Search results for: relational models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7025

Search results for: relational models

6095 Learn through AR (Augmented Reality)

Authors: Prajakta Musale, Bhargav Parlikar, Sakshi Parkhi, Anshu Parihar, Aryan Parikh, Diksha Parasharam, Parth Jadhav

Abstract:

AR technology is basically a development of VR technology that harnesses the power of computers to be able to read the surroundings and create projections of digital models in the real world for the purpose of visualization, demonstration, and education. It has been applied to education, fields of prototyping in product design, development of medical models, battle strategy in the military and many other fields. Our Engineering Design and Innovation (EDAI) project focuses on the usage of augmented reality, visual mapping, and 3d-visualization along with animation and text boxes to help students in fields of education get a rough idea of the concepts such as flow and mechanical movements that may be hard to visualize at first glance.

Keywords: spatial mapping, ARKit, depth sensing, real-time rendering

Procedia PDF Downloads 63
6094 Study the Difference Between the Mohr-Coulomb and the Barton-Bandis Joint Constitutive Models: A Case Study from the Iron Open Pit Mine, Canada

Authors: Abbas Kamalibandpey, Alain Beland, Joseph Mukendi Kabuya

Abstract:

Since a rock mass is a discontinuum medium, its behaviour is governed by discontinuities such as faults, joint sets, lithologic contact, and bedding planes. Thus, rock slope stability analysis in jointed rock masses is largely dependent upon discontinuities constitutive equations. This paper studies the difference between the Mohr-Coulomb (MC) and the Barton-Bandis (BB) joint constitutive numerical models for lithological contacts and joint sets. For the rock in these models, generalized Hoek-Brown criteria have been considered. The joint roughness coefficient (JRC) and the joint wall compressive strength (JCS) are vital parameters in the BB model. The numerical models are applied to the rock slope stability analysis in the Mont-Wright (MW) mine. The Mont-Wright mine is owned and operated by ArcelorMittal Mining Canada (AMMC), one of the largest iron-ore open pit operations in Canada. In this regard, one of the high walls of the mine has been selected to undergo slope stability analysis with RS2D software, finite element method. Three piezometers have been installed in this zone to record pore water pressure and it is monitored by radar. In this zone, the AMP-IF and QRMS-IF contacts and very persistent and altered joint sets in IF control the rock slope behaviour. The height of the slope is more than 250 m and consists of different lithologies such as AMP, IF, GN, QRMS, and QR. To apply the B-B model, the joint sets and geological contacts have been scanned by Maptek, and their JRC has been calculated by different methods. The numerical studies reveal that the JRC of geological contacts, AMP-IF and QRMS-IF, and joint sets in IF had a significant influence on the safety factor. After evaluating the results of rock slope stability analysis and the radar data, the B-B constitutive equation for discontinuities has shown acceptable results to the real condition in the mine. It should be noted that the difference in safety factors in MC and BB joint constitutive models in some cases is more than 30%.

Keywords: barton-Bandis criterion, Hoek-brown and Mohr-Coulomb criteria, open pit, slope stability

Procedia PDF Downloads 106
6093 Orthogonal Regression for Nonparametric Estimation of Errors-In-Variables Models

Authors: Anastasiia Yu. Timofeeva

Abstract:

Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect.

Keywords: grade point average, orthogonal regression, penalized regression spline, locally weighted regression

Procedia PDF Downloads 416
6092 Methodology for Obtaining Static Alignment Model

Authors: Lely A. Luengas, Pedro R. Vizcaya, Giovanni Sánchez

Abstract:

In this paper, a methodology is presented to obtain the Static Alignment Model for any transtibial amputee person. The proposed methodology starts from experimental data collected on the Hospital Militar Central, Bogotá, Colombia. The effects of transtibial prosthesis malalignment on amputees were measured in terms of joint angles, center of pressure (COP) and weight distribution. Some statistical tools are used to obtain the model parameters. Mathematical predictive models of prosthetic alignment were created. The proposed models are validated in amputees and finding promising results for the prosthesis Static Alignment. Static alignment process is unique to each subject; nevertheless the proposed methodology can be used in each transtibial amputee.

