Search results for: rock hardness
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1327

Search results for: rock hardness

397 Pisolite Type Azurite/Malachite Ore in Sandstones at the Base of the Miocene in Northern Sardinia: The Authigenic Hypothesis

Authors: S. Fadda, M. Fiori, C. Matzuzzi

Abstract:

Mineralized formations in the bottom sediments of a Miocene transgression have been discovered in Sardinia. The mineral assemblage consists of copper sulphides and oxidates suggesting fluctuations of redox conditions in neutral to high-pH restricted shallow-water coastal basins. Azurite/malachite has been observed as authigenic and occurs as loose spheroidal crystalline particles associated with the transitional-littoral horizon forming the bottom of the marine transgression. Many field observations are consistent with a supergenic circulation of metals involving terrestrial groundwater-seawater mixing. Both clastic materials and metals come from Tertiary volcanic edifices while the main precipitating anions, carbonates, and sulphides species are of both continental and marine origin. Formation of Cu carbonates as a supergene secondary 'oxide' assemblage, does not agree with field evidences, petrographic observations along with textural evidences in the host-rock types. Samples were collected along the sedimentary sequence for different analyses: the majority of elements were determined by X-ray fluorescence and plasma-atomic emission spectroscopy. Mineral identification was obtained by X-ray diffractometry and scanning electron microprobe. Thin sections of the samples were examined in microscopy while porosity measurements were made using a mercury intrusion porosimeter. Cu-carbonates deposited at a temperature below 100 C° which is consistent with the clay minerals in the matrix of the host rock dominated by illite and montmorillonite. Azurite nodules grew during the early diagenetic stage through reaction of cupriferous solutions with CO₂ imported from the overlying groundwater and circulating through the sandstones during shallow burial. Decomposition of organic matter in the bottom anoxic waters released additional carbon dioxide to pore fluids for azurite stability. In this manner localized reducing environments were also generated in which Cu was fixed as Cu-sulphide and sulphosalts. Microscopic examinations of textural features of azurite nodules give evidence of primary malachite/azurite deposition rather than supergene oxidation in place of primary sulfides. Photomicrographs show nuclei of azurite and malachite surrounded by newly formed microcrystalline carbonates which constitute the matrix. The typical pleochroism of crystals can be observed also when this mineral fills microscopic fissures or cracks. Sedimentological evidence of transgression and regression indicates that the pore water would have been a variable mixture of marine water and groundwaters with a possible meteoric component in an alternatively exposed and subaqueous environment owing to water-level fluctuation. Salinity data of the pore fluids, assessed at random intervals along the mineralised strata confirmed the values between about 7000 and 30,000 ppm measured in coeval sediments at the base of Miocene falling in the range of a more or less diluted sea water. This suggests a variation in mean pore-fluids pH between 5.5 and 8.5, compatible with the oxidized and reduced mineral paragenesis described in this work. The results of stable isotopes studies reflect the marine transgressive-regressive cyclicity of events and are compatibile with carbon derivation from sea water. During the last oxidative stage of diagenesis, under surface conditions of higher activity of H₂O and O₂, CO₂ partial pressure decreased, and malachite becomes the stable Cu mineral. The potential for these small but high grade deposits does exist.

Keywords: sedimentary, Cu-carbonates, authigenic, tertiary, Sardinia

Procedia PDF Downloads 109
396 Characteristics Flakes Product with Dry Residue of Wild Orenago

Authors: Kosutic Milenko, Filipovic Jelena

Abstract:

Cereals constitute the staple food of the human race. In accordance with the modern nutritionist opinions, cereal products, flakes and snack products are the most common foods in the daily diet, such as ready to eat breakfast cereal, flakes, and snacks. Extrusion technology makes it possible to apply different sources of ingredients for the enrichment of cereal-based flakes or snacks products. Substances with strong antioxidant properties such as wild oregano have a positive impact on human health, therefore attracting the attention of scientists, consumers and food industry experts. This paper investigates the effects of simultaneous addition of dry residue of wild oregano (0.5% and 1%), on the physical and colour properties of corn flakes to obtain new products with altered nutritional properties. Post-hoc Tukey’s HSD test at 95% confidence limit showed significant differences between various samples. Addition of dry residue wild oregano positively influenced physical characteristics (decreased bulk density 30.2%, increased expansion rate 44.9%), influenced of decrease hardness 38.1% and work of compression 40.3% also significantly change the color of flakes product. Presented data point that investigated corn flakes is a new product with good physical and sensory properties due to higher level of dry residue of wild oregano.

Keywords: flakes product, wild oregano, phisical properties, colour, sensory properties

Procedia PDF Downloads 298
395 Painting in Neolithic of Northwest Iberia: Archaeometrical Studies Applied to Megalithic Monuments

Authors: César Oliveira, Ana M. S. Bettencourt, Luciano Vilas Boas, Luís Gonçalves, Carlo Bottaini

Abstract:

Funerary megalithic monuments are probably under the most remarkable remains of the Neolithic period of western Europe. Some monuments are well known for their paintings, sometimes associated with engraved motifs, giving the funerary crypts a character of great symbolic value. The engraved and painted motifs, the colors used in the paintings, and the offerings associated with the deposited corpses are archaeological data that, being part of the funeral rites, also reveal the ideological world of these communities and their way of interacting with the world. In this sense, the choice of colors to be used in the paintings, the pigments collected, and the proceeds for making the paints would also be significant performances. The present study will focus on the characterization of painted art from megalithic monuments located in different areas of North-Western Portugal (coastal and inland). The colorant composition of megalithic barrows decorated with rock art motifs was studied using a multi-analytical approach (XRD, SEM-EDS, FTIR, and GC-MS), allowing the characterization of the painting techniques, pigments, and the organic compounds used as binders. Some analyses revealed that the pigments used for painting were produced using a collection of mined or quarried organic and inorganic substances. The results will be analyzed from the perspective of contingencies and regularity among the different case studies in order to interpret more or less standardized behaviors.

