the form of sheets (Geotextiles and Geogrids) in sand used as backfill, on reducing the active earth pressure due to earthquake body forces has been studied. For carrying out the analysis, pseudo-static approach has been adopted by employing upper bound theorem of limit analysis in combination with finite elements and linear optimization. The computations have been performed with and out reinforcements for different internal friction angle of sand varying from 30 ° to 45 °. The effectiveness of the reinforcement in reducing the active earth pressure on the retaining walls is examined in terms of active earth pressure coefficient for presenting the solutions in a non-dimensional form. The active earth pressure coefficient is expressed as functions of internal friction angle of sand, interface friction angle between sand and reinforcement, soil-wall interface roughness conditions, and coefficient of horizontal seismic acceleration. It has been found that (i) there always exists a certain optimum depth of the reinforcement layers corresponding to which the value of active earth pressure coefficient becomes always the minimum, and (ii) the active earth pressure coefficient decreases significantly with an increase in length of reinforcements only up to a certain length beyond which a further increase in length hardly causes any reduction in the values active earth pressure. The optimum depth of the reinforcement layers and the required length of reinforcements corresponding to the optimum depth of reinforcements have been established. The numerical results developed in this analysis are expected to be useful for purpose of design of retaining walls.

Keywords: active, finite elements, limit analysis, presudo-static, reinforcement

Procedia PDF Downloads 346