Keywords: information theory, prediction model, prosthetic alignment, transtibial prosthesis

Procedia PDF Downloads 257
6091 Steel Bridge Coating Inspection Using Image Processing with Neural Network Approach

Authors: Ahmed Elbeheri, Tarek Zayed

Abstract:

Steel bridges deterioration has been one of the problems in North America for the last years. Steel bridges deterioration mainly attributed to the difficult weather conditions. Steel bridges suffer fatigue cracks and corrosion, which necessitate immediate inspection. Visual inspection is the most common technique for steel bridges inspection, but it depends on the inspector experience, conditions, and work environment. So many Non-destructive Evaluation (NDE) models have been developed use Non-destructive technologies to be more accurate, reliable and non-human dependent. Non-destructive techniques such as The Eddy Current Method, The Radiographic Method (RT), Ultra-Sonic Method (UT), Infra-red thermography and Laser technology have been used. Digital Image processing will be used for Corrosion detection as an Alternative for visual inspection. Different models had used grey-level and colored digital image for processing. However, color image proved to be better as it uses the color of the rust to distinguish it from the different backgrounds. The detection of the rust is an important process as it’s the first warning for the corrosion and a sign of coating erosion. To decide which is the steel element to be repainted and how urgent it is the percentage of rust should be calculated. In this paper, an image processing approach will be developed to detect corrosion and its severity. Two models were developed 1st to detect rust and 2nd to detect rust percentage.

Keywords: steel bridge, bridge inspection, steel corrosion, image processing

Procedia PDF Downloads 306
6090 Analysis of the 2023 Karnataka State Elections Using Online Sentiment

Authors: Pranav Gunhal

Abstract:

This paper presents an analysis of sentiment on Twitter towards the Karnataka elections held in 2023, utilizing transformer-based models specifically designed for sentiment analysis in Indic languages. Through an innovative data collection approach involving a combination of novel methods of data augmentation, online data preceding the election was analyzed. The study focuses on sentiment classification, effectively distinguishing between positive, negative, and neutral posts while specifically targeting the sentiment regarding the loss of the Bharatiya Janata Party (BJP) or the win of the Indian National Congress (INC). Leveraging high-performing transformer architectures, specifically IndicBERT, coupled with specifically fine-tuned hyperparameters, the AI models employed in this study achieved remarkable accuracy in predicting the INC’s victory in the election. The findings shed new light on the potential of cutting-edge transformer-based models in capturing and analyzing sentiment dynamics within the Indian political landscape. The implications of this research are far-reaching, providing invaluable insights to political parties for informed decision-making and strategic planning in preparation for the forthcoming 2024 Lok Sabha elections in the nation.

Keywords: sentiment analysis, twitter, Karnataka elections, congress, BJP, transformers, Indic languages, AI, novel architectures, IndicBERT, lok sabha elections

Procedia PDF Downloads 85
6089 Piping Fragility Composed of Different Materials by Using OpenSees Software

Authors: Woo Young Jung, Min Ho Kwon, Bu Seog Ju

Abstract:

A failure of the non-structural component can cause significant damages in critical facilities such as nuclear power plants and hospitals. Historically, it was reported that the damage from the leakage of sprinkler systems, resulted in the shutdown of hospitals for several weeks by the 1971 San Fernando and 1994 North Ridge earthquakes. In most cases, water leakages were observed at the cross joints, sprinkler heads, and T-joint connections in piping systems during and after the seismic events. Hence, the primary objective of this study was to understand the seismic performance of T-joint connections and to develop an analytical Finite Element (FE) model for the T-joint systems of 2-inch fire protection piping system in hospitals subjected to seismic ground motions. In order to evaluate the FE models of the piping systems using OpenSees, two types of materials were used: 1) Steel 02 materials and 2) Pinching 4 materials. Results of the current study revealed that the nonlinear moment-rotation FE models for the threaded T-joint reconciled well with the experimental results in both FE material models. However, the system-level fragility determined from multiple nonlinear time history analyses at the threaded T-joint was slightly different. The system-level fragility at the T-joint, determined by Pinching 4 material was more conservative than that of using Steel 02 material in the piping system.