Keywords: funerary megalithic monuments, painting motifs, archaeometrical studies, Northwest Iberia, behaviors

Procedia PDF Downloads 80
394 Effect of Annealing Temperature on Microstructural Evolution of Nanoindented Cu/Si Thin Films

Authors: Woei-Shyan Lee, Yu-Liang Chuang

Abstract:

The nano-mechanical properties of as-deposited Cu/Si thin films indented to a depth of 2000 nm are investigated using a nanoindentation technique. The nanoindented specimens are annealed at a temperature of either 160 °C or 210°C, respectively. The microstructures of the as-deposited and annealed samples are then examined via transmission electron microscopy (TEM). The results show that both the loading and the unloading regions of the load-displacement curve are smooth and continuous, which suggests that no debonding or cracking occurs during nanoindentation. In addition, the hardness and Young’s modulus of the Cu/Si thin films are found to vary with the nanoindentation depth, and have maximum values of 2.8 GPa and 143 GPa, respectively, at the maximum indentation depth of 2000 nm. The TEM observations show that the region of the Cu/Si film beneath the indenter undergoes a phase transformation during the indentation process. In the case of the as-deposited specimens, the indentation pressure induces a completely amorphous phase within the indentation zone. For the specimens annealed at a temperature of 160°C, the amorphous nature of the microstructure within the indented zone is maintained. However, for the specimens annealed at a higher temperature of 210°C, the indentation affected zone consists of a mixture of amorphous phase and nanocrystalline phase. Copper silicide (η-Cu3Si) precipitates are observed in all of the annealed specimens. The density of the η-Cu3Si precipitates is found to increase with an increasing annealing temperature.

Keywords: nanoindentation, Cu/Si thin films, microstructural evolution, annealing temperature

Procedia PDF Downloads 368
393 Harnessing of Electricity from Distillery Effluent and Simultaneous Effluent Treatment by Microbial Fuel Cell

Authors: Hanish Mohammed, C. H. Muthukumar Muthuchamy

Abstract:

The advancement in the science and technology has made it possible to convert electrical energy into any desired form. It has given electrical energy a place of pride in the modern world. The survival of industrial undertakings and our social structure depends primarily upon low cost and uninterrupted supply of electrical energy. Microbial fuel cell (MFC) is a promising and emerging technique for sustainable bioelectricity generation and wastewater treatment. MFCs are devices which are capable of converting organic matter to electricity/hydrogen with help of microorganisms. Different kinds of wastewater could be used in this technique, distillery effluent is one of the most troublesome and complex and strong organic effluent with high chemical oxygen demand of 1,53,846 mg/L. A single cell MFC unit was designed and fabricated for the distillery effluent treatment and to generate electricity. Due to the high COD value of the distillery effluent helped in the production of energy for 74 days. The highest voltage got from the fuel cell is 206 mV on the 30th day. A maximum power density obtained from the MFC was 9.8 mW, treatment efficiency was evaluated in terms of COD removal and other parameters. COD removal efficiencies were around 68.5 % and other parameters such as Total Hardness (81.5%), turbidity (70 %), chloride (66%), phosphate (79.5%), Nitrate (77%) and sulphate (71%). MFC using distillery effluent is a promising new unexplored substrate for the power generation and sustainable treatment technique through harnessing of bioelectricity.

Keywords: microbial fuel cell (MFC), bioelectricity, distillery effluent, wastewater treatment

Procedia PDF Downloads 194
392 Use of High Hydrostatic Pressure as an Alternative Preservation Method for Fresh Dates, Rutab

Authors: Salah Mohammed Al-Eid, Siddig Hussein Hamad, Fahad Mohammed Aljassas

Abstract:

The effects of high hydrostatic pressure (HHP) treatments on microbial contamination, chemical and physical properties of fresh dates (Rutab stage) were studied. Khalas, Barhi and Hilali cultivars were treated at 200, 250, 300 and 350 MPa using HHP research apparatus. The objective of such treatments was to preserve fresh dates without adversely affecting its properties. Treating fresh dates at 300 MPa for 5 minutes at 40°C reduced microbial contamination in about 2.5 log cycles. Applying 250 MPa was enough to control Rutab contamination with molds, yeasts, and coliforms. Both treatments were enough to reduce Rutab microbial contamination to acceptable levels. HHP caused no significant effect on Rutab chemical properties (moisture, sugars, protein, pectin and acidity). However, a slight decrease in moisture contents due to HHP was observed. Rutab lightness (L*) significantly decreased due to the application of HHP. Only Rutab treated at 300 MPs gave lower redness (a*) values compared with an untreated sample. The effect of 300 MPa on increasing yellowness (b*) was observed for Barhi and Hilali but decreasing for Khalas. The hardness of all Rutab cultivars significantly decreased as a result of HHP application. In fact, the pressure applied at 300 MPa had an adverse effect on texture, which may limit its suitability for use in Rutab preservation.