Keywords: fragility, t-joint, piping, leakage, sprinkler

Procedia PDF Downloads 303
6088 Comparison of Two Neural Networks To Model Margarine Age And Predict Shelf-Life Using Matlab

Authors: Phakamani Xaba, Robert Huberts, Bilainu Oboirien

Abstract:

The present study was aimed at developing & comparing two neural-network-based predictive models to predict shelf-life/product age of South African margarine using free fatty acid (FFA), water droplet size (D3.3), water droplet distribution (e-sigma), moisture content, peroxide value (PV), anisidine valve (AnV) and total oxidation (totox) value as input variables to the model. Brick margarine products which had varying ages ranging from fresh i.e. week 0 to week 47 were sourced. The brick margarine products which had been stored at 10 & 25 °C and were characterized. JMP and MATLAB models to predict shelf-life/ margarine age were developed and their performances were compared. The key performance indicators to evaluate the model performances were correlation coefficient (CC), root mean square error (RMSE), and mean absolute percentage error (MAPE) relative to the actual data. The MATLAB-developed model showed a better performance in all three performance indicators. The correlation coefficient of the MATLAB model was 99.86% versus 99.74% for the JMP model, the RMSE was 0.720 compared to 1.005 and the MAPE was 7.4% compared to 8.571%. The MATLAB model was selected to be the most accurate, and then, the number of hidden neurons/ nodes was optimized to develop a single predictive model. The optimized MATLAB with 10 neurons showed a better performance compared to the models with 1 & 5 hidden neurons. The developed models can be used by margarine manufacturers, food research institutions, researchers etc, to predict shelf-life/ margarine product age, optimize addition of antioxidants, extend shelf-life of products and proactively troubleshoot for problems related to changes which have an impact on shelf-life of margarine without conducting expensive trials.

Keywords: margarine shelf-life, predictive modelling, neural networks, oil oxidation

Procedia PDF Downloads 197
6087 The Effectiveness of Communication Skills Using Transactional Analysis on the Dimensions of Marital Intimacy: An Experimental Study

Authors: Mehravar Javid, James Sexton, S. Taridashti, Joseph Dorer

Abstract:

Objective: Intimacy is among the most important factors in marital relationships and includes different aspects. Communication skills can enable couples to promote their intimacy. This experimental study was conducted to measure the effectiveness of communication skills using Transactional Analysis (TA) on various dimensions of marital intimacy. Method: The participants in this study were female teachers. Analysis of covariance was recruited in the experimental group (n =15) and control group (n =15) with pre-test and post-test. Random assignment was applied. The experimental group received the Transactional Analysis training program for 9 sessions of 2 hours each week. The instrument was the Marital Intimacy Questionnaire, with 87 items and 9 subscales. Result: The findings suggest that training in Transactional Analysis significantly increased the total score of intimacy except spiritual intimacy on the post-test. Discussion: According to the obtained data, it is concluded that communication skills using Transactional Analysis (TA) training could increase intimacy and improve marital relationships. The study highlights the differential effects on emotional, rational, sexual, and psychological intimacy compared to physical, social/recreational, and relational intimacy over a 9-week period.

Keywords: communication skills, intimacy, marital relationships, transactional analysis

Procedia PDF Downloads 95
6086 Flexural Behavior of Composite Hybrid Beam Models Combining Steel Inverted T-Section and RC Flange

Authors: Abdul Qader Melhem, Hacene Badache

Abstract:

This paper deals with the theoretical and experimental study of shear connection via simple steel reinforcement shear connectors, which are steel reinforcing bars bent into L-shapes, instead of commonly used headed studs. This suggested L-shape connectors are readily available construction material in steel reinforcement. The composite section, therefore, consists of steel inverted T-section being embedded within a lightly reinforced concrete flange at the top slab as a unit. It should be noted that the cross section of these composite models involves steel inverted T-beam, replacing the steel top flange of a standard commonly employed I-beam section. The paper concentrates on the elastic and elastic-plastic behavior of these composite models. Failure modes either by cracking of concrete or shear connection be investigated in details. Elastic and elastoplastic formulas of the composite model have been computed for different locations of NA. Deflection formula has been derived, its value was close to the test value. With a supportive designing curve, this curve is valuable for both designing engineers and researchers. Finally, suggested designing curves and valuable equations will be presented. A check is made between theoretical and experimental outcomes.

Keywords: composite, elastic-plastic, failure, inverted T-section, L-Shape connectors

Procedia PDF Downloads 227
6085 Analysis of Expert Information in Linguistic Terms

Authors: O. Poleshchuk, E. Komarov

Abstract:

In this paper, semantic spaces with the properties of completeness and orthogonality (complete orthogonal semantic spaces) were chosen as models of expert evaluations. As the theoretical and practical studies have shown all the properties of complete orthogonal semantic spaces correspond to the thinking activity of experts that is why these semantic spaces were chosen for modeling. Two methods of construction such spaces were proposed. Models of comparative and fuzzy cluster analysis of expert evaluations were developed. The practical application of the developed methods has demonstrated their viability and validity.