Keywords: high hydrostatic pressure, fresh dates (Rutab), microbial contamination, color, texture

Procedia PDF Downloads 271
391 A Milky-White Stream Water Suitability for Drinking Purpose

Authors: Kassahun Tadesse, Megersa O. Dinka

Abstract:

Drinking water suitability study was conducted for a milky-white stream in remote areas of Ethiopia in order to understand its effect on human health. Water samples were taken from the water source and physicochemical properties were analyzed based on standard methods. The mean values of pH, total dissolved solids, sodium, magnesium, potassium, manganese, chloride, boron, and fluoride were within maximum permissible limits set for health. Whereas turbidity, calcium, irons, hardness, alkalinity, nitrate, and sulfate contents were above the limits. The water is very hard water due to high calcium content. High sulfate content can cause noticeable taste and a laxative (gastrointestinal) effect. The nitrate content was very high and can cause methemoglobinemia (blue baby syndrome) which is a temporary blood disorder in the bottle fed infants. Hence, parents should be advised not to give this water to infants. In conclusion, all physicochemical parameters except for nitrate are safe for health but may affect the appearance and taste, and wear water infrastructures. A high value of turbidity due to suspended minerals is the cause for milky-white colour. However, a mineralogical analysis of suspended sediments is required to identify the exact cause for white colour, and a study on sediment source was recommended.

Keywords: hard water, laxative effect, methemoglobinemia, nitrate, physicochemical, water quality

Procedia PDF Downloads 172
390 Customized Design of Amorphous Solids by Generative Deep Learning

Authors: Yinghui Shang, Ziqing Zhou, Rong Han, Hang Wang, Xiaodi Liu, Yong Yang

Abstract:

The design of advanced amorphous solids, such as metallic glasses, with targeted properties through artificial intelligence signifies a paradigmatic shift in physical metallurgy and materials technology. Here, we developed a machine-learning architecture that facilitates the generation of metallic glasses with targeted multifunctional properties. Our architecture integrates the state-of-the-art unsupervised generative adversarial network model with supervised models, allowing the incorporation of general prior knowledge derived from thousands of data points across a vast range of alloy compositions, into the creation of data points for a specific type of composition, which overcame the common issue of data scarcity typically encountered in the design of a given type of metallic glasses. Using our generative model, we have successfully designed copper-based metallic glasses, which display exceptionally high hardness or a remarkably low modulus. Notably, our architecture can not only explore uncharted regions in the targeted compositional space but also permits self-improvement after experimentally validated data points are added to the initial dataset for subsequent cycles of data generation, hence paving the way for the customized design of amorphous solids without human intervention.

Keywords: metallic glass, artificial intelligence, mechanical property, automated generation

Procedia PDF Downloads 19
389 Cooking Attributes of Rice Stored under Varying Temperature and Moisture Regimes

Authors: Lakshmi E. Jayachandran, Manepally Rajkumar, Pavuluri Srinivasa Rao

Abstract:

The objective of this research was to study the changes in eating quality of rice during storage under varying temperature and moisture regimes. Paddy (IR-36) with high amylose content (27%) was stored at a temperature range between 10 to 40°C and moisture content from 9 to 18% (d.b.) for 6 months. Drastic changes in color and parameters representing cooking qualities, cooked rice texture, and surface morphology occurred after 4 months of storage, especially at elevated temperature conditions. Head rice yield was stable throughout the storage except at extreme conditions of temperature and moisture content. Yellowing of rice was prominent at combinations of high temperature and moisture content, both of which had a synergistic effect on the b* values of rice. The cooking time, length expansion ratio and volume expansion ratio of all the rice samples increased with prolonged storage. The texture parameter, primarily, the hardness, cohesiveness, and adhesiveness of cooked rice samples were higher following storage at elevated temperature. Surface morphology was also significantly affected in stored rice as compared to fresh rice. Storage of rice at 10°C with a grain moisture content of 10% for 2 months gave cooked rice samples with good palatability and minimal cooking time. The temperature was found to be the most prominent storage parameter for rough rice, followed by moisture content and storage duration, influencing the quality of rice.

Keywords: rice, cooking quality, storage, surface morphology

Procedia PDF Downloads 153
388 The Hydro-Geology and Drinking Water Quality of Ikogosi Warm Spring in South West Nigeria

Authors: Ikudayisi Akinola, Adeyemo Folasade, Adeyemo Josiah

Abstract:

This study focuses on the hydro-geology and chemistry of Ikogosi Warm Spring in South West Nigeria. Ikogosi warm spring is a global tourist attraction because it has both warm and cold spring sources. Water samples from the cold spring, warm spring and the meeting point were collected, analyzed and the result shows close similarity in temperature, hydrogen iron concentration (pH), alkalinity, hardness, Calcium, Magnesium, Sodium, Iron, total dissolved solid and heavy metals. The measured parameters in the water samples are within World Health Organisation standards for fresh water. The study of the geology of the warm spring reveals that the study area is underlain by a group of slightly migmatised to non-migmatised paraschists and meta-igneous rocks. The concentration levels of selected heavy metals, (Copper, Cadmium, Zinc, Arsenic and Cromium) were determined in the water (ppm) samples. Chromium had the highest concentration value of 1.52ppm (an average of 49.67%) and Cadmium had the lowest concentration with value of 0.15ppm (an average of 4.89%). Comparison of these results showed that, their mean levels are within the standard values obtained in Nigeria. It can be concluded that both warm and spring water are safe for drinking.