Keywords: expert evaluation, comparative analysis, fuzzy cluster analysis, theoretical and practical studies

Procedia PDF Downloads 531
6084 Proposal of Design Method in the Semi-Acausal System Model

Authors: Shigeyuki Haruyama, Ken Kaminishi, Junji Kaneko, Tadayuki Kyoutani, Siti Ruhana Omar, Oke Oktavianty

Abstract:

This study is used as a definition method to the value and function in manufacturing sector. In concurrence of discussion about present condition of modeling method, until now definition of 1D-CAE is ambiguity and not conceptual. Across all the physics fields, those methods are defined with the formulation of differential algebraic equation which only applied time derivation and simulation. At the same time, we propose semi-acausal modeling concept and differential algebraic equation method as a newly modeling method which the efficiency has been verified through the comparison of numerical analysis result between the semi-acausal modeling calculation and FEM theory calculation.

Keywords: system model, physical models, empirical models, conservation law, differential algebraic equation, object-oriented

Procedia PDF Downloads 485
6083 A Neural Network Approach to Understanding Turbulent Jet Formations

Authors: Nurul Bin Ibrahim

Abstract:

Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.

Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence

Procedia PDF Downloads 70
6082 Housing Price Dynamics: Comparative Study of 1980-1999 and the New Millenium

Authors: Janne Engblom, Elias Oikarinen

Abstract:

The understanding of housing price dynamics is of importance to a great number of agents: to portfolio investors, banks, real estate brokers and construction companies as well as to policy makers and households. A panel dataset is one that follows a given sample of individuals over time, and thus provides multiple observations on each individual in the sample. Panel data models include a variety of fixed and random effects models which form a wide range of linear models. A special case of panel data models is dynamic in nature. A complication regarding a dynamic panel data model that includes the lagged dependent variable is endogeneity bias of estimates. Several approaches have been developed to account for this problem. In this paper, the panel models were estimated using the Common Correlated Effects estimator (CCE) of dynamic panel data which also accounts for cross-sectional dependence which is caused by common structures of the economy. In presence of cross-sectional dependence standard OLS gives biased estimates. In this study, U.S housing price dynamics were examined empirically using the dynamic CCE estimator with first-difference of housing price as the dependent and first-differences of per capita income, interest rate, housing stock and lagged price together with deviation of housing prices from their long-run equilibrium level as independents. These deviations were also estimated from the data. The aim of the analysis was to provide estimates with comparisons of estimates between 1980-1999 and 2000-2012. Based on data of 50 U.S cities over 1980-2012 differences of short-run housing price dynamics estimates were mostly significant when two time periods were compared. Significance tests of differences were provided by the model containing interaction terms of independents and time dummy variable. Residual analysis showed very low cross-sectional correlation of the model residuals compared with the standard OLS approach. This means a good fit of CCE estimator model. Estimates of the dynamic panel data model were in line with the theory of housing price dynamics. Results also suggest that dynamics of a housing market is evolving over time.

Keywords: dynamic model, panel data, cross-sectional dependence, interaction model

Procedia PDF Downloads 251
6081 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing

Authors: Yehjune Heo

Abstract:

As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.

Keywords: anti-spoofing, CNN, fingerprint recognition, loss function, optimizer

Procedia PDF Downloads 136
6080 Understanding the Role of Social Entrepreneurship in Building Mobility of a Service Transportation Models

Authors: Liam Fassam, Pouria Liravi, Jacquie Bridgman

Abstract:

Introduction: The way we travel is rapidly changing, car ownership and use are declining among young people and those residents in urban areas. Also, the increasing role and popularity of sharing economy companies like Uber highlight a movement towards consuming transportation solutions as a service [Mobility of a Service]. This research looks to bridge the knowledge gap that exists between city mobility, smart cities, sharing economy and social entrepreneurship business models. Understanding of this subject is crucial for smart city design, as access to affordable transport has been identified as a contributing factor to social isolation leading to issues around health and wellbeing. Methodology: To explore the current fit vis-a-vis transportation business models and social impact this research undertook a comparative analysis between a systematic literature review and a Delphi study. The systematic literature review was undertaken to gain an appreciation of the current academic thinking on ‘social entrepreneurship and smart city mobility’. The second phase of the research initiated a Delphi study across a group of 22 participants to review future opinion on ‘how social entrepreneurship can assist city mobility sharing models?’. The Delphi delivered an initial 220 results, which once cross-checked for duplication resulted in 130. These 130 answers were sent back to participants to score importance against a 5-point LIKERT scale, enabling a top 10 listing of areas for shared user transports in society to be gleaned. One further round (4) identified no change in the coefficient of variant thus no further rounds were required. Findings: Initial results of the literature review returned 1,021 journals using the search criteria ‘social entrepreneurship and smart city mobility’. Filtering allied to ‘peer review’, ‘date’, ‘region’ and ‘Chartered associated of business school’ ranking proffered a resultant journal list of 75. Of these, 58 focused on smart city design, 9 on social enterprise in cityscapes, 6 relating to smart city network design and 3 on social impact, with no journals purporting the need for social entrepreneurship to be allied to city mobility. The future inclusion factors from the Delphi expert panel indicated that smart cities needed to include shared economy models in their strategies. Furthermore, social isolation born by costs of infrastructure needed addressing through holistic A-political social enterprise models, and a better understanding of social benefit measurement is needed. Conclusion: In investigating the collaboration between key public transportation stakeholders, a theoretical model of social enterprise transportation models that positively impact upon the smart city needs of reduced transport poverty and social isolation was formed. As such, the research has identified how a revised business model of Mobility of a Service allied to a social entrepreneurship can deliver impactful measured social benefits associated to smart city design existent research.

Keywords: social enterprise, collaborative transportation, new models of ownership, transport social impact

Procedia PDF Downloads 141
6079 Examining the Influence of Firm Internal Level Factors on Performance Variations among Micro and Small Enterprises: Evidence from Tanzanian Agri-Food Processing Firms

Authors: Pulkeria Pascoe, Hawa P. Tundui, Marcia Dutra de Barcellos, Hans de Steur, Xavier Gellynck

Abstract:

A majority of Micro and Small Enterprises (MSEs) experience low or no growth. Understanding their performance remains unfinished and disjointed as there is no consensus on the factors influencing it, especially in developing countries. Using a Resource-Based View (RBV) as the theoretical background, this cross-sectional study employed four regression models to examine the influence of firm-level factors (firm-specific characteristics, firm resources, manager socio-demographic characteristics, and selected management practices) on the overall performance variations among 442 Tanzanian micro and small agri-food processing firms. Study results confirmed the RBV argument that intangible resources make a larger contribution to overall performance variations among firms than that tangible resources. Firms' tangible and intangible resources explained 34.5% of overall performance variations (intangible resources explained the overall performance variability by 19.4% compared to tangible resources, which accounted for 15.1%), ranking first in explaining the overall performance variance. Firm-specific characteristics ranked second by influencing variations in overall performance by 29.0%. Selected management practices ranked third (6.3%), while the manager's socio-demographic factors were last on the list, as they influenced the overall performance variability among firms by only 5.1%. The study also found that firms that focus on proper utilization of tangible resources (financial and physical), set targets, and undertake better working capital management practices performed higher than their counterparts (low and average performers). Furthermore, accumulation and proper utilization of intangible resources (relational, organizational, and reputational), undertaking performance monitoring practices, age of the manager, and the choice of the firm location and activity were the dominant significant factors influencing the variations among average and high performers, relative to low performers. The entrepreneurial background was a significant factor influencing variations in average and low-performing firms, indicating that entrepreneurial skills are crucial to achieving average levels of performance. Firm age, size, legal status, source of start-up capital, gender, education level, and total business experience of the manager were not statistically significant variables influencing the overall performance variations among the agri-food processors under the study. The study has identified both significant and non-significant factors influencing performance variations among low, average, and high-performing micro and small agri-food processing firms in Tanzania. Therefore, results from this study will help managers, policymakers and researchers to identify areas where more attention should be placed in order to improve overall performance of MSEs in agri-food industry.

Keywords: firm-level factors, micro and small enterprises, performance, regression analysis, resource-based-view

Procedia PDF Downloads 86
6078 Modeling and Benchmarking the Thermal Energy Performance of Palm Oil Production Plant

Authors: Mathias B. Michael, Esther T. Akinlabi, Tien-Chien Jen

Abstract:

Thermal energy consumption in palm oil production plant comprises mainly of steam, hot water and hot air. In most efficient plants, hot water and air are generated from the steam supply system. Research has shown that thermal energy utilize in palm oil production plants is about 70 percent of the total energy consumption of the plant. In order to manage the plants’ energy efficiently, the energy systems are modelled and optimized. This paper aimed to present the model of steam supply systems of a typical palm oil production plant in Ghana. The models include exergy and energy models of steam boiler, steam turbine and the palm oil mill. The paper further simulates the virtual plant model to obtain the thermal energy performance of the plant under study. The simulation results show that, under normal operating condition, the boiler energy performance is considerably below the expected level as a result of several factors including intermittent biomass fuel supply, significant moisture content of the biomass fuel and significant heat losses. The total thermal energy performance of the virtual plant is set as a baseline. The study finally recommends number of energy efficiency measures to improve the plant’s energy performance.

Keywords: palm biomass, steam supply, exergy and energy models, energy performance benchmark

Procedia PDF Downloads 350
6077 Practical Modelling of RC Structural Walls under Monotonic and Cyclic Loading

Authors: Reza E. Sedgh, Rajesh P. Dhakal

Abstract:

Shear walls have been used extensively as the main lateral force resisting systems in multi-storey buildings. The recent development in performance based design urges practicing engineers to conduct nonlinear static or dynamic analysis to evaluate seismic performance of multi-storey shear wall buildings by employing distinct analytical models suggested in the literature. For practical purpose, application of macroscopic models to simulate the global and local nonlinear behavior of structural walls outweighs the microscopic models. The skill level, computational time and limited access to RC specialized finite element packages prevents the general application of this method in performance based design or assessment of multi-storey shear wall buildings in design offices. Hence, this paper organized to verify capability of nonlinear shell element in commercially available package (Sap2000) in simulating results of some specimens under monotonic and cyclic loads with very oversimplified available cyclic material laws in the analytical tool. The selection of constitutive models, the determination of related parameters of the constituent material and appropriate nonlinear shear model are presented in detail. Adoption of proposed simple model demonstrated that the predicted results follow the overall trend of experimental force-displacement curve. Although, prediction of ultimate strength and the overall shape of hysteresis model agreed to some extent with experiment, the ultimate displacement(significant strength degradation point) prediction remains challenging in some cases.

Keywords: analytical model, nonlinear shell element, structural wall, shear behavior

Procedia PDF Downloads 404
6076 Seafloor and Sea Surface Modelling in the East Coast Region of North America

Authors: Magdalena Idzikowska, Katarzyna Pająk, Kamil Kowalczyk

Abstract:

Seafloor topography is a fundamental issue in geological, geophysical, and oceanographic studies. Single-beam or multibeam sonars attached to the hulls of ships are used to emit a hydroacoustic signal from transducers and reproduce the topography of the seabed. This solution provides relevant accuracy and spatial resolution. Bathymetric data from ships surveys provides National Centers for Environmental Information – National Oceanic and Atmospheric Administration. Unfortunately, most of the seabed is still unidentified, as there are still many gaps to be explored between ship survey tracks. Moreover, such measurements are very expensive and time-consuming. The solution is raster bathymetric models shared by The General Bathymetric Chart of the Oceans. The offered products are a compilation of different sets of data - raw or processed. Indirect data for the development of bathymetric models are also measurements of gravity anomalies. Some forms of seafloor relief (e.g. seamounts) increase the force of the Earth's pull, leading to changes in the sea surface. Based on satellite altimetry data, Sea Surface Height and marine gravity anomalies can be estimated, and based on the anomalies, it’s possible to infer the structure of the seabed. The main goal of the work is to create regional bathymetric models and models of the sea surface in the area of the east coast of North America – a region of seamounts and undulating seafloor. The research includes an analysis of the methods and techniques used, an evaluation of the interpolation algorithms used, model thickening, and the creation of grid models. Obtained data are raster bathymetric models in NetCDF format, survey data from multibeam soundings in MB-System format, and satellite altimetry data from Copernicus Marine Environment Monitoring Service. The methodology includes data extraction, processing, mapping, and spatial analysis. Visualization of the obtained results was carried out with Geographic Information System tools. The result is an extension of the state of the knowledge of the quality and usefulness of the data used for seabed and sea surface modeling and knowledge of the accuracy of the generated models. Sea level is averaged over time and space (excluding waves, tides, etc.). Its changes, along with knowledge of the topography of the ocean floor - inform us indirectly about the volume of the entire water ocean. The true shape of the ocean surface is further varied by such phenomena as tides, differences in atmospheric pressure, wind systems, thermal expansion of water, or phases of ocean circulation. Depending on the location of the point, the higher the depth, the lower the trend of sea level change. Studies show that combining data sets, from different sources, with different accuracies can affect the quality of sea surface and seafloor topography models.