Keywords: cold spring, Ikogosi, melting point, warm spring, water samples

Procedia PDF Downloads 522
387 Effect of Aluminium Content on Bending Properties and Microstructure of AlₓCoCrFeNi Alloy Fabricated by Induction Melting

Authors: Marzena Tokarewicz, Malgorzata Gradzka-Dahlke

Abstract:

High-entropy alloys (HEAs) have gained significant attention due to their great potential as functional and structural materials. HEAs have very good mechanical properties (in particular, alloys based on CoCrNi). They also show the ability to maintain their strength at high temperatures, which is extremely important in some applications. AlCoCrFeNi alloy is one of the most studied high-entropy alloys. Scientists often study the effect of changing the aluminum content in this alloy because it causes significant changes in phase presence and microstructure and consequently affects its hardness, ductility, and other properties. Research conducted by the authors also investigates the effect of aluminium content in AlₓCoCrFeNi alloy on its microstructure and mechanical properties. AlₓCoCrFeNi alloys were prepared by vacuum induction melting. The obtained samples were examined for chemical composition, microstructure, and microhardness. The three-point bending method was carried out to determine the bending strength, bending modulus, and conventional bending yield strength. The obtained results confirm the influence of aluminum content on the properties of AlₓCoCrFeNi alloy. Most studies on AlₓCoCrFeNi alloy focus on the determination of mechanical properties in compression or tension, much less in bending. The achieved results provide valuable information on the bending properties of AlₓCoCrFeNi alloy and lead to interesting conclusions.

Keywords: bending properties, high-entropy alloys, induction melting, microstructure

Procedia PDF Downloads 124
386 Study of the Efficiency of a Synthetic Wax for Corrosion Protection of Steel in Aggressive Environments

Authors: Laidi Babouri

Abstract:

The remarkable properties of steel, such as hardness and impact resistance, motivate their use in the automotive manufacturing industry. However, due to the very vulnerable environmental conditions of use, the steel that makes up the car body can corrode. This situation is motivating more and more automobile manufacturers to develop research to develop processes minimizing the rate of degradation of the physicomechanical properties of these materials. The present work falls within this perspective; it presents the results of a research study focused on the use of synthetic wax for the protection of steel, type XES (DC04), against corrosion in aggressive environments. The media used in this study are an acid medium with a pH=5.6, a 3% chloride medium, and a dry medium. Evaluation of the protective power of synthetic wax in different environments was carried out using mass loss techniques (immersion), completed by electrochemical techniques (stationary and transient). The results of the immersion of the steel samples, with a surface area of (1.44 cm²), in the various media, for a period of 30 days, using the immersion technique, showed high protective efficiency of synthetic wax in acidic and saline environments, with a lesser degree in a dry environment. Moreover, the study of the protective power, using electrochemical techniques, confirmed the results obtained in static mode (loss of mass), the protective efficiency of synthetic wax, against the corrosion of steel, in different environments, which reaches a maximum rate of 99.87% in a saline environment.

Keywords: corrosion, steel, industrial wax, environment, mass loss, electrochemical techniques

Procedia PDF Downloads 53
385 Experimental Investigation and Analysis of Wear Parameters on Al/Sic/Gr: Metal Matrix Hybrid Composite by Taguchi Method

Authors: Rachit Marwaha, Rahul Dev Gupta, Vivek Jain, Krishan Kant Sharma

Abstract:

Metal matrix hybrid composites (MMHCs) are now gaining their usage in aerospace, automotive and other industries because of their inherent properties like high strength to weight ratio, hardness and wear resistance, good creep behaviour, light weight, design flexibility and low wear rate etc. Al alloy base matrix reinforced with silicon carbide (10%) and graphite (5%) particles was fabricated by stir casting process. The wear and frictional properties of metal matrix hybrid composites were studied by performing dry sliding wear test using pin on disc wear test apparatus. Experiments were conducted based on the plan of experiments generated through Taguchi’s technique. A L9 Orthogonal array was selected for analysis of data. Investigation to find the influence of applied load, sliding speed and track diameter on wear rate as well as coefficient of friction during wearing process was carried out using ANOVA. Objective of the model was chosen as smaller the better characteristics to analyse the dry sliding wear resistance. Results show that track diameter has highest influence followed by load and sliding speed.

Keywords: Taguchi method, orthogonal array, ANOVA, metal matrix hybrid composites

Procedia PDF Downloads 303
384 Use of Apple Pomace as a Source of Dietary Fibre in Mutton Nuggets

Authors: Aamina B. Hudaa, Rehana Akhtera, Massarat Hassana, Mir Monisab

Abstract:

Mutton nuggets produced with the addition of apple pomace at the levels of 0% (Control), 5% (Treatment 1), 10% (Treatment 2), and 15% (Treatment 3) were evaluated for emulsion stability, cooking yield, pH, proximate composition, texture analysis and sensory properties. Apple pomace addition resulted in significantly higher (p ≤ 0.05) emulsion stability and cooking yield of treatments in comparison to control and pH values were significantly higher (p ≤ 0.05) for the control as compared to treatments. Among the treatments, the product with 15% apple pomace had significantly (p ≤ 0.05) highest moisture content, and protein, ash and fat contents were significantly (p ≤ 0.05) higher in control than treatment groups. Crude fiber content of control was found significantly (p ≤ 0.05) lower in comparison to nuggets formulated with 5%, 10% and 15% apple pomace and was found to increase significantly (p ≤ 0.05) with the increasing levels of apple pomace. Hardness of the products significantly (p ≤ 0.05) decreased with addition of apple pomace, whereas springiness, cohesiveness, chewiness and gumminess showed a non-significant (p ≥ 0.05) decrease with the levels of apple pomace. Sensory evaluation showed significant (p ≤ 0.05) reduction in texture, flavour and overall acceptability scores of treatment products; however the scores were in the range of acceptability and T-1 showed better acceptability among apple pomace incorporated treatments.