Keywords: seafloor, sea surface height, bathymetry, satellite altimetry

Procedia PDF Downloads 80
6075 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course

Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu

Abstract:

This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.

Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN

Procedia PDF Downloads 44
6074 Perusing the Influence of a Visual Editor in Enabling PostgreSQL Query Learn-Ability

Authors: Manuela Nayantara Jeyaraj

Abstract:

PostgreSQL is an Object-Relational Database Management System (ORDBMS) with an architecture that ensures optimal quality data management. But due to the shading growth of similar ORDBMS, PostgreSQL has not been renowned among the database user community. Despite having its features and in-built functionalities shadowed, PostgreSQL renders a vast range of utilities for data manipulation and hence calling for it to be upheld more among users. But introducing PostgreSQL in order to stimulate its advantageous features among users, mandates endorsing learn-ability as an add-on as the target groups considered consist of both amateur as well as professional PostgreSQL users. The scope of this paper deliberates providing easy contemplation of query formulations and flows through a visual editor designed according to user interface principles that standby to support every aspect of making PostgreSQL learn-able by self-operation and creation of queries within the visual editor. This paper tends to scrutinize the importance of choosing PostgreSQL as the working database environment, the visual perspectives that influence human behaviour and ultimately learning, the modes in which learn-ability can be provided via visualization and the advantages reaped by the implementation of the proposed system features.

Keywords: database, learn-ability, PostgreSQL, query, visual-editor

Procedia PDF Downloads 174
6073 Vibrations of Springboards: Mode Shape and Time Domain Analysis

Authors: Stefano Frassinelli, Alessandro Niccolai, Riccardo E. Zich

Abstract:

Diving is an important Olympic sport. In this sport, the effective performance of the athlete is related to his capability to interact correctly with the springboard. In fact, the elevation of the jump and the correctness of the dive are influenced by the vibrations of the board. In this paper, the vibrations of the springboard will be analyzed by means of typical tools for vibration analysis: Firstly, a modal analysis will be done on two different models of the springboard, then, these two model and another one will be analyzed with a time analysis, done integrating the equations of motion od deformable bodies. All these analyses will be compared with experimental data measured on a real springboard by means of a 6-axis accelerometer; these measurements are aimed to assess the models proposed. The acquired data will be analyzed both in frequency domain and in time domain.

Keywords: springboard analysis, modal analysis, time domain analysis, vibrations

Procedia PDF Downloads 460
6072 Predicting the Effect of Silicon Electrode Design Parameters on Thermal Performance of a Lithium-Ion Battery

Authors: Harika Dasari, Eric Eisenbraun

Abstract:

The present study models the role of electrode structural characteristics on the thermal behavior of lithium-ion batteries. Preliminary modeling runs have employed a 1D lithium-ion battery coupled to a two-dimensional axisymmetric model using silicon as the battery anode material. The two models are coupled by the heat generated and the average temperature. Our study is focused on the silicon anode particle sizes and it is observed that silicon anodes with nano-sized particles reduced the temperature of the battery in comparison to anodes with larger particles. These results are discussed in the context of the relationship between particle size and thermal transport properties in the electrode.

Keywords: particle size, NMC, silicon, heat generation, separator

Procedia PDF Downloads 290
6071 Stability Analysis of Two-delay Differential Equation for Parkinson's Disease Models with Positive Feedback

Authors: M. A. Sohaly, M. A. Elfouly

Abstract:

Parkinson's disease (PD) is a heterogeneous movement disorder that often appears in the elderly. PD is induced by a loss of dopamine secretion. Some drugs increase the secretion of dopamine. In this paper, we will simply study the stability of PD models as a nonlinear delay differential equation. After a period of taking drugs, these act as positive feedback and increase the tremors of patients, and then, the differential equation has positive coefficients and the system is unstable under these conditions. We will present a set of suggested modifications to make the system more compatible with the biodynamic system. When giving a set of numerical examples, this research paper is concerned with the mathematical analysis, and no clinical data have been used.