Keywords: Mutton nuggets, apple pomace, textural properties, sensory evaluation

Procedia PDF Downloads 295
383 Induced Systemic Resistance in Tomato Plants against Fusarium Wilt Disease Using Biotic Inducers

Authors: Mostafa A. Amer, I. A. El-Samra, I. I. Abou-ElSeoud, S. M. El-Abd, N. K. Shawertamimi

Abstract:

Tomato Fusarium wilt disease caused by Fusarium oxysporum f. sp. Lycopercisi (FOL) is considered one of the most destructive diseases in Egypt. Effect of some biotic inducers such as Bacillus megaterium var. phosphaticum, Glomus intraradices and Glomus macrocarpum at seven different mixed treatments, was tested for their ability to induce resistance in tomato plants against the disease. According to pathogenicity tests, all the tested isolates of FOL showed wilt symptoms on both of the tested cultivars; however, they considerably varied in percentages of disease incidence (DI) and disease severity (DS). Castle Rock was more susceptible than Peto 86, which was relatively resistant. Pretreatment of both cultivars, under greenhouse conditions, with the tested biotic inducers alone or in combination with each other's, significantly increased the induction of chitinase, β-1,3-glucanase, peroxidase, and polyphenoloxidase and reduced disease incidence and severity, compared with untreated noninoculated (C1) and untreated inoculated (C2) controls. Application of a combination of BMP, with GI and GM was the most effective in increasing the induction rated of the tested enzymes, compared with the other treatments. Induction of enzymes in most of the tested bioinducers treatments gradually increased, attaining maximum values after 48 or/and 72 hrs after challenging with FOL, then gradually declined. GI was the least effective bioinducer.

Keywords: F. oxysporum f. sp. lycopersici, defense enzymes, induced systemic resistance, ISR, B. megaterium var. phosphaticum, G. macrocarpum, G. intraradices

Procedia PDF Downloads 379
382 Formulation, Acceptability, and Characteristics of Instant Surabi Based on Composite Rice-Soybean Flour and Supplemented with Torbangun Powder for Attention Deficit Hyperactivity Disorder Children

Authors: Dewi Hapsari Ratna Muninggar, M. Rizal Martua Damanik

Abstract:

The purpose of this study was to develop a formulation of instant Indonesian traditional pancake (Surabi) based on composite rice and soybean flour and supplemented with Torbangun (Coleus amboinicus Lour) powder as an alternative snack for ADHD (Attention Deficit Hyperactivity Disorder) children. Completely randomised factorial design by two factors which were the ratio of composite rice and soybean flour (75:25; 70:30; 65:35) as well as the addition of Torbangun powder (3%; 5%; 7%) was used in this study. This study revealed that the best formula was instant surabi with 65:35 composite rice and soybean flour and 5% addition of Torbangun powder by considering hedonic test result, functional aspect and nutrients contribution. Then, both chemical and physical characteristics from the best formula of instant surabi were measured. Nutrients content of the chosen instant surabi per 100 g wet basis were 62.68 g moisture, 1.30 g ash, 6.81 g protein, 0.75 g fat, 28.47 g carbohydrate, 88.62 mg calcium, 4.14 mg iron, and 144 kcal energy while physical characteristics, such as water activity, cohesiveness, and hardness were 0.97, 0.569, 5582.2 g force consecutively. The results of this research suggested that instant surabi which can be possibly beneficial for ADHD children had 65:35 for rice and soybean flour ratio as well as 5% for the addition of Torbangun powder.

Keywords: ADHD children, instant surabi, soybean, torbangun

Procedia PDF Downloads 119
381 Evaluation of Geotechnical Parameters at Nubian Habitations in Kurkur Area, Aswan, Egypt

Authors: R. E. Fat-Helbary, A. A. Abdel-latief, M. S. Arfa, Alaa Mostafa

Abstract:

The Egyptian Government proposed a general plan, aiming at constructing new settlements for Nubian in south Aswan in different places around Nasser Lake, one of these settlements in Kurkur area. The Nubian habitations in Wadi Kurkur are located around 30 km southwest of Aswan City. This area are affecting by near distance earthquakes from Kalabsha faults system. The shallow seismic refraction technique was conducted at the study area, to evaluate the soil and rock material quality and geotechnical parameters, in addition to the detection of the subsurface ground model under the study area. The P and S-wave velocities were calculated. The surface layer has P-wave, velocity ranges from 900 m/sec to 1625 m/sec and S-wave velocity ranges from 650 m/sec to 1400 m/sec. On the other hand the bedrock has P-wave velocity ranges from 1300 m/sec to 1980 m/sec and S-wave velocity ranges from 1050 m/sec to1725 m/sec. Measuring Vp and Vs velocities together with bulk density are calculated and used to extract the mechanical properties and geotechnical parameters of the foundation material at the study area. Output of this study is very important for solving the problems, which associated with the construction of various civil engineering purposes, for land use planning and for earthquakes resistant structure design.

Keywords: shallow seismic refraction technique, Kurkur area, p and s-wave velocities, geotechnical parameters, bulk density, Kalabsha faults

Procedia PDF Downloads 405
380 Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process

Authors: F. Al-Mufadi, F. Djavanroodi

Abstract:

During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20 mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67 HV from 21 HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively.