Keywords: Parkinson's disease, stability, simulation, two delay differential equation

Procedia PDF Downloads 130
6070 Selection of Variogram Model for Environmental Variables

Authors: Sheikh Samsuzzhan Alam

Abstract:

The present study investigates the selection of variogram model in analyzing spatial variations of environmental variables with the trend. Sometimes, the autofitted theoretical variogram does not really capture the true nature of the empirical semivariogram. So proper exploration and analysis are needed to select the best variogram model. For this study, an open source data collected from California Soil Resource Lab1 is used to explain the problems when fitting a theoretical variogram. Five most commonly used variogram models: Linear, Gaussian, Exponential, Matern, and Spherical were fitted to the experimental semivariogram. Ordinary kriging methods were considered to evaluate the accuracy of the selected variograms through cross-validation. This study is beneficial for selecting an appropriate theoretical variogram model for environmental variables.

Keywords: anisotropy, cross-validation, environmental variables, kriging, variogram models

Procedia PDF Downloads 334
6069 Chemometric Analysis of Raw Milk Quality Originating from Conventional and Organic Dairy Farming in AP Vojvodina, Serbia

Authors: Sanja Podunavac-Kuzmanović, Denis Kučević, Strahinja Kovačević, Milica Karadžić, Lidija Jevrić

Abstract:

The present study describes the application of chemometric methods in analysis of milk samples which were collected in a conventional dairy farm and an organic dairy farm in AP Vojvodina, Republic of Serbia. The chemometric analysis included the application of univariate regression modeling and Analysis of Variance (ANOVA) method. The ANOVA was used in order to determine the differences in fatty acids content in the milk samples from conventional and organic farm. The results of the ANOVA testing indicate that there is a highly statistically significant difference between the content of fatty acid (saturated fatty acid vs. unsaturated fatty acids) in different dairy farming. Besides, the linear univariate models have been obtained as a result of modeling the linear relationships between the milk fat content and saturated fatty acids content, and the linear relationships between the milk fat content and unsaturated fatty acids content. The models obtained on the basis of the milk samples which originate from the organic farming are statistically better than the models based on the milk samples from conventional farming.

Keywords: hemometrics, milk, organic farming, quality control

Procedia PDF Downloads 237
6068 Estimating Bridge Deterioration for Small Data Sets Using Regression and Markov Models

Authors: Yina F. Muñoz, Alexander Paz, Hanns De La Fuente-Mella, Joaquin V. Fariña, Guilherme M. Sales

Abstract:

The primary approach for estimating bridge deterioration uses Markov-chain models and regression analysis. Traditional Markov models have problems in estimating the required transition probabilities when a small sample size is used. Often, reliable bridge data have not been taken over large periods, thus large data sets may not be available. This study presents an important change to the traditional approach by using the Small Data Method to estimate transition probabilities. The results illustrate that the Small Data Method and traditional approach both provide similar estimates; however, the former method provides results that are more conservative. That is, Small Data Method provided slightly lower than expected bridge condition ratings compared with the traditional approach. Considering that bridges are critical infrastructures, the Small Data Method, which uses more information and provides more conservative estimates, may be more appropriate when the available sample size is small. In addition, regression analysis was used to calculate bridge deterioration. Condition ratings were determined for bridge groups, and the best regression model was selected for each group. The results obtained were very similar to those obtained when using Markov chains; however, it is desirable to use more data for better results.

Keywords: concrete bridges, deterioration, Markov chains, probability matrix

Procedia PDF Downloads 336
6067 Model-Based Field Extraction from Different Class of Administrative Documents

Authors: Jinen Daghrir, Anis Kricha, Karim Kalti

Abstract:

The amount of incoming administrative documents is massive and manually processing these documents is a costly task especially on the timescale. In fact, this problem has led an important amount of research and development in the context of automatically extracting fields from administrative documents, in order to reduce the charges and to increase the citizen satisfaction in administrations. In this matter, we introduce an administrative document understanding system. Given a document in which a user has to select fields that have to be retrieved from a document class, a document model is automatically built. A document model is represented by an attributed relational graph (ARG) where nodes represent fields to extract, and edges represent the relation between them. Both of vertices and edges are attached with some feature vectors. When another document arrives to the system, the layout objects are extracted and an ARG is generated. The fields extraction is translated into a problem of matching two ARGs which relies mainly on the comparison of the spatial relationships between layout objects. Experimental results yield accuracy rates from 75% to 100% tested on eight document classes. Our proposed method has a good performance knowing that the document model is constructed using only one single document.

Keywords: administrative document understanding, logical labelling, logical layout analysis, fields extraction from administrative documents

Procedia PDF Downloads 213
6066 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation

Authors: Arian Hosseini, Mahmudul Hasan

Abstract:

To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.

Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing

Procedia PDF Downloads 55