Keywords: SPD, ECAP, FEM, pure Al, mechanical properties

Procedia PDF Downloads 162
379 Oxygenation in Turbulent Flows over Block Ramps

Authors: Thendiyath Roshni, Stefano Pagliara

Abstract:

Block ramps (BR) or rock chutes are eco-friendly natural river restoration structures. BR are made of ramp of rocks and flows over BR develop turbulence and helps in the entrainment of ambient air. These act as natural aerators in river flow and therefore leads to oxygenation of water. As many of the hydraulic structures in rivers, hinders the natural path for aquatic habitat. However, flows over BR ascertains a natural rocky flow and ensures safe and natural movement for aquatic habitat. Hence, BR is considered as a better alternative for drop structures. As water quality is concerned, turbulent and aerated flows over BR or macro-roughness conditions improves aeration and thereby oxygenation. Hence, the objective of this paper is to study the oxygenation in the turbulent flows over BR. Experimental data were taken for a slope (S) of 27.5% for three discharges (Q = 9, 15 and 21 lps) conditions. Air concentration were measured with the help of air concentration probe for three different discharges in the uniform flow region. Oxygen concentration is deduced from the air concentration as ambient air is entrained in the flows over BR. Air concentration profiles and oxygen profiles are plotted in the uniform flow region for three discharges and found that air concentration and oxygen concentration does not show any remarkable variation in properties in the longitudinal profile in uniform flow region. An empirical relation is developed for finding the average oxygen concentration (Oₘ) for S = 27.5% in the uniform flow region for 9 < Q < 21 lps. The results show that as the discharge increases over BR, there is a reduction of oxygen concentration in the uniform flow region.

Keywords: aeration, block ramps, oxygenation, turbulent flows

Procedia PDF Downloads 152
378 Physiochemical Parameters Assessment and Evaluation of the Quality of Drinking Water in Some Parts of Lagos State

Authors: G. T. Mudashiru, Mayowa P. Ibitola

Abstract:

Investigation was carried out at Ikorodu North local council development area of Lagos state using physiochemical parameters to study the quality drinking water. It was ascertained that the human functions and activities were dependent on the continuous and availability of good drinking water. Six water samples were collected at six different boreholes from various outlets and homes in Ikorodu North local council development area. Lagos state Nigeria. Analysis was carried out to determine the purity of water for domestic use. Physicochemical properties evaluation was adapted using standard chemical methods. A number of parameters such as PH, turbidity, conductivity, total dissolved solids, color, chloride, sulphate, nitrate, hardness were determined. Heavy metals such as Zn, Mg, Fe, Pb, Hg, and Mn as well as total coliform counts were observed. The resulted values of each parameter were justified with World Health Organization (WHO) and Lagos state water regulatory commission LSWRC standard values for quantitative comparison. The result reveals that all the water had pH value well below the WHO maximum permissible level for potable water. Other physicochemical parameters were within the safe limit of WHO standard showing the portability nature of the water. It can be concluded that though the water is potable, there should be a kind of treatment of the water before consumption to prevent outbreak of diseases.

Keywords: drinking water, physiology, boreholes, heavy metals, domestic

Procedia PDF Downloads 186
377 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition

Authors: J. K. Adedeji, S. T. Ijatuyi

Abstract:

The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.

Keywords: gravitational resistance, neural network, non-linear, pattern recognition

Procedia PDF Downloads 190
376 Hybrid Laser-Gas Metal Arc Welding of ASTM A106-B Steel Pipes

Authors: Masoud Mohammadpour, Nima Yazdian, Radovan Kovacevic

Abstract:

The Oil and Gas industries are vigorously looking for new ways to increase the efficiency of their pipeline constructions. Besides the other approaches, implementing of new welding methods for joining pipes can be the best candidate on this regard. Hybrid Laser Arc Welding (HLAW) with the capabilities of high welding speed, deep penetration, and excellent gap bridging ability can be a possible alternative method in pipeline girth welding. This paper investigates the feasibility of applying the HLAW to join ASTM A106-B as the mostly used piping material for transporting high-temperature and high-pressure fluids and gases. The experiments were carried out on six-inch diameter pipes with the wall thickness of 10mm. AWS ER 70 S6 filler wire with diameter of 1.2mm was employed. Relating to this welding procedure, characterization of welded samples such as hardness, tensile testing and Charpy V-notch testing were performed and the results will be reported in this paper. In order to have better understanding about the thermal history and the microstructural alterations caused by the welding heat cycle, a comprehensive Finite Element (FE) model was also conducted. The obtained results have shown that the Gas Metal Arc Welding (GMAW) procedure with the minimum number of 5 passes to complete the wall thickness, was reduced to only single pass by using the HLAW process with the welding time less than 15s.

Keywords: finite element modeling, high-temperature service, hybrid laser/arc welding, welding pipes

Procedia PDF Downloads 186
375 Simulation Study of Asphaltene Deposition and Solubility of CO2 in the Brine during Cyclic CO2 Injection Process in Unconventional Tight Reservoirs

Authors: Rashid S. Mohammad, Shicheng Zhang, Sun Lu, Syed Jamal-Ud-Din, Xinzhe Zhao

Abstract:

A compositional reservoir simulation model (CMG-GEM) was used for cyclic CO2 injection process in unconventional tight reservoir. Cyclic CO2 injection is an enhanced oil recovery process consisting of injection, shut-in, and production. The study of cyclic CO2 injection and hydrocarbon recovery in ultra-low permeability reservoirs is mainly a function of rock, fluid, and operational parameters. CMG-GEM was used to study several design parameters of cyclic CO2 injection process to distinguish the parameters with maximum effect on the oil recovery and to comprehend the behavior of cyclic CO2 injection in tight reservoir. On the other hand, permeability reduction induced by asphaltene precipitation is one of the major issues in the oil industry due to its plugging onto the porous media which reduces the oil productivity. In addition to asphaltene deposition, solubility of CO2 in the aquifer is one of the safest and permanent trapping techniques when considering CO2 storage mechanisms in geological formations. However, the effects of the above uncertain parameters on the process of CO2 enhanced oil recovery have not been understood systematically. Hence, it is absolutely necessary to study the most significant parameters which dominate the process. The main objective of this study is to improve techniques for designing cyclic CO2 injection process while considering the effects of asphaltene deposition and solubility of CO2 in the brine in order to prevent asphaltene precipitation, minimize CO2 emission, optimize cyclic CO2 injection, and maximize oil production.

Keywords: tight reservoirs, cyclic O₂ injection, asphaltene, solubility, reservoir simulation

Procedia PDF Downloads 362
374 Static Strain Aging in Ferritic and Austenitic Stainless Steels

Authors: Songul Kurucay, Mustafa Acarer, Harun Sepet

Abstract:

Static strain aging occurs when metallic materials are subjected to deformation and then heat treated at low temperatures such as 150-200oC. Static strain aging occurs in BCC metals and results and increasing in yield and tensile strength and decreasing ductility due to carbon and/or nitrogen atoms locking dislocations. The locked dislocations increase yield and tensile strength. In this study, static strain aging behaviors of ferritic and austenitic stainless steel were investigated. Ferritic stainless steel was prestained at %5, %10 and %15 and then aged at 150oC and 200oC for 30 minutes. Austenitic stainless steel was also prestained at %20 and %30 and then heat treated at 200, 400 and 600oC for 30 minutes. After the heat treatment, the tensile test was performed to determine the effect of prestain and heat treatment on the steels. Hardness measurements and detailed microstructure characterization were also done. While AISI 430 ferritic stainless steel sample which was prestained at 15% and aged at 200oC, showed the highest increasing in the yield strength, AISI 304 austenitic stainless steel which was prestained at 30% and aged at 600oC, has the highest yield strength. Microstructure photographs also support the mechanical test results.

Keywords: austenitic stainless steel, ferritic stainless steel, static strain aging, tensile strength

Procedia PDF Downloads 418
373 Geological Structure as the Main Factor in Landslide Deployment in Purworejo District Central Java Province Indonesia

Authors: Hilman Agil Satria, Rezky Naufan Hendrawan

Abstract:

Indonesia is vulnerable to geological hazard because of its location in subduction zone and have tropical climate. Landslide is one of the most happened geological hazard in Indonesia, based on Indonesia Geospasial data, at least 194 landslides recorded in 2013. In fact, research location is placed as the third city that most happened landslide in Indonesia. Landslide caused damage of many houses and wrecked the road. The purpose of this research is to make a landslide zone therefore can be used as one of mitigation consideration. The location is in Bruno, Porworejo district Central Java Province Indonesia at 109.903 – 109.99 and -7.59 – -7.50 with 10 Km x 10 Km wide. Based on geological mapping result, the research location consist of Late Miocene sandstone and claystone, and Pleistocene volcanic breccia and tuff. Those landslide happened in the lithology that close with fault zone. This location has so many geological structures: joints, faults and folds. There are 3 thrust faults, 1 normal faults, 4 strike slip faults and 6 folds. This geological structure movement is interpreted as the main factor that has triggered landslide in this location. This research use field data as well as samples of rock, joint, slicken side and landslide location which is combined with DEM SRTM to analyze geomorphology. As the final result of combined data will be presented as geological map, geological structure map and landslide zone map. From this research we can assume that there is correlation between geological structure and landslide locations.

Keywords: geological structure, landslide, Porworejo, Indonesia

Procedia PDF Downloads 269
372 Resistance Spot Welding of Boron Steel 22MnB5 with Complex Welding Programs

Authors: Szymon Kowieski, Zygmunt Mikno

Abstract:

The study involved the optimization of process parameters during resistance spot welding of Al-coated martensitic boron steel 22MnB5, applied in hot stamping, performed using a programme with a multiple current impulse mode and a programme with variable pressure force. The aim of this research work was to determine the possibilities of a growth in welded joint strength and to identify the expansion of a welding lobe. The process parameters were adjusted on the basis of welding process simulation and confronted with experimental data. 22MnB5 steel is known for its tendency to obtain high hardness values in weld nuggets, often leading to interfacial failures (observed in the study-related tests). In addition, during resistance spot welding, many production-related factors can affect process stability, e.g. welding lobe narrowing, and lead to the deterioration of quality. Resistance spot welding performed using the above-named welding programme featuring 3 levels of force made it possible to achieve 82% of welding lobe extension. Joints made using the multiple current impulse program, where the total welding time was below 1.4s, revealed a change in a peeling mode (to full plug) and an increase in weld tensile shear strength of 10%.

Keywords: 22MnB5, hot stamping, interfacial fracture, resistance spot welding, simulation, single lap joint, welding lobe

Procedia PDF Downloads 360
371 Prediction of Music Track Popularity: A Machine Learning Approach

Authors: Syed Atif Hassan, Luv Mehta, Syed Asif Hassan

Abstract:

Hit song science is a field of investigation wherein machine learning techniques are applied to music tracks in order to extract such features from audio signals which can capture information that could explain the popularity of respective tracks. Record companies invest huge amounts of money into recruiting fresh talents and churning out new music each year. Gaining insight into the basis of why a song becomes popular will result in tremendous benefits for the music industry. This paper aims to extract basic musical and more advanced, acoustic features from songs while also taking into account external factors that play a role in making a particular song popular. We use a dataset derived from popular Spotify playlists divided by genre. We use ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock), chosen on the basis of clear to ambiguous delineation in the typical sound of their genres. We feed these features into three different classifiers, namely, SVM with RBF kernel, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model at the end. Predicting song popularity is particularly important for the music industry as it would allow record companies to produce better content for the masses resulting in a more competitive market.

Keywords: classifier, machine learning, music tracks, popularity, prediction

Procedia PDF Downloads 626
370 Experimental and Numerical Studies on Earthquake Shear Rupture Generation

Authors: Louis N. Y. Wong

Abstract:

En-echelon fractures are commonly found in rocks, which appear as a special set of regularly oriented and spaced fractures. By using both experimental and numerical approaches, this study investigates the interaction among them, and how this interaction finally contributes to the development of a shear rupture (fault), especially in brittle natural rocks. Firstly, uniaxial compression tests are conducted on marble specimens containing en-echelon flaws. The latter is cut by using the water abrasive jet into the rock specimens. The fracturing processes of these specimens leading to the formation of a fault are observed in detail by the use of a high speed camera. The influences of the flaw geometry on the production of tensile cracks and shear cracks, which in turn dictate the coalescence patterns of the entire set of en-echelon flaws are comprehensively studied. Secondly, a numerical study based on a recently developed contact model, flat-joint contact model using the discrete element method (DEM) is carried out to model the present laboratory experiments. The numerical results provide a quantitative assessment of the interaction of en-echelon flaws. Particularly, the evolution of the stress field, as well as the characteristics of new crack initiation, propagation and coalescence associated with the generation of an eventual shear rupture are studied in detail. The numerical results are found to agree well with the experimental results obtained in both microscopic and macroscopic observations.

Keywords: discrete element method, en-echelon flaws, fault, marble

Procedia PDF Downloads 238
369 Nd³⁺: Si₂N₂O (Sinoite) Phosphors for White Light Emitting Diodes

Authors: Alparslan A. Balta, Hilmi Yurdakul, Orkun Tunckan, Servet Turan, Arife Yurdakul

Abstract:

A silicon oxynitride (Si2N2O), the mineralogical name is “Sinoite”, reveals the outstanding physical, mechanical and thermal properties, e.g., good oxidation resistance at high temperatures, high fracture toughness with rod shape, high hardness, low theoretical density, good thermal shock resistance by low thermal expansion coefficient and high thermal conductivity. In addition, the orthorhombic crystal structure of Si2N2O allows accommodating the rare earth (RE) element atoms along the “c” axis due to existing large structural interstitial sites. Here, 0.02 to 0.12 wt. % Nd3+ doped Si2N2O samples were successfully synthesized by spark plasma sintering (SPS) method at 30MPa pressure and 1650oC temperature. Li2O was also utilized as a sintering additive to take advantage of low eutectic point during synthesizing. The specimens were characterized in detail by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and cathodoluminescence (CL) in SEM and photoluminescence (PL) spectroscopy. Based on the overall results, the Si2N2O phase was obtained above 90% by the SPS route. Furthermore, Nd3+: Si2N2O samples showed a very broad intense emission peak between 400-700 nm, which corresponds to white color. Therefore, this material can be considered as a promising candidate for white light-emitting diodes (WLEDs) purposes. This study was supported by TUBITAK under project number 217M667.

Keywords: neodymium, oxynitride, Si₂N₂O, WLEDs

Procedia PDF Downloads 112
368 Depositional Environment of the Babouchite Rocks of Numidian Formation, Northwestern Tunisia: Mineralogical Study and Geochemical Properties

Authors: Ben Yahia Nouha, Harris Chris, Boussen Slim, Chaabani Fredj

Abstract:

The present work has set itself the objective of studying non-detritic siliceous rocks in the extreme northwestern of Tunisia. It aims to discuss the origin and depositional environment of siliceous rocks based on petrographic, mineralogical, and geochemical results. The different sections were made in the area of Babouch and the area of Cap-Serrat. The collected samples were subjected to petrographic, mineralogical, and geochemical characterization using different analytical methods: scanning electron microscopy (SEM), X-ray diffraction (XRD), geochemical analysis (ICP- AES), isotopic geochemistry (δ¹⁸O) to assess their suitability for industrial use. These babouchite shows that the mineralogy consists of quartz as the dominant mineral with the total lack of amorphous silica, while clay represents the minor phase. The petrographic examination revealed allowed to deduce that it is a rock of chemical origin deriving from tests of siliceous organisms (the radiolarians). Chemical analyzes show that SiO₂, Al₂O₃, and Fe₂O₃ represent the most abundant oxides. The other oxides are present in negligible quantity. Geochemical data support a biogenic and non-hydrothermal origin of babouchite silica. Oxygen isotopic has shown that babouchites are formed in an environment with a high temperature, ranging from 56°C to 73°C.

Keywords: siliceous rocks, babouchite formation, XRD, chemical analysis, isotopic geochemistry, Northwestern of Tunisia

Procedia PDF Downloads 137